Skip to main content

Advertisement

Log in

A study of thermo-electric power and transport properties of polypyrrole/ash (paddy husk) nano-composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polypyrrole (PPy)/ash (paddy husk) (PH ash) nano-composites were synthesized in the presence of ammonium persulphate (oxidizing agent) with different compositions, viz. 15, 30, 45 and 60 wt% of ash in the pyrrole, by chemical polymerization (oxidation) method. The Powder X-ray diffraction patterns showed that the PPy/PH ash nano-composites exhibited a high degree of amorphousness with only a low degree of crystalline structure. Scanning electron micrographs revealed that the particle sizes of the nano-composites increased when compared with the pure PPy and ash particles, and they had spherical as well as elongated forms. The PPy/PH ash nano-composite (45 wt%) showed the highest conductivity which may be due to the increased chain length of pure PPy which facilitated the hopping of the charge carriers and the larger number of charge carriers to hop between the favorable localized sites. Hence, the composites might be good semiconductors. The results of Seebeck coefficient and thermo-electric power factor experiments of the nano-composites demonstrated a strong dependence on the weight percent of ash in pure PPy. These nano-composites showed the behavior of thermo-electric materials. The nano-composites have also shown good dielectric behavior. So, the composites might be good materials of dielectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. G. Inzelt, J. Solid State Electrochem. 15, 1711 (2011)

    Article  Google Scholar 

  2. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Commun. 16, 578 (1977)

