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Abstract In 2006, Saito and Remy proposed a new trans-
form called the Laplace Local Sine Transform (LLST) in
image processing as follows. Let f be a twice continuously
differentiable function on a domain �. First we approximate
f by a harmonic function u such that the residual compo-
nent v = f − u vanishes on the boundary of �. Next, we
do the odd extension for v, and then do the periodic exten-
sion, i.e. we obtain a periodic odd function v∗. Finally, we
expand v∗ into Fourier sine series. In this paper, we pro-
pose to expand v∗ into a periodic wavelet series with respect
to biorthonormal periodic wavelet bases with the symmetric
filter banks. We call this the Harmonic Wavelet Transform
(HWT). HWT has an advantage over both the LLST and
the conventional wavelet transforms. On the one hand, it re-
moves the boundary mismatches as LLST does. On the other
hand, the HWT coefficients reflect the local smoothness of f

in the interior of �. So the HWT algorithm approximates
data more efficiently than LLST, periodic wavelet trans-
form, folded wavelet transform, and wavelets on interval.
We demonstrate the superiority of HWT over the other trans-
forms using several standard images.

Keywords Harmonic wavelet transform · Laplace local
sine transform · Biorthonormal wavelets · Periodic

Z. Zhang (�)
College of Global Change and Earth System Science, Beijing
Normal University, Beijing 100875, China
e-mail: zhangzh@math.ucdavis.edu

Z. Zhang · N. Saito
Department of Mathematics, University of California, Davis,
CA 95616, USA

N. Saito
e-mail: saito@math.ucdavis.edu

wavelets · Folded wavelets · Wavelets on interval · Periodic
wavelet coefficient · Symmetry · Odd extension

1 Introduction

Wavelet analysis is an important tool in image processing. In
order to approximate or compress data, there are two com-
mon wavelet algorithms: the periodic wavelet algorithm, and
the folded wavelet algorithm. More precisely, let an image
f be supported on a square � ∈ R

2. In the periodic wavelet
algorithm, one extends f to a periodic function f ∗, and then
expands f ∗ into a periodic wavelet series using Daubechies
wavelets [1] or polyharmonic spline wavelets [9]. Since f ∗
is discontinuous at the boundary points of � in general, the
decay rate of the corresponding periodic wavelet coefficients
is very slow. Hence, in order to obtain a good approximation
of the image, we need many periodic wavelet coefficients. In
the folded wavelet algorithm, in order to avoid the bound-
ary mismatches caused by the brute-force periodization, one
does an even extension of f , and then extends it to a pe-
riodic function f ∗, and finally expands f ∗ into a periodic
wavelet series with respect to a pair of biorthonormal peri-
odic wavelet bases. If f is smooth, then f ∗ ∈ lip1 on R

2.
This makes the decay rate of the corresponding wavelet co-
efficients faster than that in periodic wavelets algorithm.
But, since ∂

∂x
f ∗ and ∂

∂y
f ∗ are discontinuous at the bound-

ary points, the decay rate of the periodic wavelet coefficients
is still relatively low.

It is natural to ask how to ensure the continuity of deriv-
atives of the periodized function across the boundary. In
2006, Saito and Remy [8] presented a good method: the
Laplace Local Sine Transform (LLST) that ensures the
derivatives of the periodized functions are continuous across
the boundary. It decomposes an image f supported on a
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square � into f = u + v, where u is a harmonic component
satisfying Laplace’s equation �u = 0 in � and u = f on the
boundary. After an odd extension, the residual component v

is periodized to be v∗, i.e., v∗ is a periodic odd function. If
f is smooth, then ∂

∂x
v∗ ∈ lip 1, ∂

∂y
v∗ ∈ lip 1 on R

2. We call
this method LLST decomposition. When one applies LLST
to image approximation, one expands v∗ into the Fourier
sine series.

In this paper, combining the LLST decomposition and the
wavelet algorithm, we expand v∗ into the periodic wavelet
series. More precisely, we propose the harmonic wavelet
transform (HWT). In the HWT algorithm, the first step is
the same as LLST, i.e., we decompose f = u+ v and obtain
a periodic odd function v∗. Next, we choose a pair of real-
valued biorthonormal wavelets ψ, ˜ψ of L2(R) generated by
the real-valued even scaling functions ϕ, ϕ̃. Using a method
of the tensor product and periodization, one gets a pair of
biorthonormal periodic wavelet bases. Finally, we expand
v∗ into the periodic wavelet series with respect to this pair
of biorthonormal periodic wavelet bases. Since ∂

∂x
v∗ ∈ lip 1

and ∂
∂y

v∗ ∈ lip 1 on R
2, the decay rate of the corresponding

periodic wavelet coefficients is faster than that of the peri-
odic wavelet algorithm or the folded wavelet algorithm.

In general, the decay rate of the Fourier sine coefficients
depends on global smoothness, while that of the periodic
wavelet coefficients depends on local smoothness. Since the
global smoothness of a function is determined by its rough
part, we need fewer periodic wavelet coefficients than the
Fourier sine coefficients in order to approximate the image
with the same quality. So, the HWT algorithm compresses
data more efficiently than the LLST algorithm.

