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ABSTRACT

Grain boundary engineering (GBE) is one of the most successful processing

strategies to improve the properties of polycrystalline solids. However, the

extensive thermomechanical processes involved during GBE restrict its use to

selected applications and materials. In this viewpoint paper, we discuss the

opportunity provided by additive manufacturing (AM) technology to broaden

the applicability of the GBE paradigm and, consequently, the design space for

engineering materials. By integrating specially-designed thermomechanical

processing within AM, it would be possible to produce bulk, near-net-shape

parts with complex geometry and GBE microstructure. We discuss the major

challenges in this endeavor and propose some possible strategies to achieve this

goal, which we refer to as ‘‘additive-GBE’’.

The promise of grain boundary
engineering

Amongst the many processing strategies that have

been conceived to improve the properties of poly-

crystalline materials, grain boundary engineering

(GBE) deserves a special mention. By manipulating a

small fraction of the atoms in the solid—namely,

those which are located at grain boundaries (GBs)—

GBE leads to dramatic changes in properties [1, 2],

including ductility [3], fatigue [4], creep [5], hydrogen

embrittlement [6, 7], and corrosion behavior [8].

GBE involves applying a sequence of thermome-

chanical processes to a target material, which typi-

cally consist of cyclic plastic deformation and high

temperature treatments (Fig. 1). As such, GBE is a

prototypical metal processing strategy, much like

those employed in ancient times to improve the

strength of metal alloys. The resulting microstructure

exhibits a significantly different distribution of GBs,

with higher fractions of low energy GBs [9, 10]. The

change in the GB character distribution, which can be

thought of as a ‘‘survival of the fittest’’, is the result of

microstructure recovery and recrystallisation upon

heat treatment [10, 11]. During recrystallisation, new,

strain free grains nucleate and grow into the
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surrounding microstructure, reducing the stored

energy which was introduced through the mechani-

cal deformation step in GBE. As these grains grow,

they promote the formation of new GBs. Amongst

those, low energy GBs tend to remain in the recrys-

tallized microstructure because they typically exhibit

reduced mobility [12, 13].

In materials that are characterized by a low-stack-

ing fault energy, GBE yields recrystallized

microstructures with copious coherent twin bound-

aries (TBs). Owing to their perfect atomic registry,

coherent TBs have the lowest energy and the highest

thermal stability amongst all GBs. As such, they are

frequently observed in recrystallized microstructures

and may survive the multiple strain-annealing cycles

during GBE [14, 15]. Coherent TB formation is asso-

ciated with stacking sequence errors that occur dur-

ing GB migration upon recrystallisation [16–18]. It

follows that, as a recrystallized grain grows, multiple

coherent TBs can form. These highly twinned grain

clusters disrupt the connectivity of general, high-en-

ergy GBs, improving the GB-governed properties of

the material. Besides coherent TBs, GBE may promote

the formation of other low-energy GBs, including

incoherent TBs and other twin-related GBs. These

GBs form as different twinned grain clusters coalesce

and interact with one another throughout the repe-

ated strain-annealing cycles in GBE [13].

The concept of GBE was initially proposed by

Watanabe et al. in the 1980s [19], convincingly

demonstrated by Palumbo et al. on a variety of metal

alloys a decade later [3, 5, 20, 21], and widely

explained by Randle et al. in the 2000s [12, 13, 22, 23].

Since then, GBE has proliferated into a myriad of

different adaptations and has been applied to a broad

range of materials [8, 20, 23, 24], including non-met-

als [25, 26]. Despite the intense research and large

number of success stories, however, very few modern

industrial applications employ GBE materials

[27, 28].

What limits the broad application of GBE?

One of the possible reasons why GBE is not

employed ubiquitously in industry is the limited

flexibility on part geometry that it provides. Because

of the large plastic strain required to trigger recrys-

tallisation, GBE materials generally come in the form

of sheets or tubes [29], as a result of the mechanical

processes chosen to yield uniform and controlled

deformation (e.g., rolling [30], drawing [31] and

equal-channel angular pressing [32]). Thereafter,

these materials require additional machining or

forming to be shaped into a final product. When

combined with the thermomechanical treatments

required for GBE, the entire manufacturing process

becomes time- and cost-intensive. Moreover, the

range of parts that can be produced by sheet or wire

forming is limited. For these reasons, GBE is not

applied to bulk, three-dimensional (3-D) parts or

components with intricate geometries. In these cases,

the common practice is to rely on surface or coating

technologies to minimize intergranular degradation,

especially at high temperature and in corrosive

environments [33].

