Skip to main content
Log in

Surface and bulk exciton recombination dynamics in GaN freestanding films via one- and two-photon excitations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have measured the photoluminescence (PL) lifetime of a freestanding GaN film using one- and two-photon excitations to demonstrate the dramatic difference in exciton recombination dynamics at the surface and in the bulk. An ultra-long exciton PL lifetime of 17.2 ns at 295 K is observed from a GaN freestanding film using two-photon excitation, whereas less than 100 ps lifetime is observed for one-photon excitation, suggesting that nonradiative processes from surface defects account for the short PL lifetime measured. The room temperature exciton lifetime of 17.2 ns is the longest ever reported for GaN film. A monotonic increase in two-photon excited PL lifetime with increasing temperature and the linear dependence of the exciton lifetime with emission wavelength show good agreement with the theoretical predictions, indicating that radiative recombination dominates for bulk excited state relaxation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Nakamura, G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, Berlin, 1997)

    Google Scholar 

  2. S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)

    Article  CAS  Google Scholar 

  3. W. Shan, T.J. Schmidt, X.H. Yanh, S.J. Hwang, J.J. Song, B. Goldenberg, Appl. Phys. Lett. 66, 985 (1995)

    Article  CAS  Google Scholar 

  4. F.A. Ponce, D.P. Bour, W. Götz, N.M. Johnson, H.I. Helava, I. Grzegory, J. Jun, S. Porowski, L.T. Romano, N.M. Johnson, Appl. Phys. Lett. 68, 917 (1996)

    Article  CAS  Google Scholar 

  5. R.J. Molnar, W. Götz, L.T. Romano, N.M. Johnson, J. Cryst. Growth 178, 147 (1997)

    Article  CAS  Google Scholar 

  6. W. Shan, X.C. Xie, J.J. Song, B. Goldenberg, Appl. Phys. Lett. 67, 2512 (1995)

    Article  CAS  Google Scholar 

  7. J.S. Im, A. Moritz, F. Steuber, V. Härle, F. Scholz, A. Hangleiter, Appl. Phys. Lett. 70, 631 (1997)

    Article  CAS  Google Scholar 

  8. S. Pau, Z.X. Liu, J. Kuhl, J. Ringling, H.T. Grahn, M.A. Khan, C.J. Sun, O. Ambacher, M. Stutzmamn, Phys. Rev. B 57, 7066 (1998)

    Article  CAS  Google Scholar 

  9. M. Smith, G.D. Chen, J.Z. Li, J.Y. Lin, H.X. Jiang, A. Salvador, W.K. Kim, O. Aktas, A. Botchkarev, H. Morkoç, Appl. Phys. Lett. 67, 3387 (1995)

    Article  CAS  Google Scholar 

  10. O. Brandt, J. Ringling, K.H. Ploog, H-J Wünsche, F. Henneberger, Phys. Rev. B 58, R15977 (1998)

    Article  CAS  Google Scholar 

  11. Y. Narukawa, Y. Kawakami, S. Fujita, S. Nakamura, Phys. Rev. B 59, 10283 (1999)

    Article  CAS  Google Scholar 

  12. G.E. Bunea, W.D. Herzog, M.S. Ünlü, B.B. Goldberg, R.J. Molnar, Appl. Phys. Lett. 75, 838 (1999)

    Article  CAS  Google Scholar 

  13. Ü. Özgür, Y. Fu, Y.T. Moon, F. Yun, H. Morkoç, H.O. Everitt, S.S. Park, K.Y. Lee, Appl. Phys. Lett. 86, 232106 (2005)

    Article  Google Scholar 

  14. A.Y. Polyakov, A.V. Govorkov, N.B. Smirnov, Z-Q. Fang, D.C. Look, S.S. Park and J.H. Han, J. Appl. Phys. 92, 5238 (2002); A. P. Zhang, L. B. Rowland, E. B. Kaminsky, V. Tilak, J. C. Grande, J. Teetsov, A. Vertiatchikh and L. F. Eastman, J. Electon. Mater. 32, 388 (2003)

    Google Scholar 

  15. S.S. Park, I-W. Park, S.H. Choh, Japn. J. Appl. Phys. 39, L1141 (2000)

    Article  CAS  Google Scholar 

  16. S.J. Xu, W. Liu and M.F. Li, Appl. Phys. Lett. 77, 3376 (2000), ibid, 81, 2959 (2002)

  17. B.J. Skromme, J. Jayapalan, R.P. Vaudo, V.M. Phanse, Appl. Phys. Lett. 74, 2358 (1999)

    Article  CAS  Google Scholar 

  18. H. Wang, K.S. Wong, B.A. Foreman, Z.Y. Yang, G.K.L. Wong, J. Appl. Phys. 83, 4773 (1998)

    Article  CAS  Google Scholar 

  19. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  20. P. Asbeck, J. Appl. Phys. 48, 820 (1977); R. J. Nelson and R. G. Sobers, ibid, 49, 6103 (1978)

  21. I.J. Blewett, N.R. Gallaher, A.K. Kar, B.S. Wherett, J. Opt. Soc. Am. B 13, 779 (1996)

    Article  CAS  Google Scholar 

  22. Ph. Renaud, F. Raymond, B. Bensaїd, C. Vèrié, J. appl. Phys. 71, 1907 (1992)

    Article  CAS  Google Scholar 

  23. J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, R.J. Elliott, Phys. Rev. Lett. 59, 2337 (1987)

    Article  CAS  Google Scholar 

  24. G.W. ‘t Hooft, W.A.J.A. van der Poel, L.W. Molenkamp, C.T. Foxon, Phys. Rev. B 35, 8281 (1987)

    Article  CAS  Google Scholar 

  25. L.C. Andreani, A. d’Andrea, R. del Sole, Phys. Lett. A 168, 451 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The experiments were performed in the Joyce M. Kuok Laser and Photonic Laboratory at the Hong Kong University of Science and Technology. The authors would like to thank S. S. Park of Samsung for supply the GaN sample. DCL was supported by AFOSR Grant F49620-03-1-0197 and Air Force Contract F33615-00-C-5402. KSW acknowledges the support of this work by Research Grants Council of Hong Kong (Project No. 604405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchun Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Y., Wong, K.S., Zhang, W. et al. Surface and bulk exciton recombination dynamics in GaN freestanding films via one- and two-photon excitations. J Mater Sci: Mater Electron 18 (Suppl 1), 453–457 (2007). https://doi.org/10.1007/s10854-007-9253-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9253-1

Keywords

Navigation