Skip to main content
Log in

Impact of bleaching pine fibre on the fibre/cement interface

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The goal of this article was to evaluate the surface characteristics of the pine fibres and its impact on the performance of fibre–cement composites. Lower polar contribution of the surface energy indicates that unbleached fibres have less hydrophilic nature than the bleached fibres. Bleaching the pulp makes the fibres less stronger, more fibrillated and permeable to liquids due to removal the amorphous lignin and its extraction from the fibre surface. Atomic force microscopy reveals these changes occurring on the fibre surface and contributes to understanding the mechanism of adhesion of the resulting fibre to cement interface. Scanning electron microscopy shows that pulp bleaching increased fibre/cement interfacial bonding, whilst unbleached fibres were less susceptible to cement precipitation into the fibre cavities (lumens) in the prepared composites. Consequently, bleached fibre-reinforced composites had lower ductility due to the high interfacial adhesion between the fibre and the cement and elevated rates of fibre mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sudin R, Swamy N (2006) J Mater Sci 41:6917. doi:10.1007/s10853-006-0224-3

    Article  CAS  Google Scholar 

  2. Ikai S, Reichert JR, Rodrigues AV, Zampieri VA (2010) Constr Build Mater 24(2):171. doi:10.1016/j.conbuildmat.2009.06.019

    Article  Google Scholar 

  3. Tonoli GHD, Santos SF, Joaquim AP, Savastano H Jr (2010) Constr Build Mater 24(2):193. doi:10.1016/j.conbuildmat.2007.11.018

    Article  Google Scholar 

  4. Tonoli GHD, Savastano H Jr, Fuente E, Negro C, Blanco A, Rocco Lahr FA (2010) Ind Crops Prod 31(2):225. doi:10.1016/j.indcrop.2009.10.009

    Article  CAS  Google Scholar 

  5. Coutts RSP (1988) In: Swamy RN (ed) Natural fibre reinforced cement and concrete (concrete technology and design, 5). Blackie, Glasgow, pp 208–242

    Google Scholar 

  6. Coutts RSP, Kightly P (1984) J Mater Sci 19:3355. doi:10.1007/BF00549827

    Article  CAS  Google Scholar 

  7. Michell AJ, Freischmidt G (1990) J Mater Sci 25(12):5225. doi:10.1007/BF00580155

    Article  CAS  Google Scholar 

  8. Bentur A (2000) J Mater Civ Eng 12(1):2

    Article  CAS  Google Scholar 

  9. Savastano H Jr, Warden PG, Coutts RSP (2003) Cem Concr Compos 25(6):585. doi:10.1016/S0958-9465(02)00071-9

    Article  CAS  Google Scholar 

  10. Savastano H Jr, Warden PG, Coutts RSP (2005) Cem Concr Compos 27(5):583. doi:10.1016/j.cemconcomp.2004.09.009

    Article  CAS  Google Scholar 

  11. Mohr BJ, Nanko H, Kurtis KE (2005) Cem Concr Compos 27(4):435. doi:10.1016/j.cemconcomp.2004.07.006

    Article  CAS  Google Scholar 

  12. Tonoli GHD, Rodrigues Filho UP, Savastano H Jr, Bras J, Belgacem MN, Rocco Lahr FA (2009) Compos A 40(12):2046. doi:10.1016/j.compositesa.2009.09.016

    Article  Google Scholar 

  13. Joaquim AP, Tonoli GHD, Santos SF, Savastano H Jr (2009) Mater Res 12(3):305. doi:10.1590/S1516-14392009000300010

    CAS  Google Scholar 

  14. Bentur A, Akers SAS (1989) Int J Cem Compos Lightweight Concr 11(2):99. doi:10.1016/0262-5075(89)90120-6

    Article  CAS  Google Scholar 

  15. Tolêdo Filho RD, Scrivener K, England GL, Ghavami K (2000) Cem Concr Compos 22(2):127. doi:10.1016/S0958-9465(99)00039-6