Another drawback of GBE is the negative impact it

has on materials strength, which is one of the main

criteria when designing metals and metal alloys for

structural applications. Since GBE relies on recovery

and recrystallisation, the resulting polycrystals exhi-

bit low densities of dislocations and low-angle GBs,

as well as grains made larger by the heat treatment.

Thus, the material loses both strain- and GB-hard-

ening. Only rarely have researchers claimed an

increase in material strength upon GBE. This trade-

Figure 1 Schematic of conventional grain boundary engineering
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off between strength and other GB-controlled prop-

erties further restricts the application of GBE strate-

gies to the surface of engineering components to

avoid affecting the material’s bulk strength [34, 35].

Revamping GBE through additive
manufacturing

Additive manufacturing (AM) is regarded as a dis-

ruptive technology owing to its unique capability of

producing bulk, near-net-shape parts by stacking

layers of material into complex 3-D geometries. The

unprecedented design freedom provided by AM

offers many advantages over traditional manufac-

turing routes, including part count reduction [36],

incorporation of intricate internal channels and

chambers [37, 38], and improved strength-to-weight

ratio of structural components [39, 40]. Beside these

geometry-enabled advances in part design, AM

opens many new opportunities for a microstructure-

based design of materials [41]. The layerwise nature

of the process, in fact, makes it possible to apply

materials processing strategies—such as GBE—di-

rectly on individual layers as parts are produced

(Fig. 2). The benefit of a layerwise GBE, which we

refer to as additive-GBE (A-GBE), is that it would

enable the direct production of bulk metal parts with

both GBE microstructure and near-net-shape,

topology-optimized geometry. As a result, A-GBE

parts could be endowed with lightweight and

enhanced resistance to intergranular degradation.

This strategy could also be more energy- and cost-

effective compared to conventional GBE, owing to

the reduced temperature and mechanical deforma-

tion required to activate recrystallisation on each

layer, as opposed to the entire part.

Some early studies have explored the possibility of

processing materials using hybrid manufacturing

approaches, which concurrently combine additive

technologies with tooling to do mechanical work on

the build [42]. Some notable examples include in-line

rolling [43, 44] and forging [45] to refine the

microstructure in directed energy deposition (DED)

processes, or in-situ laser or shot peening [46, 47] to

produce compressive stresses and raise the strain

energy in materials produced by laser powder bed

fusion (LPBF). The first strategy is restricted to AM

parts that tolerate low dimensional accuracy, since

the repeated deformation may change the build

geometry substantially. The second overcomes this

limitation but may only lead to partial recrystallisa-

tion of the material due to the relatively shallow

depth of the deformation zone.

Another possible approach is to leverage the

inherent strain energy formed during AM to activate

microstructure recrystallisation, especially in addi-

tive processes that involve melting of the material

feedstock, such as LPBF and DED. Because of the

highly localized melting, steep thermal gradients,

rapid cooling rates, and repeated thermal expansion

and shrinkage cycles, materials produced by these

processes exhibit highly non-equilibrium

microstructures containing copious dislocation den-

sities [48–50], deformation-induced defects [51], and

large residual stress [52, 53]. All these features raise

the driving force for recrystallisation [54, 55], which

may be activated via post-production heat treat-

ments. Indeed, parts produced by fusion-based AM

are routinely heat treated to relieve residual stresses

and to homogenize the microstructure [56, 57].

However, microstructure recrystallisation in most of

these materials only occurs after exposing them to

very high temperatures for long times [58, 59]. The

shortcoming of these extensive heat treatments is that

they may coarsen the microstructure and even yield

the formation of unwanted phases, which would

impart below-average mechanical performance to the

alloy.

Figure 2 Conceptual schematic of ‘‘additive grain boundary

engineering’’
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While the abovementioned studies delineate a

pathway towards A-GBE, we are still far from

devising a systematic and robust A-GBE strategy.

The major challenge is to produce the necessary

energy required to activate recrystallisation without

compromising the geometry of the build or intro-

ducing detrimental residual strains which could lead

to part failure [60, 61]. In the following sections, we

discuss alternative routes that could lead to A-GBE as

well as some intriguing applications of it. We believe

that both aspects will be the focus of intense research

in this field in the near future.