In the HWT algorithm, we carefully study the symmetry
of the periodic wavelet coefficients and show where these
coefficients vanish. From this, we see that in order to recover
the image exactly, the number of the efficient coefficients is
just the same as the size of the sample points of f . So the
HWT is not a redundant transform.

Our HWT algorithm is quite different from polyharmonic
wavelets proposed by Van De Ville et al. [9], which are a
kind of wavelet bases constructed by polyharmonic func-
tions. The HWT has a different strategy: we approximate a
target function by a harmonic function such that the residual
part vanishes on the boundary, and then expand the residual
part into wavelet series.

This paper is organized as follows. In Sect. 2, we recall
the notions of biorthonormal periodic wavelet bases and the
corresponding Mallat algorithm as well as the LLST algo-
rithm. In Sect. 3, we present the HWT algorithm and show
that in the one-dimensional case, the periodic wavelet algo-
rithm, the folded wavelet algorithm, and the HWT algorithm
generate periodic wavelet coefficients at the level m with

the decay rates O(2− m
2 ), O(2− 3m

2 ), and O(2− 5m
2 ), respec-

tively. When we use first 2M periodic wavelet coefficients,

the obtained approximation error are o(1), O(2−M), and
O(2−2M), respectively. In the two-dimensional case, the de-
cay rates of the corresponding periodic wavelet coefficients
are O(2−m), O(2−2m), and O(2−3m), respectively. When
we use first 22M periodic wavelet coefficients, the obtained
approximation error are o(1), O(2−M), and O(2−2M), re-
spectively. In Sect. 4, first, we discuss one-dimensional dis-
crete HWT and the symmetry of the sequences consisting
of the corresponding periodic wavelet coefficients. From
this, we precisely show the efficient number of the peri-
odic wavelet coefficients in order to recover a signal per-
fectly. Second, we discuss two-dimensional discrete HWT
and the symmetry of the matrices of the corresponding peri-
odic wavelet coefficients. From this, we precisely show the
efficient number of the periodic wavelet coefficients in or-
der to recover an image perfectly. In Sects. 5–6, we apply
the HWT algorithm to approximate images and show that
the HWT algorithm approximates images better than the
LLST algorithm, the periodic wavelet algorithm, the folded
wavelet algorithm and the wavelets on the interval.

2 Preliminaries

We state the well-known notions [4, 7] of biorthonormal pe-
riodic wavelet bases. After that, we recall the corresponding
Mallat algorithms.

2.1 One-dimensional Biorthonormal Periodic Wavelets

It is well-known that using the method of periodization, one
can construct biorthonormal periodic wavelet bases with the
help of the biorthonormal wavelets [4, 7].

Let ψ and ˜ψ be a pair of compactly supported smooth
biorthonormal wavelets of L2(R) generated by compactly
supported smooth scaling functions ϕ and ϕ̃. For m ∈ Z,
n ∈ Z, we denote the function family gm,n := 2

m
2 g(2m ·−n).

Its periodization (with period 1) is g
per
m,n := ∑

l∈Z
gm,n(·+ l).

The families

�
per
1 := {ϕper} ∪ {

ψ
per
m,n, m ∈ Z+, n = 0, . . . ,2m − 1

}

,

˜�
per
1 := {ϕ̃per} ∪ {

˜ψ
per
m,n, m ∈ Z+, n = 0, . . . ,2m − 1

}

are called a pair of biorthonormal periodic wavelet bases for
L2([− 1

2 , 1
2 ]).

Let f ∈ L2([− 1
2 , 1

2 ]). For m ∈ Z+, n ∈ Z, we denote the
periodic wavelet coefficients

c(1)
m,n :=

∫ 1
2

− 1
2

f (t)ϕ
per
m,n(t)dt,

d(1)
m,n :=

∫ 1
2

− 1
2

f (t)ψ
per
m,n(t)dt.

(2.1)
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Here the sequences {c(1)
m,n} and {d(1)

m,n} are periodic sequences
(with period 2m) with respect to the index n, i.e.,

c
(1)
m,n+2ml = c(1)

m,n, d
(1)
m,n+2ml = d(1)

m,n (l ∈ Z).

It is well known that

f = c
(1)
0,0 +

∞
∑

m=0

2m−1
∑

n=0

d(1)
m,n

˜ψ
per
m,n (2.2)

in the space L2([− 1
2 , 1

2 ]). For M ∈ Z+, its 2M -partial sum
is

S2M (f ) = c
(1)
0,0 +

M−1
∑

m=0

2m−1
∑

n=0

d(1)
m,n

˜ψ
per
m,n. (2.3)

Let the space ˜Vm be the span of {ϕ̃per
m,n}n=0,...,2m−1. One

can decompose the projection of f in ˜Vm as follows [7].

P
˜Vm

(f ) =
2m−1
∑

n=0

c(1)
m,nϕ̃

per
m,n =

2m−1−1
∑

n=0

c
(1)
m−1,nϕ̃

per
m−1,n

+
2m−1−1
∑

n=0

d
(1)
m−1,n

˜ψ
per
m−1,n. (2.4)

Denote the coefficients of the filter banks

ak := √
2
∫

R

ϕ(t)ϕ̃(2t − k)dt,

bk := √
2
∫

R

ψ(t)ϕ̃(2t − k)dt.

