Skip to main content

Advertisement

Log in

Photocatalytic performance of CdS nanomaterials for photodegradation of organic azo dyes under artificial visible light and natural solar light irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CdS semiconductors have been prepared at low temperature via catalyst-free chemical precipitation method without using any surfactant or capping agent. Either water or ethylene glycol, as a solvent, provides spherical CdS nanostructures with a comparable size of 117–121 nm. The molar ratio of Cd/S plays an important role in determining phase structure, morphology and photocatalytic performance of the prepared CdS nanostructures. Increasing molar ratio of S2− results in not only mixed cubic-hexagonal phases but also low photocatalytic performance. CdS nanoparticles with good dispersibility prepared at Cd/S molar ratio of 1:1 shows high photocatytic efficiency of 95% toward photodegradation of reactive red azo dye (RR141) under visible light irradiation up to 240 min. The degradation efficiency of CdS nanoparticles also reaches 48% under natural solar light irradiation for 80 min. This work demonstrates the promising potential of CdS nanomaterials as photocatalysts for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Darwish, A. Mohammadi, N. Assi, Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine. Mater. Res. Bull. 74, 387–396 (2016)

    Article  Google Scholar 

  2. T. Xaba, M.J. Moloto, N. Moloto, The effect of water-soluble capping molecules in the “Green” synthesis of CdS nanoparticles using the (Z)-2-(pyrrolidin-2-ylidene) thiourea ligand. Mater. Lett. 146, 91–95 (2015)

    Article  Google Scholar 

  3. A. Dumbrava, G. Prodan, D. Berger, M. Bica, Properties of PEG-capped CdS nanopowders synthesized under very mild conditions. Powder Technol. 270, 197–204 (2015)

    Article  Google Scholar 

  4. Z.K. Heiba, M.B. Mohamed, N.G. Imam, Structural tuning of CdS nanoparticles with nucleation temperature and its reflection on the optical properties. J. Mol. Struct. 1094, 91–97 (2015)

    Article  Google Scholar 

  5. P.A.L. Lopes, M.B. Santos, A.J.S. Mascarenhas, L.A. Silva, Synthesis of CdS nano-spheres by a simple and fast sonochemical method at room temperature. Mater. Lett. 136, 111–113 (2014)

    Article  Google Scholar 

  6. Z. Yu, B. Yin, F. Qu, X. Wu, Synthesis of self-assembled CdS nanospheres and their photocatalytic activities by photodegradation of organic dye molecules. Chem. Eng. J. 258, 203–209 (2014)

    Article  Google Scholar 

  7. K.D. Nisha, M. Navaneethan, B. Dhanalakshmi, Y. Hayakawa, S. Ponnusamy, C. Muthamizhchelvan, Formation and morphological investigation of petal-like cadmium sulphide nanostructures. Opt. Mater. 35, 1652–1658 (2013)

    Article  Google Scholar 

  8. A. Phuruangrat, T. Thongtem, S. Thongtem, Novel combined sonochemical/solvothermal syntheses, characterization and optical properties of CdS nanorods. Powder Technol. 233, 155–160 (2013)

    Article  Google Scholar 

  9. N.S. Nirmala Jothi, P. Dennis Christy, A.R. Baby Suganthi, G. Ramalingam, P. Sagayaraj, Development of CdS nanorods of high aspect ratio under hydrothermal conditions with PEG template. J. Cryst. Growth 316, 126–131 (2011)

    Article  Google Scholar 

  10. F. Chen, D. Jia, Y. Cao, X. Jin, A. Liu, Facile synthesis of CdS nanorods with enhanced photocatalytic activity. Ceram. Int. 41, 14604–14609 (2015)

    Article  Google Scholar 

  11. Y.C. Liang, C.C. Chung, T.Y. Lin, Y.R. Cheng, Synthesis and microstructure-dependent photoactivated properties of three-dimensional cadmium sulfide crystals. J. Alloys Compd. 688, 769–775 (2016)

    Article  Google Scholar 

  12. J. Mao, X.M. Chen, X.W. Du, Facile synthesis of three dimensional CdS nanoflowers with high photocatalytic performance. J. Alloys Compd. 656, 972–977 (2016)

    Article  Google Scholar 

  13. Y. Wang, X. Yang, Q. Ma, J. Kong, H. Jia, Z. Wang, M. Yu, Preparation of flower-like CdS with SDBS as surfactant by hydrothermal method and its optical properties. Appl. Surf. Sci. 340, 18–24 (2015)