    Article  Google Scholar 

  3. S. Ramakrishnan, Resonance 2, 48 (1997)

    Article  Google Scholar 

  4. A.K. Bakhshi, Bull. Mater. Sci. 18, 469 (1995)

    Article  Google Scholar 

  5. F. Koleli, M. Dudukcu, Y. Arslan, Turk. J. Chem. 24, 333 (2000)

    Google Scholar 

  6. M. Angelopoulos, IBM J. Res. Dev. 45, 57 (2001)

    Article  Google Scholar 

  7. A.J. Heeger, Angew. Chem. Int. Ed. 40, 2591 (2001)

    Article  Google Scholar 

  8. A.K. Bakhshi, G. Bhalla, J. Sci. Indus. Res. 63, 715 (2004)

    Google Scholar 

  9. T.V. Vernitskaya, O.N. Efimov, Chem. Rev. 66, 443 (1997)

    Google Scholar 

  10. E. Buhks, I.M. Hodge, J. Chem. Phys. 83, 5976 (1985)

    Article  Google Scholar 

  11. T.A. Skotheim, Handbook of Conducting Polymers, 1–2 Marcel Dekker, New York (1986)

    Google Scholar 

  12. K.C. Sajjan, A.S. Roy, A. Parveen, S. Khasim, J. Mater. Sci. 25, 1237 (2014)

    Google Scholar 

  13. T. Machappa, M.V.N. Ambika Prasad, Bull. Mater. Sci. 35, 75 (2012)

    Article  Google Scholar 

  14. N. Parvathikar, S. Jain, S. Khasim, M. Revansiddappa, S.V. Bhoraskar, M.A. Prasad, Sen. Actuators B 114, 599 (2006)

    Article  Google Scholar 

  15. B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, Polym. Sci. Ser. B 56, 935 (2014)

    Article  Google Scholar 

  16. B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, IJLTEMAS 3, 33 (2014)

    Google Scholar 

  17. H. Wang, L. Wang, R. Wang, X. Tian, K. Zheng, Colloid Polym. Sci. 291, 1001 (2013)

    Article  Google Scholar 

  18. C. Basavaraja, Y. Veeranagouda, K. Lee, T.K. Vishnuvardhan, R. Pierson, D.S. Huh, J. Polym. Res 17, 233 (2010)

    Article  Google Scholar 

  19. D.P. Park, J.H. Sung, S.T. Lim, H.J. Choi, M.S. Jhon, J. Mater. Sci. Lett. 22, 1299 (2003)

    Article  Google Scholar 

  20. G. Li, X. Liao, X. Sun, J. Yuo, J. He, Front. Chem. China 2, 118 (2007)

    Article  Google Scholar 

  21. M.V. Murugendrappa, S. Khasim, M.V.N.A. Prasad, Bull. Mater. Sci 28, 565 (2005)

    Article  Google Scholar 

  22. D.M. Jundale, S.T. Navale, G.D. Khuspe, D.S. Dalavi, P.S. Patil, V.B. Patil, J. Mater. Sci. 24, 3526 (2013)

    Google Scholar 

  23. D.S. Madddison, J. Unsworth, Synth. Met. 26, 99 (1988)

    Article  Google Scholar 

  24. C. Han, Z. Li, S. Dou, Chin. Sci. Bull. 59, 2073 (2014)

    Article  Google Scholar 

  25. L.E. Bell, Science 321, 1457 (2008)

    Article  Google Scholar 

  26. A. Shakouri, M. Zebarjadi, S. Volz (eds.) Thermal Nanosystems and Nanomaterials (Springer, Heidelberg, 2009)

    Google Scholar 

  27. D. Kraemer, B. Poudel, H.P. Feng, Nat. Mater. 10, 532 (2011)

    Article  Google Scholar 

  28. A.F. Loffe, Physics of Semiconductors. (Academic Press, New York, 1960)

    Google Scholar 

  29. A. Majumdar, Science 303, 777 (2004)

    Article  Google Scholar 

  30. P. Pichanusakorn, P. Bandaru Mater. Sci. Eng. 67, 19 (2010)

    Article  Google Scholar 

  31. A. Shakouri, Annu. Rev. Mater. Res. 4, 399 (2011)

    Article  Google Scholar 

  32. N. Dubey, M. Leclerc J. Polym. Sci. B 49, 467 (2011)

    Article  Google Scholar 

  33. J.L. Njoroge, Mater. Res. Bull. 35, 909 (2010)

    Article  Google Scholar 

  34. M. He, F. Qiu, Z.Q. Lin, Energy Environ. Sci 6, 1352 (2013)

    Article  Google Scholar 

  35. C. Ding, X. Qian, G. Yu, X. An, Cellulose 17, 1067 (2010)

    Article  Google Scholar 

  36. J.H. Chen, Z.P. Huang, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Appl. Phys. A 73, 129 (2001)

    Article  Google Scholar 

  37. K. Juttnerz, K.M. Mangold, M. Lange, K. Bouzek, Russ. J. Electrochem. 40, 317 (2004)

    Article  Google Scholar 

  38. G. Li, X. Liao, X. Sun, J. Yu, J. He, Front. Chem. China 2, 118 (2007)

    Article  Google Scholar 

  39. C. Janaky, B. Endrodi, A. Hajdu, C. Visy, J. Solid State Electrochem. 14, 339 (2010)

    Article  Google Scholar 

  40. J. Hou, G. Zhu, J. Zheng, Polym. Sci. Ser. B 53, 546 (2011)

    Article  Google Scholar 

  41. R. Del Riao, J.H. Zagal, G.D.T. Andrade, S.R. Biaggio, J. Appl. Electrochem. 29, 759 (1999)

    Google Scholar 

  42. S.R. Mohapatra, A.K. Thakur, R.N.P. Choudhary, Ionics 14, 255 (2008)

    Article  Google Scholar 

  43. B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, J. Mater. Sci. 27, 1044 (2016)

    Google Scholar 

  44. N. Srivastava, Y. Singh, R.A. Singh, Bull. Mater. Sci. 34, 635 (2011)

    Article  Google Scholar 

  45. T. Uma, H.Y. Tu, S. Warth, D. Schneider, D. Freude, U. Stimming, J. Mater. Sci. 40, 2059 (2005)

    Article  Google Scholar 

  46. J. Harreld, H.P. Wong, B.C. Dave, B. Dunn, L.F. Nazar, J. Non-Cryst. Solids 225, 319 (1998)

    Article  Google Scholar 

  47. Akif Kaynak, Turk. J. Chem. 22, 81 (1998)

    Google Scholar 

  48. B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, Polym. Sci. Ser. A 57, 467 (2015)

    Article  Google Scholar 

  49. T. Balkan, A. Sezai Sarac, Fibers Polym. 12, 565 (2011)

    Article  Google Scholar 

  50. A. Bhide, K. Hariharan, Eur. Polym. J. 43, 4253 (2007)

    Article  Google Scholar 

  51. PA Jayathilaka, MA Dissanayake, I. Albinsson, B.E. Mellander, Solid State Ionics 156, 179 (2003)

    Article  Google Scholar 

  52. A.L. Sharma, A.K. Thakur, Ionics, 17, 135 (2011)

    Article  Google Scholar 

  53. Y.D. Kim, G.G. Hong, Korean J. Chem. Eng. 29, 964 (2012)

    Article  Google Scholar 

  54. A. Shakoor, T.Z. Rizvi, M. Saeed, Polymer Sci. Ser. A 54, 401 (2012)

    Article  Google Scholar 

  55. Y.D. Kim, H.K. Jun, Colloid Polym. Sci 286, 631 (2008)

    Article  Google Scholar 

  56. P. Tsotra, K. Friedrich, J. Mater. Sci. 40, 4415 (2005)

    Article  Google Scholar 

  57. P. Dutta, S. Biswas, S.K. De, Mater. Res. Bull. 37, 193 (2002)

    Article  Google Scholar 

  58. MohdHamzah Harun, Elias Saion, Anuar Kassim, Ekramul Mahmud, MuhdYousuf Hussain, IskandarShahrim Mustafa, J. Adv. Sci. Arts, 1 (2009)

  59. M. Lakshmi, A.S. Roy, S. Khasim, M. Faisal, K.C. Sajjan, M. Revanasiddappa, AIP Adv. 3, 112113 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Principal, BMSCE, Bengaluru-560019 and Rajya Vokkaligara Sangha, BIT, Bengaluru-560004 for their cooperation. The CHNSO Elemental Analysis, XRD and SEM analysis of the samples were done at STIC-SAIF, Cochin University of Technology, Cochin, India. The authors also thank Dr. Chitra Sankar for useful discussions and the revision of the paper. The Center of Excellence in Advanced Materials Research, BMS College of Engineering is supported by the Technical Education Quality Improvement Program (TEQIP) of the World Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Chaluvaraju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaluvaraju, B.V., Raghavendra, U.P., Pranesha, T.S. et al. A study of thermo-electric power and transport properties of polypyrrole/ash (paddy husk) nano-composites. J Mater Sci: Mater Electron 28, 11230–11242 (2017). https://doi.org/10.1007/s10854-017-6912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6912-8

Keywords

Navigation