Skip to main content
Log in

Study of dielectric properties of polypyrrole/titanium dioxide and polypyrrole/titanium dioxide-MWCNT nano composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polypyrrole/titanium dioxide nano composites and polypyrrole/titanium dioxide-MWCNT nano composites were synthesized by chemical polymerization technique in the presence of an ammonium persulphate (oxidizing agent). Different concentrations viz. 15, 30, 45 and 60 wt% of titanium dioxide (TiO2) as well as mixture of TiO2-MWCNT in polypyrrole (PPy) respectively were used in the present study. The nano composites have almost spherical type shaped particles which have cluster formation as confirmed from SEM photos. The XRD graphs reveal that the PPy/TiO2 (PT) nano composites have shown the semi-crystalline nature and also, the graphs indicate the changeover of the structure of PPy/TiO2-MWCNT (PTM) nano composites from amorphous to semi-crystalline nature. From the FTIR figures, shift in wavenumber towards lower side is noticed in the case of PT and PTM nano composites when compared to PPy. The dielectric properties such as dielectric constant, dielectric loss and tangent loss have shown good behavior. This reveals that, the TiO2 as well as mixture of TiO2-MWCNT particles have shown strong dependence on PPy and helps to form good composites. So, the nano composites are good dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. G. Tourillon, in Handbook of Conducting Polymers, ed. by T. A. Skotheim, vol 1 (Marcel Dekker, New York, 1986), p. 293

    Google Scholar 

  2. B. Scrosati, Science and Applications of Conducting Polymers. (Chapman and Hall, London, 1993)

    Google Scholar 

  3. S. Jasne, Encyclopaedia of Polymer Science and Engineering. (John Wiley, New York, 1988)

    Google Scholar 

  4. J.O. Bockris, D. Miller, in Conducting Polymers: Special Applications, ed. by L. Alcacer (Dordrecht, Reidel, 1989)

    Google Scholar 

  5. A. TerjeSkotheim, R. John Reynolds, Handbook of Conducting Polymers, Conjugated polymers, 3rd edn. (CRC Press Inc, Boca Raton, 2006)

    Google Scholar 

  6. GyorgyInzelt, J. Solid State Electrochem. 15, 1711–1718 (2011)

    Article  Google Scholar 

  7. R. Struempler, J. Glatz-reichenbach, J. Electroceram. 3(4), 329–346 (1999)

    Article  Google Scholar 

  8. O. Robert, Ebewele, Polymer Science and Technology. (CRC Press, Boca Raton, 2000)

    Google Scholar 

  9. K.S. Patil, P.H. Zope, IJESRT 4(9), 494–498 (2015)

    Google Scholar 

  10. G. ShipraMital, T. Manoj, Phy. Chem. Chin. Sci. Bull. 56(16), 1639–1657 (2011)

    Article  Google Scholar 

  11. Z. Senic, S. Bauk, M. Vitorovic-Todorovic, N. Pajic, A. Samolov, D. Rajic, Sci. Tech. Rev. 61(3–4), 63–72 (2011)

    Google Scholar 

  12. M.M. Ba-Abbad, A.A. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, J. Electrochem. Sci. 7, 4871–4888 (2012)

    Google Scholar 

  13. M.R. Karim, J.H. Yeum, M.S. Lee, K.T. Lim, React. Funct. Polym. 68, 1371–1376 (2008)

    Article  Google Scholar 

  14. H. Pan, X. Wang, S. Xio, L. Yu, Z. Zang, Indian J. Eng. Mater. Sci. 20, 561–567 (2013)

    Google Scholar 

  15. L. Tilstra, S.A. Broughton, R. Tanke, The Science of Nanotechnology: An Introductory Text. (Nova Science Publishers, Inc., New York, 2008)