    Article  Google Scholar 

  14. R. Dang, X. Ma, CdS nanoparticles decorated TiO2 nanofibers with enhanced visible light photocatalytic activity for dye degradation. J. Mater. Sci. 28, 8818–8823 (2017)

    Google Scholar 

  15. J.F.A. Oliveira, T.M. Milão, V.D. Araújo, M.L. Moreira, E. Longo, M.I.B. Bernardi, Influence of different solvents on the structural, optical and morphological properties of CdS nanoparticles. J. Alloys Compd. 509, 6880–6883 (2011)

    Article  Google Scholar 

  16. B. Ahmed, S. Kumar, S. Kumar, A.K. Ojha, Shape induced (spherical, sheets and rods) optical and magnetic properties of CdS nanostructures with enhanced photocatalytic activity for photodegradation of methylene blue dye under ultra-violet irradiation. J. Alloys Compd. 679, 324–334 (2016)

    Article  Google Scholar 

  17. X. Ning, S. Meng, X. Fu, X. Ye, S. Chen, Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chem. 18, 3628–3639 (2016)

    Article  Google Scholar 

  18. B. Kaur, K. Singh, A.K. Malik, Precursor dependent morphological and photo-catalytic behaviour of CdS nanostructures. Dyes Pigments 137, 352–359 (2017)

    Article  Google Scholar 

  19. W. Qingqing, X. Gang, H. Gaorong, Solvothermal synthesis and characterization of uniform CdS nanowires in high yield. J. Solid State Chem. 178, 2680–2685 (2005)

    Article  Google Scholar 

  20. Y. Lei, J. Xu, R. Li, F. Chen, Solvothermal synthesis of CdS grapheme composites by varying the Cd/S ratio. Ceram. Int. 41, 3158–3161 (2015)

    Article  Google Scholar 

  21. L. Zhang, Z. Cheng, D. Wang, J. Li, Preparation of popcorn-shaped CdS nanoparticles by hydrothermal method and their potent photocatalytic degradation efficiency. Mater. Lett. 158, 439–441 (2015)

    Article  Google Scholar 

  22. T.K. Jana, S.K. Maji, A. Pal, R.P. Maiti, T.K. Dolai, K. Chatterjee, Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. J. Colloid Interface Sci. 480, 9–16 (2016)

    Article  Google Scholar 

  23. N. Qutub, B.M. Pirzada, K. Umar, S. Sabir, Synthesis of CdS nanoparticles using different sulfide ion precursors: formation mechanism and photocatalytic degradation of Acid Blue-29. J. Environ. Chem. Eng. 4, 808–817 (2016)

    Article  Google Scholar 

  24. G. Murugadoss, R. Jayavel, R. Thangamuthu, M.R. Humar, PbO/CdO/ZnO and PbS/CdS/ZnS nanocomposites: studies on optical, electrochemical and thermal properties. J. Lumin. 170, 78–89 (2016)

    Article  Google Scholar 

  25. N.R. Yogamalar, K. Sadhananham, A.C. Bose, R. Jayavel, Quantum confined CdS inclusion in grapheme oxide for improved electrical conductivity and facile charge transfer in hetero-junction solar cell. RCS Adv. 5, 16856–16869 (2015)

    Google Scholar 

  26. N. Qutub, B.M. Pirzada, K. Umar, O. Mehraj, M. Muneer, S. Sabir, Synthesis, characterization and visible-light driven photocatalysis by differently structured CdS/ZnS sandwich and core-shell nanocomposites. Phys. E 74, 74–86 (2015)

    Article  Google Scholar 

  27. M.E. Khan, M.M. Khan, M.H. Cho, CdS-graphene nanocomposite for efficient visible-light-driven photocatalytic and photoelectrochemical applications. J. Colloid Interface Sci. 482, 221–232 (2016)

    Article  Google Scholar 

  28. S. Qin, Y. Liu, Y. Zhou, T. Chai, J. Guo, Synthesis and photochemical performance of CdS nanoparticles photocatalysts for photodegradation of organic dye. J. Mater. Sci. 28, 7609–7614 (2017)

    Google Scholar 

  29. A.N. Kadam, R.S. Dhabbe, M.R. Kokate, K.M. Garakar, Room temrature synthesis of CdS nanoflakes for photocatalytic properties. J. Mater. Sci. 25, 1887–1892 (2014)