An outlook on A-GBE in fusion-based AM

It should be noted that the density of coherent TBs

and other twin-related GBs—hereafter generally

referred to as TBs—in parts produced by AM is very

limited in general [48, 51, 62]. Thus, A-GBE must rely

on recrystallisation. As mentioned in the foregoing

sections, it may be possible to activate recrystallisa-

tion and promote the formation of copious TBs by

tailoring the non-equilibrium microstructure impar-

ted by AM (and more specifically fusion-based AM).

As many other phenomena that underpin the for-

mation of materials and the evolution of their

microstructure, recrystallisation requires a driving

force and heat to overcome an energy barrier. In other

words, the propensity of a material to undergo

recrystallisation depends on how much strain energy

is stored in the microstructure and how easy it is for

new, recrystallized grains to nucleate and grow. In

the quest for A-GBE, both aspects may be tuned

concurrently through careful selection of AM pro-

cessing parameters and/or by integrating layerwise

mechanical treatments during AM.

Deformation-free A-GBE

Much of the strain energy required for recrystallisa-

tion is inherently generated during fusion-based AM.

Indeed, the density of geometrically necessary dislo-

cations found in metal alloys produced by LPBF

ranges between 1013 m-2 and 1014 m-2 [50, 63]. In

theory, this residual strain should be sufficient to

activate recrystallization at temperatures compatible

with industrial standards [30, 64] without any addi-

tional mechanical treatment. In practice, however,

most of these AM alloys are thermally stable up to

much higher temperatures [58, 65]. This thermal

stability stems from the presence of a fine solidifica-

tion structure, which includes pronounced micro-

segregation of solute atoms at cell or dendrite

boundaries as a result of constitutional undercooling

at the solidification front [62]. This structure hinders

the onset and progression of recrystallisation despite

the large driving force contained in the microstruc-

ture. In a recent work, we have shown how ‘‘weak-

ening’’ this solidification structure by employing AM

processing parameters that limit micro-segregation

allows for recrystallisation to occur at progressively

lower mechanically-induced strain [62].

Another microstructural feature that hinders

recrystallization of alloys produced by fusion-based

AM is second phase precipitates, such as oxide

nanoparticles [66]. These particles are thought to

originate from the melting of oxidized contaminants

contained in the powder feedstock [67, 68]. Due to the

rapid solidification and high cooling rates the mate-

rial undergoes, these solutionized impurities precip-

itate and form nano-scale particles. As in the case of

micro-segregation, these particles pin GB motion

during recrystallisation. By reducing the oxygen

contamination level during the AM process (both in

the processing chamber environment as well as in the

powder feedstock), or by controlling the material’s

cooling rate, it should be possible to limit the pres-

ence of these nanoparticles or reduce their size sub-

stantially; to a point where they would not refrain the

growth of recrystallized grains.

While deformation-free A-GBE has yet to be

demonstrated, we believe that devising strategies

that simultaneously minimize GB pinning while

raising the driving force for recrystallisation may

prove successful. The latter could be achieved by

employing unconventional laser sources [69], or laser

processing methodologies [46] that promote higher

residual strain in the as-built microstructure. What-

ever the approach, a challenge will be to make such

strategies scalable. Residual strains could add up and

yield failure during production of large-scale parts,

such as cracking, delamination, or distortion. More-

over, in these cases it may be more difficult to control

the material’s thermal history and thus the solidifi-

cation structure.
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Heat treatment-free A-GBE

Another interesting feature that may facilitate A-GBE

in fusion-based AM processes is the intrinsic heat

treatment resulting from the repeated melting and

solidification of individual layers. As the high-energy

source (either a laser or an electron beam) scans the

layer, it generates a heat affected zone that starts from

the fusion boundary and extends into the solid

material surrounding the melt pool [70]. By selecting

different processing parameters, the heat affected

zone may be tuned to positively affect the

microstructure of the solidified material; for instance

by triggering phase transformations [71], or activat-

ing recrystallisation [51, 72]. Recently, Laleh et al. [73]

found high fractions of TBs in the as-built

microstructure of stainless steel and attributed this

unusual phenomenon to poor heat dissipation during

LPBF. Although their GB character distribution is

dominated by high-mobility incoherent TBs, their

work showcases the possibility to capitalize on the

cyclic intrinsic heat treatments to activate dynamic

recrystallization or recovery during the AM process.

