Skip to main content
Log in

Tuning the electrochemical behavior of Co x Mn3−x sulfides by varying different Co/Mn ratios in supercapacitor

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of Co x Mn3−x sulfides (x = 0, 0.5, 1, 1.5, 2, 2.5, and 3) were prepared by a facile one-step solvent thermal route. The crystal structure, morphology, and electrochemical performance of Co–Mn sulfide can be tuned successfully by varying different Co/Mn ratios. As the Co/Mn ratio increases, the electrochemical performance is improved, which can be ascribed to the synergistic effect between Co ions and Mn ions. Co2.5Mn0.5 sulfide exhibits the highest specific capacity (289 C g−1 at a current density of 1 A g−1), together with great rate capability (54.6% retention when current density increases from 1 to 50 A g−1) and excellent cycling stability (95.1% of initial value can be retained after 2000 cycles). Moreover, an asymmetric device using Co2.5Mn0.5 sulfide as positive electrode, and RGO nanosheets as negative electrode shows high energy density of 22.3 Wh kg−1 at a power density of 750 W kg−1, as well as excellent cycling performance with 85% retention after 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Materials science. Electrochemical capacitors for energy management. Science 321:651–652

    Article  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  3. Conway BE (1999) Electrochemical supercapacitors. Scientific Fundamentals and Technological Applications. Plenum, New York

    Google Scholar 

  4. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XWD (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  Google Scholar 

  5. Shi W, Zhu J, Rui X, Cao X, Chen C, Zhang H, Hng HH, Yan Q (2012) Controlled synthesis of carbon-coated cobalt sulfide nanostructures in oil phase with enhanced Li storage performances. ACS Appl Mater Interface 4:2999–3006

    Article  Google Scholar 

  6. Lai CH, Huang KW, Cheng JH, Lee CY, Lee WF, Huang CT, Hwang BJ, Chen LJ (2009) Oriented growth of large-scale nickel sulfide nanowire arrays via a general solution route for lithium-ion battery cathode applications. J Mater Chem 19:7277–7283

    Article  Google Scholar 

  7. Liu Y, Qiao Y, Zhang WX, Li Z, Hu XL, Yuan LX, Huang YH (2012) Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries. J Mater Chem 22:24026–24033

    Article  Google Scholar 

  8. Zhang L, Zhou L, Wu HB, Xu R, Lou XWD (2012) Unusual formation of single-crystal manganese sulfide microboxes C-mediated by the cubic crystal structure and shape. Angew Chem Int Ed 51:7267–7270

    Article  Google Scholar 

  9. Zhang N, Yi R, Wang Z, Shi R, Wang H, Qiu G, Liu X (2008) Hydrothermal synthesis and electrochemical properties of alpha-manganese sulfide submicrocrystals as an attractive electrode material for lithium-ion batteries. Mater Chem Phys 111:13–16

    Article  Google Scholar 

  10. Balayeva OO, Azizov AA, Muradov MB, Maharramov AM, Eyvazova GM, Alosmanov RM, Mamiyev ZQ, Aghamaliyev ZA (2016) β-NiS and Ni3S4 nanostructures: fabrication and characterization. Mater Res Bull 75:155–161

    Article  Google Scholar 

  11. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310:462–465

    Article  Google Scholar 

  12. Kung CW, Chen HW, Lin CY, Huang KC, Vittal R, Ho KC (2012) CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6:7016–7025

    Article  Google Scholar 

  13. Hu B, Jing Z, Fan J, Yao G, Jin F (2016) One-step hydrothermal synthesis of honeycomb 3D graphene-like Co9S8 and its catalytic characteristics for NaHCO3 reduction by H2S. Catal Today 263:128–135

    Article  Google Scholar 

  14. Patil AM, Lokhande AC, Chodankar NR, Kumbhar VS, Lokhande CD (2016) Engineered morphologies of β-NiS thin films via anionic exchange process and their supercapacitive performance. Mater Des 97:407–416

    Google Scholar 

  15. Li Z, Gu A, Sun J, Zhou QF (2016) Facile hydrothermal synthesis of NiS hollow microspheres with mesoporous shells for high-performance supercapacitors. New J Chem 40:1663–1670

