Skip to main content

Advertisement

Log in

High electrochemical performance of hierarchical porous activated carbon derived from lightweight cork (Quercus suber)

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Activated carbon (AC) derived from biomass lightweight cork (Quercus suber) material was synthesized by KOH activation with different mass ratios of Q. suber: KOH in order to investigate the electrochemical properties of the AC in relation to KOH concentration. A well-defined porous activated carbon was obtained with a high surface area of 1081 m2 g−1 and a high pore volume of 0.66 cm3 g−1 when the Q. suber: KOH mass ratio was fixed at 1:2. A specific capacitance of 166 F g−1 was obtained for the symmetric device at 0.5 A g−1 in 1 M Na2SO4 with energy and power densities of 18.6 and 449.4 W Kg−1, respectively. The device displays good cycling stability after floating test for 200 h at 1.8 V and also displays 99.8% capacitance retention after cycling for 5000 cycles. The excellent electrochemical performance of the device makes it a potential material for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bello A, Manyala N, Barzegar F et al (2016) Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv 6:1800–1809. doi:10.1039/C5RA21708C

    Article  Google Scholar 

  2. Yu G, Hu L, Vosgueritchian M et al (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911. doi:10.1021/nl2013828

    Article  Google Scholar 

  3. Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6:1249. doi:10.1039/c3ee22325f

    Article  Google Scholar 

  4. Shaikjee A, Coville NJ (2012) The role of the hydrocarbon source on the growth of carbon materials. Carbon NY 50:3376–3398. doi:10.1016/j.carbon.2012.03.024

    Article  Google Scholar 

  5. Gan JK, Lim YS, Pandikumar A et al (2015) Graphene/polypyrrole-coated carbon nanofiber core–shell architecture electrode for electrochemical capacitors. RSC Adv 5:12692–12699. doi:10.1039/C4RA14922J

    Article  Google Scholar 

  6. Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45:4548–4554. doi:10.1021/es103607c

    Article  Google Scholar 

  7. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520. doi:10.1039/b813846j

    Article  Google Scholar 

  8. Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3:1294. doi:10.1039/c0ee00074d

    Article  Google Scholar 

  9. Patil DS, Shaikh JS, Dalavi DS et al (2011) Chemical synthesis of highly stable PVA/PANI films for supercapacitor application. Mater Chem Phys 128:449–455. doi:10.1016/j.matchemphys.2011.03.029

    Article  Google Scholar 

  10. Miller JR, Simon P (2008) Materials science. Electrochemical capacitors for energy management. Science 321:651–652. doi:10.1126/science.1158736

    Article  Google Scholar 

  11. Jain A, Balasubramanian R, Srinivasan MP (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805. doi:10.1016/j.cej.2015.08.014

    Article  Google Scholar 

  12. Chen H, Hu L, Chen M et al (2014) Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24:934–942. doi:10.1002/adfm.201301747

    Article  Google Scholar 

  13. Chae JH, Chen GZ (2012) 1.9 V aqueous carbon–carbon supercapacitors with unequal electrode capacitances. Electrochim Acta 86:248–254. doi:10.1016/j.electacta.2012.07.033

    Article  Google Scholar 

  14. Peng C, Zhang S, Zhou X, Chen GZ (2010) Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors. Energy Environ Sci 3:1499. doi:10.1039/c0ee00228c

    Article  Google Scholar 

  15. Demarconnay L, Raymundo-Piñero E, Béguin F (2010) A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem Commun. doi:10.1016/j.elecom.2010.06.036

    Google Scholar 

  16. An K, Kim W, Park Y, Moon J (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392

    Article  Google Scholar 

  17. Wang H, Liang Y, Mirfakhrai T et al (2011) Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res 4:729–736

    Article  Google Scholar 

  18. Fan Z, Yan J, Wei T et al (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375. doi:10.1002/adfm.201100058

    Article  Google Scholar 

  19. Sevilla M, Fuertes AB (2016) A green approach to high-performance supercapacitor electrodes: the chemical activation of hydrochar with potassium bicarbonate. Chemsuschem 9:1880–1888. doi:10.1002/cssc.201600426

    Article  Google Scholar 

  20. Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1:552–565. doi:10.1016/j.nanoen.2012.05.002

    Article  Google Scholar 

  21. Wang H, Xu Z, Kohandehghan A et al (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141. doi:10.1021/nn400731g

    Article  Google Scholar 

  22. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710. doi:10.1039/c2jm34066f

    Article  Google Scholar 

  23. Lv Y, Zhang F, Dou Y et al (2012) A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem 22:93. doi:10.1039/c1jm12742j

    Article  Google Scholar 

  24. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251. doi:10.1002/adma.201304137

    Article  Google Scholar 

  25. Bello A, Barzegar F, Madito MJ et al (2016) Stability studies of polypyrole- derived carbon based symmetric supercapacitor via potentiostatic floating test. Electrochim Acta 213:107–114. doi:10.1016/j.electacta.2016.06.151