    Google Scholar 

  30. S. Muruganandam, G. Anbalagan, G. Murugadoss, Synthesis and structural, optical and thermal properties of CdS:Zn2+ nanoparticles. Appl. Nanosci. 4, 1013–1019 (2014)

    Article  Google Scholar 

  31. X. Yan, Z. Wu, C. Huang, K. Liu, W. Shi, Hydrothermal synthesis of CdS/CoWO 4 heterojunctions with enhanced visible light properties toward organic pollutants degradation. Ceram. Int. 43, 5388–5395 (2017)

    Article  Google Scholar 

  32. M.H. Cui, D. Cui, B. Liang, T. Sangeetha, A.J. Wang, H.Y. Cheng, Decolorization enhancement by optimizing azo dye loading rate in an anaerobic reactor. RSC Adv. 6, 49995–50001 (2016)

    Article  Google Scholar 

  33. A. Meng, J. Xing, Z. Li, Q. Li, Cr-doped ZnO nanoparticles: synthesis, characterization, adsorption property, and recyclability. ACS Appl. Mater. Interfaces 7, 27449–27457 (2015)

    Article  Google Scholar 

  34. E. Zuriaga-Agustí, E. Alventosa-deLara, S. Barredo-Damas, M.I. Alcaina-Miranda, M.I. Iborra-Clar, J.A. Mendoza-Roca, Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system. Water Res. 54, 199–210 (2014)

    Article  Google Scholar 

  35. M.S. Mahmoud, M.K. Mostafa, S.A. Mohamed, N.A. Sobhy, M. Nasr, Bioremediation of red azo dye from aqueous solutions by Aspergillus niger strain isolated from textile wastewater. J. Environ. Chem. Eng. 5, 547–554 (2017)

    Article  Google Scholar 

  36. Y.Y. Lau, Y.S. Wong, T.T. Teng, N. Morad, M. Rafatullah, S.A. Ong, Coagulation-flocculation of azo dye acid orange 7 with green refined laterite soil. Chem. Eng. J. 246, 383–390 (2014)

    Article  Google Scholar 

  37. S. Larouk, R. Ouargli, D. Shahidi, L. Olhund, T.C. Shiao, N. Chergui, T. Sehili, R. Roy, A. Azzouz, Catalytic ozonation of orange-G through highly interactive contributions of hematite and SBA-16–To better understand azo-dye oxidation in nature. Chemosphere 168, 1648–1657 (2017)

    Article  Google Scholar 

  38. A. Manivel, G.J. Lee, C.Y. Chen, J.H. Chen, S.H. Ma, T.L. Horng, J.J. Wu, Synthesis of MoO3 nanoparticles for azo dye degradation by catalytic ozonation. Mater. Res. Bull. 62, 184–191 (2015)

    Article  Google Scholar 

  39. M. Punzi, F. Nilsson, A. Anbalagan, B.M. Svensson, K. Jönsson, B. Mattiasson, M. Jonstrup, Combined anaerobic–ozonation process for treatment of textile wastewater: removal of acute toxicity and mutagenicity. J. Hazard. Mater. 292, 52–60 (2015)

    Article  Google Scholar 

  40. J. Yao, H. Chen, F. Jiang, Z. Jiao, M. Jin, Titanium dioxide and cadmium sulfide co-sensitized graphitic carbon nitride nanosheets composite photocatalysts with superior performance in phenol degradation under visible-light irradiation. J. Colloid Interface Sci. 490, 154–162 (2017)

    Article  Google Scholar 

  41. A. Taufik, R. Saleh, Synthesis of iron (II, III) oxide/zinc oxide/copper (II) oxide (Fe3O4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal. J. Colloid Interface Sci. 491, 27–36 (2016)

    Article  Google Scholar 

  42. M. Pirhashemi, A. Habibi-Yangjeh, Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. J. Colloid Interface Sci. 491, 216–229 (2017)

    Article  Google Scholar 

  43. M.D. Rao, G. Pennathur, Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Mater. Res. Bull. 85, 64–73 (2017)

    Article  Google Scholar 

  44. D. Wang, C. Bao, Q. Luo, R. Yin, X. Li, J. An, Z. Xu, Improved visible-light photocatalytic activity and anti-photocorrosion of CdS nanoparticles surface-modified by conjugated derivatives from polyvinyl chloride. J. Environ. Chem. Eng. 3, 1578–1585 (2015)