    Article  Google Scholar 

  16. Wei YM, Fujii T, Hiramatsu Y, Miyatake A, Yoshinaga S, Fujii T, Tomita B (2004) J Wood Sci 50(4):327. doi:10.1007/s10086-003-0576-0

    Article  CAS  Google Scholar 

  17. Savastano H Jr, Agopyan V (1999) Cem Concr Compos 21(1):49. doi:10.1016/S0958-9465(98)00038-9

    Article  CAS  Google Scholar 

  18. Yue Y, Li G, Xu X, Zhao Z (2000) Cem Concr Res 30(12):1983. doi:10.1016/S0008-8846(00)00376-8

    Article  CAS  Google Scholar 

  19. Mohr BJ, Biernacki JJ, Kurtis KE (2006) Cem Concr Res 36(7):1240. doi:10.1016/j.cemconres.2006.03.020

    Article  CAS  Google Scholar 

  20. Dias CMR, Savastano H Jr, John VM (2010) Constr Build Mater 24(2):140. doi:10.1016/j.conbuildmat.2008.01.017

    Article  Google Scholar 

  21. SCAN standard (1977) C 1:77. Kappa Number. Stockholm, Sweden

  22. Laine J, Stenius P, Carlsson G, Ström G (1994) Cellulose 1(2):145. doi:10.1007/BF00819664

    Article  CAS  Google Scholar 

  23. TAPPI standard (1997) T 204 cm-97. Solvent extractives of wood and pulp. Atlanta, GA, USA

  24. SCAN standard (1999) CM 15:99. Viscosity in cupriethylenediamine solution. Stockholm, Sweden

  25. ASTM standard (2009) C 150-09: Standard Specification for Portland Cement. West Conshohocken, PA, USA

  26. Digital Instruments (1996) Instruction manual for multimode scanning probe microscope. Santa Barbara. Version 4.22, pp 11–29

  27. Owens DK, Wendt RC (1969) J Appl Polym Sci 13(8):1741. doi:10.1002/app.1969.070130815

    Article  CAS  Google Scholar 

  28. TAPPI standard (1981) UM 256. Water retention value. Atlanta, GA, USA

  29. TAPPI standard (1995) T 205 sp-95. Forming handsheets for physical test of pulp. Atlanta, GA, USA

  30. SCAN standard (1980) P 38:80. Determination of tensile properties—Part 2: Constant rate of elongation method for pulp and paper. Stockholm, Sweden

  31. TAPPI standard (1996) T 494 om-96. Tensile properties of paper and paperboard (using constant rate of elongation apparatus). Atlanta, GA, USA

  32. TAPPI standard (1995) T 273 pm-95: Wet zero-span tensile strength of pulp. Atlanta, GA, USA

  33. TAPPI standard (1996) T 231 om-96: Zero-span breaking strength of pulp (dry zero-span tensile). Atlanta, GA, USA

  34. Tonoli GHD, Joaquim AP, Arsène M-A, Bilba K, Savastano H Jr (2007) Mater Manuf Process 22:149. doi:10.1080/10426910601062065

    Article  CAS  Google Scholar 

  35. Tonoli GHD, Fuente E, Monte C, Savastano H Jr, Rocco Lahr FA, Blanco A (2009) Cem Concr Res 39(11):1017. doi:10.1016/j.cemconres.2009.07.010

    Article  CAS  Google Scholar 

  36. Bonen D, Diamond S (1994) J Am Ceram Soc 77(7):1875. doi:10.1111/j.1151-2916.1994.tb07065

    Article  CAS  Google Scholar 

  37. Mehta PK, Monteiro PJM (2006) Concrete: microstructure, properties, and materials, 3rd edn. McGraw Hill, New York

    Google Scholar 

  38. Tonoli GHD, Savastano H Jr, Santos SF, Dias CMR, John VM, Lahr FAR (2011) J Mater Civ Eng 23(2):177. doi:10.1061/(ASCE)MT.1943-5533.0000152