    Article  Google Scholar 

  16. Meng XQ, Deng J, Zhu JW, Bi HP, Kan E (2016) Cobalt sulfide/graphene composite hydrogel as electrode for high-performance pseudocapacitors. Sci Rer-UK 6:21717–21726

    Google Scholar 

  17. Pujari RB, Lokhande AC, Kim JH, Lokhande CD (2016) Bath temperature controlled phase stability of hierarchical nanoflakes CoS2 thin films for supercapacitor application. RSC Adv 6:40593–40601

    Article  Google Scholar 

  18. Zhu T, Wang Z, Ding S, Chen JS, Lou XWD (2011) Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. Rsc Adv 1:397–400

    Article  Google Scholar 

  19. Zhang L, Wu HB, Lou XWD (2012) Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors. Chem Commun 48:6912–6914

    Article  Google Scholar 

  20. Zhao YF, Ran W, He J, Huang YZ, Liu ZF, Liu W, Tang YF, Zhang L, Gao F (2015) High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. Small 11:1310–1319

    Article  Google Scholar 

  21. Ma D, Huang S, Zhang L (2008) One-pot synthesis and magnetic electrical properties of single-crystalline α-MnS nanobelts. Chem Phys Lett 462:96–99

    Article  Google Scholar 

  22. Tian Q, Tang M, Jiang F, Liu Y, Wu J, Zou R, Sun Y, Chen Z, Li R, Hu J (2011) Large-scaled star-shaped α-MnS nanocrystals with novel magnetic properties. Chem Commun 47:8100–8102

    Article  Google Scholar 

  23. Bergmann A, Zaharieva I, Dau H, Strasser P (2013) Electrochemical water splitting by layered and 3D cross-linked manganese oxides: correlating structural motifs and catalytic activity. Energy Environ Sci 6:2745–2755

    Article  Google Scholar 

  24. Chen T, Tang YF, Qiao YQ, Liu ZY, Guo WF, Song JZ, Mu SC, Yu SX, Zhao YF, Gao FM (2016) All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Sci Rer-UK 6:23289–23298

    Google Scholar 

  25. Chen D, Quan H, Wang GS, Guo L (2013) Hollow α-MnS spheres and their hybrids with reduced graphene oxide: synthesis, microwave absorption, and lithium storage properties. ChemPlusChem 78:843–851

    Article  Google Scholar 

  26. Li X, Shen J, Li N, Ye M (2015) Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications. J Power Sour 282:194–201

    Article  Google Scholar 

  27. Tang Y, Chen T, Yu S, Qiao Y, Mu S, Hu J, Gao F (2015) Synthesis of graphene oxide anchored porous manganese sulfide nanocrystals via the nanoscale Kirkendall effect for supercapacitors. J Mater Chem A 3:12913–12919

    Article  Google Scholar 

  28. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816–1300859

    Article  Google Scholar 

  29. Chen HC, Jiang JJ, Zhao YD, Zhang L, Guo DQ, Xia DD (2015) One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance. J Mater Chem A 3:428–437

    Article  Google Scholar 

  30. Ding R, Gao H, Zhang MY, Zhang J, Zhang XT (2015) controllable synthesis of Ni3-x Co x S4 nanotube arrays with different aspect ratios grown on carbon cloth for high-capacity supercapacitor. RSC Adv 5:48631–48637

    Article  Google Scholar 

  31. Liu L, Ma KY, Liu F, Zhang XB, Cheng JP (2015) Effects of Co/Ni ratio on the supercapacitive properties of α-form hydroxides. Eur J Inorg Chem 14:2448–2456

    Article  Google Scholar 

  32. Chen HC, Chen S, Zhu YY, Li C, Fan MQ, Chen D, Tian GL, Shu KY (2016) Synergistic effect of Ni and Co ions on molybdates for superior electrochemical performance. Electrochim Acta 190:57–63

    Article  Google Scholar 

  33. Chen HC, Chen S, Shao HY, Li C, Fan MQ, Chen D, Tian GL, Shu KY (2016) Hierarchical NiCo2S4 nanotube@NiCo2S4 nanosheet arrays on Ni foam for high-performance supercapacitors. Chem-Asian J 11:248–255