The advantage of this approach is that the parts

produced would not require a GBE-specific heat

treatment to activate recrystallisation, which would

decrease production time and cost. Moreover,

dynamic recrystallisation could also mitigate long

standing problems related to the large residual

stresses found in as-built AM parts [61].

Site-specific A-GBE

Because material and geometry are formed concur-

rently, point by point, during AM, parts may be

produced with dissimilar microstructures using

processing parameters that vary site-specifically.

When controlled, this microstructure heterogeneity

may impart additional functionalities to the build

and have positive effects over parts performance.

Some notable examples of this strategy can be found

in the realm of surface engineering [74] or thin films

technology [75], where such a heterogeneity can

produce additional strengthening mechanisms and

even help overcome the strength-ductility trade-off in

metallic materials [76–78]. These ‘‘microstructure

architectures’’, however, are typically restricted to

small scale materials because of the limitations asso-

ciated with the respective manufacturing processes.

With AM, these microstructure designs may be

extended to bulk materials containing site-specific

textures [41], directional solidification structures [79],

dissimilar grain structures [80], composition gradi-

ents [81], and multiple phases [71]. In the context of

A-GBE, site-specific microstructure control could be

used to engineer the density of nucleation sites for

recrystallisation across the build—for instance by

selectively weakening the solidification structure. A

low nucleation density would lead to the growth of

large twin-related grain clusters separated by a

sparse and disconnected network of high-angle GBs

[82]. These high TB-density microstructures could

exhibit properties comparable to those of materials

that undergo several strain-annealing cycles follow-

ing conventional GBE processes.

By controlling these microstructural features site-

specifically, A-GBE could also enable the production

of materials that integrate completely different GB

character distributions [72], which would be impos-

sible to attain via conventional GBE routes. One

possible approach to achieve this goal is to tune the

thermal stability of metal alloys site-specifically to

alternate between regions that undergo recrystallisa-

tion and regions that do not. Alternatively, mechan-

ical work could be applied only on specific regions of

the build during hybrid manufacturing processes

[72]. One benefit these microstructures could bring is

to overcome the trade-off between enhanced GB-

controlled properties and material strength in GBE

materials. By designing the optimum fraction of

recrystallized (i.e., soft) and non-recrystallized (i.e.,

hard) microstructures as well as their spatial distri-

bution, parts could be made with high corrosion

resistance and high strength at locations that best suit

the constraints imposed by the target applications.

We believe that these designs could be of interest for

applications that require engineering alloys to oper-

ate in harsh environments.

Beyond twin-related GBE

This viewpoint focuses on TB-related GBE. However,

TB multiplication through recrystallisation is restric-

ted to materials with low stacking fault energy. While

many engineering alloys fall under this category,

including nickel, iron, and titanium alloys, others

such as aluminum alloys are excluded from it.

However, there are other types of GBs which could

improve the properties of polycrystalline solids. For

instance, some recent studies pinpointed the
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beneficial effects of low-angle GBs on intergranular

corrosion of aluminum alloys [83–85] and on the

strength of stainless steel [86, 87]. The possibility

offered by AM to control the crystallographic texture

and local crystallographic misorientation [41] in the

build opens the path to tailoring the occurrence of

different types of GBs to improve the properties of

any material. Moreover, this capability would sig-

nificantly expand the design space of A-GBE mate-

rials to include alloys with site-specific regions

dominated by high- or low-angle GBs arbitrarily

distributed across the build.

Besides controlling the character distribution of

GBs, AM may be pivotal to engineer their chemical

composition, which provides an additional route to

enhancing GB-governed properties of polycrystals.

Raabe et al. [88] demonstrated that solute segregation

at GBs may improve boundary cohesion, lower the

boundary energy, and even promote local phase

transformations. Manipulation of GB segregation

during AM has been shown effective at mitigating

hot cracking in nickel-based superalloy [89] and high

entropy alloys [90]. These strategies involve, for

instance, designing novel AM alloys that contain

solute elements with low solute solubility and high

strengthening power [91], or adjusting the AM pro-

cess parameters to manipulate the cooling rate and

thus tailor the GB segregation level [92, 93].

For now, the materials that may be produced via

these unconventional processing routes may not have

obvious applications or functionalities that can be

easily envisaged. However, it is only a matter of time

before researchers in academia and industry start

considering how to capitalize on these untapped

opportunities to address the problems of tomorrow.
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