    Article  CAS  Google Scholar 

  39. ASTM standard (1981) C 948-81: Test method for dry and wet bulk density, water absorption, and apparent porosity of thin sections of glass-fiber reinforced concrete. West Conshohocken, PA, USA

  40. Gustafsson J, Ciovica L, Peltonen J (2003) Polymer 44:661. doi:10.1016/S0032-3861(02)00807-8

    Article  CAS  Google Scholar 

  41. Koljonen K, Österberg M, Johansson L-S, Stenius P (2003) Colloids Surf A 228:143. doi:10.1016/S0927-7757(03)00305-4

    Article  CAS  Google Scholar 

  42. Johansson L-S (2002) Microchim Acta 138:217. doi:10.1007/s006040200025

    Article  CAS  Google Scholar 

  43. Simola J, Malkavaara P, Alen R, Peltonen J (2000) Polymer 41(6):2121. doi:10.1016/S0032-3861(99)00379-1

    Article  CAS  Google Scholar 

  44. Coutts RSP (2005) Cem Concr Compos 27(5):518. doi:10.1016/j.cemconcomp.2004.09.003

    Article  CAS  Google Scholar 

  45. Belgacem MN, Czeremuszkin G, Sapieha S, Gandini A (1995) Cellulose 2(3):145. doi:10.1007/BF00813015

    Article  CAS  Google Scholar 

  46. Katz S, Scallan AM (1983) Tappi J 66(1):85

    CAS  Google Scholar 

  47. Kajanto I, Niskanen K (1998) In: Niskanen K (ed) Paper physics. Papermaking science and technology. Book 16. Fapet Oy & Tappi Press, Helsinki, pp 223–259

    Google Scholar 

  48. Tolêdo Filho RD, Ghavami K, England GL, Scrivener K (2003) Cem Concr Compos 25:185. doi:10.1016/S0958-9465(02)00018-5

    Article  Google Scholar 

  49. Brown G, Dawe R (1996) In: International pulp bleaching conference, Tappi Press, Washington, pp 38–390

  50. Torres LF, Melo R, Colodette JL (2005) Revista Árvore 29(3):489. doi:10.1590/S0100-67622005000300017

    Article  CAS  Google Scholar 

  51. Diamond S (2000) Cem Concr Res 30:1517–1525. http://dx.doi.org/10.1016/S0008-8846(00)00370-7

  52. Moro F, Bohni H (2002) J Colloid Interface Sci 246:135. doi:10.1006/jcis.2001.7962

    Article  CAS  Google Scholar 

  53. Winslow DN, Diamond S (1970) ASTM J Mater 5:564

    Google Scholar 

  54. Mindess S, Young JF (1981) Concrete. Prentice-Hall, Englewood Cliffs 671

    Google Scholar 

  55. Zhou J, Ye G, Van Breugel K (2010) Cem Concr Res 40:1120. doi:10.1016/j.cemconres.2010.02.011

    Article  CAS  Google Scholar 

  56. Chatterji S (1998) Adv Cem Based Mater 7(3–4):102. doi:10.1016/S1065-7355(97)00058-8

    Article  CAS  Google Scholar 

  57. Rossetto HL, Souza MF, Pandolfelli VC (2009) Cerâmica 55(334):199. doi:10.1590/S0366-69132009000200013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this research project was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) in Brazil. The authors were supported by grants offered by CNPq and Fapesp (Process n° 2005/59072-4). The authors also thank Fibria Celulose S. A., Infibra Ltda. and Imbralit Ltda., in Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. D. Tonoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonoli, G.H.D., Belgacem, M.N., Bras, J. et al. Impact of bleaching pine fibre on the fibre/cement interface. J Mater Sci 47, 4167–4177 (2012). https://doi.org/10.1007/s10853-012-6271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6271-z

Keywords

Navigation