    Article  Google Scholar 

  34. Zhao JW, Chen JL, Xu SM, Shao MF, Yan DP, Wei M, Evans DG, Duan X (2013) CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices. J Mater Chem A 1:8836–8843

    Article  Google Scholar 

  35. Guo XL, Liu XY, Hao XD, Zhu SJ, Dong F, Wen ZQ, Zhang YX (2016) Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high-performance supercapacitor electrode materials. Electrochim Acta 194:179–186

    Article  Google Scholar 

  36. Li J, Xiong S, Li X, Qian Y (2013) A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5:2045–2054

    Article  Google Scholar 

  37. Li L, He F, Gai SL, Zhang SH, Gao P, Zhang ML, Chen YJ, Yang PP (2014) Hollow structured and flower-like C@MnCo2O4 composite for high electrochemical performance in a supercapacitor. CrystEngComm 16:9873–9881

    Article  Google Scholar 

  38. Yin L, Wang L, Liu X, Gai Y, Su L, Qu B, Gong L (2015) Ultra-fast microwave synthesis of 3D flower-Like Co9S8 hierarchical architectures for high-performance supercapacitor applications. Eur J Inorg Chem 14:2457–2462

    Article  Google Scholar 

  39. Liu M, Fu Y, Ma H, Wang T, Guan C, Hu K (2016) Flower-like manganese-cobalt oxysulfide supported on Ni foam as a novel faradaic electrode with commendable performance. Electrochim Acta 191:916–922

    Article  Google Scholar 

  40. Li X, Shen JF, Li N, Ye MX (2015) Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications. J Power Sources 282:194–201

    Article  Google Scholar 

  41. Shen LF, Wang J, Xu GY, Li HS, Dou H, Zhang XG (2015) NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater 5:1400977

    Article  Google Scholar 

  42. Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423

    Article  Google Scholar 

  43. Zhu GX, Xi CY, Shen MQ, Bao CL, Zhu J (2014) Nanosheet-based hierarchical Ni2(CO3)(OH)2 microspheres with weak crystallinity for high-performance supercapacitor. ACS Appl Mater Interfaces 6:17208–17214

    Article  Google Scholar 

  44. Chen HC, Chen S, Fan MQ, Li C, Chen D, Tian GL, Shu KY (2015) Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage. J Mater Chem A 3:23653–23659

    Article  Google Scholar 

  45. Chen S, Chen HC, Fan MQ, Li C, Shu KY (2016) Sea urchin-like Ni–Co sulfides with different Ni to Co ratios for superior electrochemical performance. J Sol–Gel Sci Technol 80:119–125

    Article  Google Scholar 

  46. Ding R, Qi L, Jia MJ, Wang HY (2014) Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation. J Power Sour 251:287–295

    Article  Google Scholar 

  47. Wang L, Ji H, Wang S, Kong L, Jiang X, Yang G (2013) Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5:3793–3799

    Article  Google Scholar 

  48. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2012) Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv Funct Mater 22:827–834

    Article  Google Scholar 

  49. Li L, Zhang YQ, Liu XY, Shi SJ, Zhao XY, Zhang H, Ge X, Cai GF, Gu CD, Wang XL, Tu JP (2014) One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim Acta 116:467–474

    Article  Google Scholar 

  50. Li Z, Zhang L, Amirkhiz BS, Tan XH, Xu ZW, Wang HL, Olsen BC, Holt CMB, Mitlin D (2012) Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv Energy Mater 2:431–437

    Article  Google Scholar 

  51. Tummala R, Guduru RK, Mohanty PS (2012) Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique. J Power Sources 209:44–51

    Article  Google Scholar 

  52. Liu DQ, Wang Q, Qiao L, Li F, Wang DS, Yang ZB, He D (2012) Preparation of nano-networks of MnO2 shell/Ni current collector core for high-performance supercapacitor electrodes. J Mater Chem 22:483–487

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 51501175) and the Natural Science Foundation of Zhejiang Province (Nos. LQ17B010002 and LQ16E010001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haichao Chen or Kangying Shu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3793 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Chen, H., Li, C. et al. Tuning the electrochemical behavior of Co x Mn3−x sulfides by varying different Co/Mn ratios in supercapacitor. J Mater Sci 52, 6687–6696 (2017). https://doi.org/10.1007/s10853-017-0903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0903-2

Keywords

Navigation