    Article  Google Scholar 

  45. A. Dumbrava, D. Berger, G. Prodan, F. Moscalu, A. Diacon, Facile synthesis, characterization and application of functionalized cadmium sulfide nanopowders. Mater. Chem. Phys. 173, 70–77 (2016)

    Article  Google Scholar 

  46. P. Sharma, D.S. Rana, A. Umar, R. Kumar, M.S. Chauhan, S. Chauhan, Synthesis of cadmium sulfide nanosheets for smart photocatalytic and sensing applications. Ceram. Int. 42, 6601–6609 (2016)

    Article  Google Scholar 

  47. C. Zhou, J. Qian, J. Yan, X. Dong, B. Zhou, Preparation of cotton cellulose nanofibers/ZnO/CdS nanocomposites and its photocatalytic activity. J. Mater. Sci. 27, 1479–1484 (2016)

    Google Scholar 

  48. Q. Shen, J. Xue, A. Mi, H. Jia, X. Liu, B. Xu, The study on properties of CdS photocatalyst with different ratios of zinc-blende and wurtzite structure. RSC Adv. 3, 20930–20935 (2013)

    Article  Google Scholar 

  49. A. Hernández-Gordillo, V. Rodríguez-González, S. Oros-Ruiz, R. Gómez, Photodegradation of Indigo Carmine dye by CdS nanostructures under blue-light irradiation emitted by LEDs. Catal. Today 266, 27–35 (2016)

    Article  Google Scholar 

  50. K. Edalati, A. Shakiba, J. Vahdati-Khaki, S.M. Zebarjad, Low-temperature hydrothermal synthesis of ZnO nanorods: effects of zinc salt concentration, various solvents and alkaline mineralizers. Mater. Res. Bull. 74, 374–379 (2016)

    Article  Google Scholar 

  51. J. Gajendiran, V. Rajendran, Synthesis and characterization of coupled semiconductor metal oxide (ZnO/CuO) nanocomposite. Mater. Lett. 116, 311–313 (2014)

    Article  Google Scholar 

  52. J. Bi, J. Che, L. Wu, M. Liu, Effects of the solvent on the structure, morphology and photocatalytic properties of Bi2MoO6 in the solvothermal process. Mater. Res. Bull. 48, 2071–2075 (2013)

    Article  Google Scholar 

  53. S. Kakarndee, S. Juabrum, S. Nanan, Low temperature synthesis, characterization and photoluminescence study of plate-like ZnS. Mater. Lett. 164, 198–201 (2016)

    Article  Google Scholar 

  54. P. Eskandari, F. Kazemi, Y. Azizian-Kalandaragh, Convenient preparation of CdS nanostructures as a highly efficient photocatalyst under blue LED and solar light irradiation. Sep. Purif. Technol. 120, 180–185 (2013)

    Article  Google Scholar 

  55. R. Khan, M.S. Hassan, P. Uthirakumar, J.H. Yun, M.S. Khil, I.H. Lee, Facile synthesis of ZnO nanoglobules ang its photocatalytic activity in the degradation of methyl orange dye under UV irradiation. Mater. Lett. 152, 163–165 (2015)

    Article  Google Scholar 

  56. S. Ahluwalia, N.T. Prakash, R. Prakash, B. Pal, Improved degradation of methyl orange dye using bio-co-catalyst Se nanoparticles impregnated ZnS photocatalyst under UV irradiation. Chem. Eng. J. 306, 1041–1048 (2016)

    Article  Google Scholar 

  57. K. Wanga, J. Xu, X. Hua, N. Li, M. Chen, F. Teng, Y. Zhu, W. Yao, Highly efficient photodegradation of RhB–MO mixture dye wastewater by Ag3PO4 dodecahedrons under acidic condition. J. Mol. Catal. A 393, 302–308 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University for providing partial financial support and research facilities. Teeradech Senasu wishes to thank partial fund from Materials Chemistry Research Center. Suwat Nanan also would like to acknowledge Khon Kaen University for financial support under Incubation Researcher Project. This work was also partially supported by the Integrated Nanotechnology Research Center (INRC), Khon Kaen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwat Nanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senasu, T., Nanan, S. Photocatalytic performance of CdS nanomaterials for photodegradation of organic azo dyes under artificial visible light and natural solar light irradiation. J Mater Sci: Mater Electron 28, 17421–17441 (2017). https://doi.org/10.1007/s10854-017-7676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7676-x

Navigation