Skip to main content
Log in

Microwave-assisted synthesis of sponge-like carbon nanotube arrays and their application in organic transistor devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multi wall carbon nanotube (MWNT) sponges were synthesized with a domestic microwave oven. The procedure involves a mixture of graphite and cobalt acetate powders enclosed in an evacuated quartz ampoule exposed to microwave irradiation. Maximum yield of MWNT sponges of about 2.2 cm2 is obtained within 12 min of microwave exposure with individual MWNTs having diameters in the 20–50 nm range. Employing MWNT obtained from synthesized sponges we construct two types of organic transistors: a field effect OFET device in which the channel material is a MEH-PPV semiconducting polymer blended with the synthesized MWNT, and a light emitting transistor OLET device in which electrodes are prepared with MWNT, the channel material being the MEH-PPV polymer alone. These devices are characterized with I–V measurements. For the OFET device the Ion/Ioff figure is considerably improved by using the polymer/MWNT blend as channel. In the OLET device, I–V characteristics with MWNT electrodes are comparable to those obtained when ITO electrodes are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, J. Mater. Chem. 21, 15872 (2011)

    Article  Google Scholar 

  2. G. Kamalakar, D.W. Hwang, L. Hwang, J. Mater. Chem. 12, 1819 (2002)

    Article  Google Scholar 

  3. T. Ikeda, T. Kamo, M. Danno, Appl. Phys. Lett. 67, 900 (1995)

    Article  Google Scholar 

  4. O. Kharissova, C. Robledo, Ingeniería 7, 6 (2004)

    Google Scholar 

  5. E. González, F. González, Universitas Scientiarum 13, 258 (2008)

    Google Scholar 

  6. E.O. Pentsak, E.G. Gordeev, V.P. Ananikov, ACS Catal. 4, 3806 (2014)

    Article  Google Scholar 

  7. J. Vivas-Castro, G. Rueda-Morales, G. Ortega-Cervantez, L. Moreno-Ruiz, M. Ortega-Aviles, J. Ortiz-Lopez, in Synthesis of Carbon Nanostructures by Microwave Irradiation. ed by S. Yellampalli. Carbon nanotubes—synthesis, characterization, applications. ISBN:978-953-307-497-9, InTech. (2011) doi:10.5772/17722

  8. J.J. Vivas-Castro, G. Rueda-Morales, G. Ortega-Cervantez, J. Ortiz-López, J. Mater. Sci.: Mater. Electron. 25, 2835 (2014)

    Google Scholar 

  9. L. Camilli, C. Pisani, E. Gautron, M. Scarselli, P. Castrucci, F. D’Orazio, M. Passacantando, D. Moscone, M. Crescenzi, Nanotechnol. 25, 065701 (2014)

    Article  Google Scholar 

  10. D.P. Hashim, N.T. Narayanan, J.M. Romo-Herrera, D.A. Cullen, M.G. Hahm, P. Lezzi, J.R. Suttle, D. Kelkhoff, E. Muñoz-Sandoval, S. Ganguli, A.K. Roy, D.J. Smith, R. Vajtai, B.G. Sumpter, V. Meunier, H. Terrones, M. Terrones, P.M. Ajayan, Sci. Rep. 2, 363 (2012)

    Article  Google Scholar 

  11. G. Xuchun, Z. Zhiping, Z. Yuan, L. Hongbian, L. Zhiqiang, G. Qiming, X. Rong, C. Anyuan, T. Zikang, Adv. Mater. 26, 1248 (2014)

    Article  Google Scholar 

  12. X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Adv. Mater. 22, 617 (2010)

    Article  Google Scholar 

  13. M.P. Anantram, F. Léonard, Rep. Prog. Phys. 69, 507 (2006)

    Article  Google Scholar 

  14. S. Cheng-Jun, W. Yue, X. Zhihua, H. Bin, B. Jianmin, W. Jian-Ping, S. Jian, Appl. Phys. Lett. 90, 232110 (2007)

    Article  Google Scholar 

  15. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005)

    Article  Google Scholar 

  16. K. Behler, S. Osswald, H. Ye, S. Dimovski, Y. Gogotsi, J. Nanopart. Res. 8, 615 (2006)

    Article  Google Scholar 

  17. M.S. Dresselhaus, P.C. Eklund, Adv. Phys. 49, 705 (2000)

    Article  Google Scholar 

  18. M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, F. Rohmund, Appl. Phys. A 73, 409 (2001)

    Article  Google Scholar 

  19. P.H. Tan, S. Dimovski, Y. Gogotsi, Philos. Trans. R. Soc. A 362, 2289 (2004)

    Article  Google Scholar 

  20. G. Horowitz, Adv. Mater. 10, 365 (1998)

    Article  Google Scholar 

  21. Z.L. Li, S.C. Yang, H.F. Meng, Y.S. Chen, Y.Z. Yang, C.H. Liu, S.F. Horng, C.S. Hsu, L.C. Chen, J.P. Hu, R.H. Lee, Appl. Phys. Lett. 84, 3558 (2004)

    Article  Google Scholar 

  22. Shu-Hao Wen, An Li, Junling Song, Wei-Qiao Deng, Ke-Li Han, William A. Goddard III, J. Phys. Chem. B 113, 8813 (2009)

    Article  Google Scholar 

  23. R. Gómez-Aguilar, Estudio de materiales orgánicos semiconductores para aplicaciones en optoelectrónica, PhD thesis, ESFM-IPN (2016)

  24. S.V. Pol, V.G. Pol, I. Felner, A. Gedanken, Eur. J. Inorg. Chem. 2007, 2089 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Authors wish to thank COFAA—SIBE/IPN and EDI-IPN for academic fellowships and SIP-IPN for partial financial support through projects Nos. 20140271, 20140238 and 20140199 and SIP-IPN Multidisciplinary Program No. 1616. We are grateful to Centro Nanocienciasy Micro Nanotecnologias-IPN for TEM and Raman analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ortiz-López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega-Cervantez, G., Gómez-Aguilar, R., Rueda-Morales, G. et al. Microwave-assisted synthesis of sponge-like carbon nanotube arrays and their application in organic transistor devices. J Mater Sci: Mater Electron 27, 12642–12648 (2016). https://doi.org/10.1007/s10854-016-5397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5397-1

Keywords

Navigation