Skip to main content
Log in

Nanocrystalline Sb2S3 sensitized TiO2 photoanode preparation and its application in solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline Sb2S3 was synthesized using chemical bath deposition, and TiO2–Sb2S3 composite electrodes were fabricated by combining the nanocrystalline Sb2S3 with mesoporous TiO2 thin films. The composite electrodes were characterized by XRD, SEM, TEM, EDX, and UV–Visible absorption. P3HT and CuSCN were used as hole-transporting materials, and thermally evaporated silver films were used as counter electrodes in the fabricated solar cells. The solar cells with P3HT or CuSCN as hole-transporting material exhibit the highest efficiencies of 0.34 and 0.47 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.S. Solanki, G. Beaucarne, Advanced solar cell concepts. Energy Sustain. Dev. 11, 17–23 (2007)

    Article  Google Scholar 

  2. A. Fujii, Y. Ohmori, K. Yoshino, An organic infrared electroluminescent diode utilizing a phthalocyanine film. IEEE Trans. Electron Dev. 44, 1204–1206 (1997)

    Article  Google Scholar 

  3. T.J. Liang, Y.C. Kuo, J.F. Chen, Single-stage photovoltaic energy conversion system. IEE Proc. Electr. Power Appl. 148(4), 339–344 (2001)

    Article  Google Scholar 

  4. J.Y. Hwang, S.A. Lee, Y.H. Lee, S.I. Seok, Improved photovoltaic response of nanocrystalline CdS-sensitized solar cells through interface control. Appl. Mater. Interfaces 2, 1343–1348 (2010)

    Article  Google Scholar 

  5. Y. Hao, Y. Cao, B. Sun, Y. Li, Y. Zhang, D. Xu, A novel semiconductor sensitized solar cell based on P3HT@CdS@TiO2 core-shell nanotube array. Sol. Energy Mater. Sol. Cells 101, 107–113 (2012)

    Article  Google Scholar 

  6. H.J. Lee, J. Bang, J. Park, S. Kim, S. Park, Multi layered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: all prepared by successive ionic layer adsorption and reaction processes. Chem. Mater. 22, 5636–5643 (2010)

    Article  Google Scholar 

  7. Y.R. Smith, V. Subramanian, Heterostructural composites of TiO2 mesh–TiO2 nanoparticles photosensitized with CdS: a new flexible photoanode for solar cells. J. Phys. Chem. C 115, 8376–8385 (2011)

    Article  Google Scholar 

  8. S.H. Im, H. Kim, J.H. Rhee, C.-S. Lim, S.I. Seok, Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte. Energy Environ. Sci. 4, 2799–2802 (2011)

    Article  Google Scholar 

  9. N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert, R. Gómez, CdSe quantum dot-sensitized TiO2 electrodes: effect of quantum Dot coverage and mode of attachment. J. Phys. Chem. C 113(10), 4208–4214 (2009)

    Article  Google Scholar 

  10. J.-J. Liu, M.-W. Lee, Lead antimony sulfide semiconductor-sensitized solar cells. Electrochim. Acta 119, 59–63 (2014)

    Article  Google Scholar 

  11. M.Y. Versavel, J.A. Hebert, Structural and optical properties of amorphous and crystalline antimony sulfide thin-films. Thin Solid Films 515(18), 7171–7176 (2007)

    Article  Google Scholar 

  12. C.P. Liu, H.E. Wang, T.W. Ng, Z.H. Chen, W.F. Zhang, C. Yan, Y.B. Tang, I. Bello, L. Artinu, W.J. Zhang, S.K. Jha, Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions. Phys. Status Solidi B 249(3), 627–633 (2012)

    Article  Google Scholar 

  13. D.B. Salunkhe, S.S. Gargote, D.P. Dubal, W.B. Kim, B.R. Sankapal, Sb2S3 nanoparticles through solution chemistry on mesoporous TiO2 for solar cell application. Chem. Phys. Lett. 554, 150–154 (2012)

    Article  Google Scholar 

  14. S.-J. Moon, Y. Itzhaik, J.-H. Yum, S.M. Zakeeruddin, G. Hodes, M. Gratzel, Sb2S3-based mesoscopic solar cell using an organic hole conductor. J. Phys. Chem. Lett. 1, 1524–1527 (2010)

    Article  Google Scholar 

  15. J.A. Chang, J.H. Rhee, S.H. Im, Y.H. Lee, H.-J. Kim, S.I. Seok, M. Nazeeruddin, M. Gratzel, High-performance nanostructured inorganic–organic heterojunction solar cells. Nano Lett. 10, 2609–2612 (2010)

    Article  Google Scholar 

  16. J.A. Chang, S.H. Im, Y.H. Lee, H.-J. Kim, C.-S. Lim, J.H. Heo, S.I. Seok, Panchromatic photon-harvesting by hole-conducting materials in inorganic–organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett. 12(4), 1863–1867 (2012)

    Article  Google Scholar 

  17. J. Tauc, A. Menth, D.L. Wood, Optical and magnetic investigations of localized states in semiconducting glasses. Phys. Rev. Lett. 25, 749–752 (1970)

    Article  Google Scholar 

  18. J.K. Kim, G. Veerappan, N. Heo, D.H. Wang, J.H. Park, Efficient hole extraction from Sb2S3 heterojunction solar cells by the solid transfer of preformed PEDOT:PSS film. J. Phys. Chem. C (2014). doi:10.1021/jp507652r

    Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (11475017), CSC Scholarship (201407095076), and the Fundamental Research Funds for the Central Universities (2013JBM094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, S.Y., Yan, L.T., Wang, H.W. et al. Nanocrystalline Sb2S3 sensitized TiO2 photoanode preparation and its application in solar cells. J Mater Sci: Mater Electron 26, 5767–5773 (2015). https://doi.org/10.1007/s10854-015-3135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3135-8

Keywords

Navigation