    Google Scholar 

  16. E.L. Wolf, Nanophysics and Nanotechnology, (Wiley-VchVerlag GmbH & Co., Weinheim, 2004)

    Google Scholar 

  17. B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, J. Mater. Sci. 27(1), 1044–1055 (2016)

    Google Scholar 

  18. J. Harreld, H.P. Wong, B.C. Dave, B. Dunn, L.F. Nazar, J. Non-Crystalline Solids 225, 319–324 (1998)

    Article  Google Scholar 

  19. S. Kazim, S. Ahmad, J. Pfleger, J. Plestil, Y.M. Joshi, J. Mater. Sci. 47, 420–428 (2012)

    Article  Google Scholar 

  20. M.V. Murugendrappa, M.V.N. Ambika Prasad, J. Appl. Poly. Sci. 103, 2797–2801 (2007)

    Article  Google Scholar 

  21. V.S.R. Channu, R. Holze, Ionics, 18, 495–500 (2012)

    Article  Google Scholar 

  22. S. Sarmah, A. Kumar, Indian J. Phys. 85(5), 713–726 (2011)

    Article  Google Scholar 

  23. M. Dahlhaus, F. Beck, J. Appl. Electrochem. 23, 957–965 (1993)

    Article  Google Scholar 

  24. S. Zihang Huang, H. Wang, S. Li, Z. Zhang, Tan, J. Therm. Anal. Calorim. 115, 259–266 (2014)

    Article  Google Scholar 

  25. T. Machappa, M.V.N. Ambika Prasad, Bull. Mater. Sci 35(1), 75–81 (2012)

    Article  Google Scholar 

  26. M.H. Harun, E. Saion, A. Kassim, M.Y. Hussain, I.S. Mustafa, M.A. Omer, Malays. Polym. J. 3(2), 24–31 (2008)

    Google Scholar 

  27. A. Rherari, M. Addou, M. Haris, J. Mater. Sci. 28(21), 15762–15767 (2017)

    Google Scholar 

  28. V. Jadkar, A. Pawbake, R. Waykar, A. Jadhavar, J. Mater. Sci. 28(21), 15790–15796 (2017)

    Google Scholar 

  29. W.B. Soltan, M.S. Lassoued, S. Ammar, T. Toupance, J. Mater. Sci. 28(21), 15826–15834 (2017)

    Google Scholar 

  30. P.L. Deepti, S.K. Patri, R.N.P. Choudhary, J. Mater. Sci. 28(21), 16071–16076 (2017)

    Google Scholar 

  31. S. Ma, Y. Liu, X. Shi, M. Zhao, D. Liu, J. Mater. Sci. 28(21), 15154–15160 (2017)

    Google Scholar 

  32. G. Jian Hou, J. Zhu, Zheng, Polym. Sci. 53(9–10), 546–552 (2011)

    Google Scholar 

  33. Z. Shen, D. Li, J. Mater. Sci. 28(18), 13257–13266 (2017)

    Google Scholar 

  34. M. Jose, M. Elakiya, S.A. Martin Britto Dhas, J. Mater. Sci. 28(18), 13649–13658 (2017)

    Google Scholar 

  35. B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, Polym. Sci. 56(6), 935–939 (2014)

    Google Scholar 

  36. O.G. Abdullah, R.R. Hanna, Y.A. Salman, J. Mater. Sci. 28(14), 10283–10294 (2017)

    Google Scholar 

  37. I.B. Shameem Banu, S. Divya Lakshmi, J. Mater. Sci. 28(21), 16044–16052 (2017)

    Google Scholar 

  38. M. Xingwei Wang, H. Yang, S. Yan, Qi, J. Mater. Sci. 28(20), 14988–14995 (2017)

    Google Scholar 

  39. F. Movlud Valian, M. Beshkar, Salavati-Niasari, J. Mater. Sci. 28(20), 14996–15003 (2017)

    Google Scholar 

  40. T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, J. Mater. Sci. 28(20), 15074–15080 (2017)

    Google Scholar 

  41. B.V. Chaluvaraju, K. Sangappa, M.V. Ganiger, Murugendrappa, Polym. Sci. 57(4), 467–472 (2015)

    Google Scholar 

  42. B.K. Das, T. Das, K. Parashar, A. Thirumurugan, S.K.S. Parashar, J. Mater. Sci. 28(20), 15127–15134 (2017)

    Google Scholar 

  43. A. Bikram Singh, M. Thakur, S.K. Kumar, D. Verma, Jasrotia, J. Mater. Sci. 28(14), 10007–10011 (2017)

    Google Scholar 

  44. X. Ye Yuan, H. Qian, Y. Han, Chen, J. Mater. Sci. 28(14), 10028–10034 (2017)

    Google Scholar 

  45. B. Mohanbabu, R. Bharathikannan, G. Siva, J. Mater. Sci. 28(18), 13740–13749 (2017)

    Google Scholar 

  46. M. Kheirollah Mohammadi, R. Sadeghi, Azimirad, J. Mater. Sci. 28(14), 10042–10047 (2017)

    Google Scholar 

  47. F. Farzad Namvar, M. Beshkar, S. Salavati-Niasari, Bagheri, J. Mater. Sci. 28(14), 10313–10320 (2017)

    Google Scholar 

  48. N. Naveen Kumar, S. Bastola, R. Kumar, Ranjan, J. Mater. Sci. 28(14), 10420–10426 (2017)

    Google Scholar 

  49. S. Bhavani, M. Ravi, Y. Pavani, V. Raja, R.S. Karthikeya, V.V.R.N. Rao, J. Mater. Sci. 28(18), 13344–13349 (2017)

    Google Scholar 

  50. Z. Qingguo Chi, C. Gao, Y. Zhang, Cui, J. Mater. Sci. 28(20), 15142–15148 (2017)

    Google Scholar 

  51. E. Krissana Prompa, T. Swatsitang, Putjuso, J. Mater. Sci. 28(20), 15033–15042 (2017)

    Google Scholar 

  52. S. Halder, K. Parida, S.N. Das, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. 28(21), 631–637 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Principal, BMSCE, Bengaluru-560019 and Rajya Vokkaligara Sangha, BIT, Bengaluru-560004 for their cooperation. The authors also thank Dr. Chitra Sankar for useful discussions and the revision of the paper. The Center of Excellence in Advanced Materials Research which has all facilities at BMS College of Engineering is supported by the Technical Education Quality Improvement Program (TEQIP) of the World Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Chaluvaraju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aaditya, V.B., Bharathesh, B.M., Harshitha, R. et al. Study of dielectric properties of polypyrrole/titanium dioxide and polypyrrole/titanium dioxide-MWCNT nano composites. J Mater Sci: Mater Electron 29, 2848–2859 (2018). https://doi.org/10.1007/s10854-017-8214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8214-6

Navigation