    Article  Google Scholar 

  26. Li X, Xing W, Zhuo S et al (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102:1118–1123. doi:10.1016/j.biortech.2010.08.110

    Article  Google Scholar 

  27. Jain A, Xu C, Jayaraman S et al (2015) Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications. Microporous Mesoporous Mater 218:55–61. doi:10.1016/j.micromeso.2015.06.041

    Article  Google Scholar 

  28. Sulaiman KS, Mat A, Arof AK (2016) Activated carbon from coconut leaves for electrical double-layer capacitor. Ionics 22:911–918. doi:10.1007/s11581-015-1594-9

    Article  Google Scholar 

  29. Xu J, Gao Q, Zhang Y et al (2014) Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Sci Rep 4:845–854. doi:10.1038/srep05545

    Google Scholar 

  30. Barzegar F, Bello A, Fashedemi OO et al (2015) Synthesis of 3D porous carbon based on cheap polymers and graphene foam for high-performance electrochemical capacitors. Electrochim Acta 180:442–450. doi:10.1016/j.electacta.2015.08.148

    Article  Google Scholar 

  31. Laheäär A, Przygocki P, Abbas Q, Béguin F (2015) Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem Commun. doi:10.1016/j.elecom.2015.07.022

    Google Scholar 

  32. Zheng X, Lv W, Tao Y et al (2014) Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance. Chem Mater 26:6896–6903. doi:10.1021/cm503845q

    Article  Google Scholar 

  33. Lee JW, Hall AS, Kim J-D, Mallouk TE (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24:1158–1164. doi:10.1021/cm203697w

    Article  Google Scholar 

  34. Manyala N, Bello A, Barzegar F et al (2015) Coniferous pine biomass: a novel insight into sustainable carbon materials for supercapacitors electrode. Mater Chem Phys 182:139–147. doi:10.1016/j.matchemphys.2016.07.015

    Article  Google Scholar 

  35. Wang Y, Alsmeyer DC, McCreery RL (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2:557–563. doi:10.1021/cm00011a018

    Article  Google Scholar 

  36. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87. doi:10.1016/j.physrep.2009.02.003

    Article  Google Scholar 

  37. Sadezky A, Muckenhuber H, Grothe H et al (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon NY 43:1731–1742. doi:10.1016/j.carbon.2005.02.018

    Article  Google Scholar 

  38. Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon NY 33:1561–1565. doi:10.1016/0008-6223(95)00117-V

    Article  Google Scholar 

  39. Sze S (2001) Raman spectroscopic characterization of carbonaceous aerosols. Atmos Environ 35:561–568. doi:10.1016/S1352-2310(00)00325-3

    Article  Google Scholar 

  40. Dippel B, Jander H, Heintzenberg J (1999) NIR FT Raman spectroscopic study of flame soot. Phys Chem Chem Phys 1:4707–4712. doi:10.1039/a904529e

    Article  Google Scholar 

  41. Jang Y, Jo J, Choi Y-M et al (2013) Activated carbon nanocomposite electrodes for high performance supercapacitors. Electrochim Acta 102:240–245. doi:10.1016/j.electacta.2013.04.020

    Article  Google Scholar 

  42. Momodu DY, Madito MJ, Barzegar F et al (2017) Activated carbon derived from tree bark biomass for high performance electrochemical capacitors. J Solid State Electrochem 21:859–872. doi:10.1007/s10008-016-3432-z

    Article  Google Scholar 

  43. Taer E, Deraman M, Talib IA et al (2011) Preparation of a highly porous binderless activated carbon monolith from rubber wood sawdust by a multi-step activation process for application in supercapacitors. Int J Electrochem Sci 6:3301–3315

    Google Scholar 

  44. Barzegar F, Bello A, Momodu D et al (2016) Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte. J Power Sources 309:245–253. doi:10.1016/j.jpowsour.2016.01.097

    Article  Google Scholar 

  45. Luo J, Jang HD, Huang J (2013) Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano 7:1464–1471. doi:10.1021/nn3052378

    Article  Google Scholar 

  46. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J Electrochem Soc 150:A292. doi:10.1149/1.1543948

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on research supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology and the National Research Foundation (NRF) of South Africa (Grant No. 61056). Any opinion, finding and conclusion or recommendation expressed in this material is that of the author(s) and the NRF does not accept any liability in this regard. Faith O. Ochai-Ejeh acknowledges NRF through SARChI in Carbon Technology and Materials, and the Department of Physics at the University of Pretoria for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ncholu Manyala.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochai-Ejeh, F.O., Bello, A., Dangbegnon, J. et al. High electrochemical performance of hierarchical porous activated carbon derived from lightweight cork (Quercus suber). J Mater Sci 52, 10600–10613 (2017). https://doi.org/10.1007/s10853-017-1205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1205-4

Keywords

Navigation