(2.5)

Without loss of generality, we assume that for some N ∈ Z+,

an = bn+1 = 0 (|n| ≥ N). (2.6)

Mallat showed that the fast algorithm to compute pe-
riodic wavelet coefficients is similar to the fast algorithm
of wavelet coefficients [7, Sect. 7.5.1]. Along Mallat’s
idea, one can obtain the following algorithm for the one-
dimensional periodic wavelet coefficients.

Proposition 2.1 Let the filters ak, bk be defined in (2.5) and
c
(1)
m,n, d

(1)
m,n be defined in (2.1). Define

a∗
n := an, b∗

n+1 := bn+1 (|n| ≤ 2J−1),

a∗
n+2J := a∗

n, b∗
n+2J := b∗

n (n ∈ Z).
(2.7)

Then for 2J−1 ≥ N , we have

c
(1)
J−1,k =

2J −1
∑

n=0

a∗
n−2kc

(1)
J,n,

d
(1)
J−1,k =

2J −1
∑

n=0

b∗
n−2kc

(1)
J,n, k ∈ Z,

(2.8)

where N is stated in (2.6).

2.2 Two-dimensional Biorthonormal Periodic Wavelets

Let ψ and ˜ψ be a pair of one-dimensional biorthonormal
wavelets generated by the scaling functions ϕ and ϕ̃. Take
the tensor products of ϕ, ψ . Denote

ϕ0(x, y) := ϕ(x)ϕ(y), ψ1(x, y) := ϕ(x)ψ(y),

ψ2(x, y) := ψ(x)ϕ(y), ψ3(x, y) := ψ(x)ψ(y).

Similarly, taking the tensor products of ϕ̃ and ˜ψ , we get
ϕ̃0(x, y), ˜ψ1(x, y), ˜ψ2(x, y), and ˜ψ3(x, y). Then {ψμ}3

1
and {˜ψμ}3

1 are a pair of two-dimensional biorthonormal
wavelets generated by the scaling functions ϕ0 and ϕ̃0, re-
spectively.

The families

�
per
2 = {

ϕ
per
0

} ∪ {

ψ
per
μ,m,n, μ = 1,2,3, m ∈ Z+,

n = (n1, n2), n1, n2 = 0, . . . ,2m − 1
}

,

˜�
per
2 = {

ϕ̃
per
0

} ∪ {

˜ψ
per
μ,m,n, μ = 1,2,3, m ∈ Z+,

n = (n1, n2), n1, n2 = 0, . . . ,2m − 1
}

are called a pair of biorthonormal periodic wavelet bases for
L2([− 1

2 , 1
2 ]2).

Let f ∈ L2([− 1
2 , 1

2 ]2). For μ = 1,2,3, m ∈ Z+, n ∈ Z
2,

we denote the periodic wavelet coefficients

c(2)
m,n :=

∫ 1
2

1
2

∫ 1
2

− 1
2

f (x, y)ϕ
per
0,m,n(x, y)dx dy,

d(2)
μ,m,n :=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

f (x, y)ψ
per
μ,m,n(x, y)dx dy.

(2.9)

Here the sequences {c(2)
m,n} and {d(2)

μ,m,n} are periodic se-
quences with respect to n, i.e.

c
(2)
m,n+2ml = c(2)

m,n, d
(2)
μ,m,n+2ml = d(2)

μ,m,n (l ∈ Z
2).

It is well known that

f = c
(2)
0,0 +

3
∑

μ=1

∞
∑

m=0

2m−1
∑

n1,n2=0

d(2)
μ,m,n

˜ψ
per
μ,m,n (2.10)

in the space L2([− 1
2 , 1

2 ]2), where n = (n1, n2).
For M ∈ Z+, its 22M -partial sum is

S22M (f ) = c
(2)
0,0 +

3
∑

μ=1

M−1
∑

m=0

2m−1
∑

n1,n2=0

d(2)
μ,m,n

˜ψ
per
μ,m,n.
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Let the space ˜Vm be the span of
{ϕ̃per

0,m,n}n=(n1,n2), n1,n2=0,...,2m−1. One can decompose the

project of f in ˜Vm as follows.

P
˜Vm

(f ) =
2m−1
∑

n1,n2=0

c(2)
m,nϕ̃

per
0,m,n

=
2m−1−1
∑

n1,n2=0

c
(2)
m−1,nϕ̃

per
0,m−1,n

+
3

∑

μ=1

2m−1−1
∑

n1,n2=0

d
(2)
μ,m−1,n

˜ψ
per
μ,m−1,n. (2.11)

From the Mallat algorithm of the one-dimensional peri-
odic wavelet, one can easily conclude the following Mal-
lat algorithm for two-dimensional tensor product periodic
wavelets.

Proposition 2.2 Let the filters {a∗
n}, {b∗

n} be stated in (2.7)

and the periodic wavelet coefficients c
(2)
m,n, d

(2)
μ,m,n be stated

in (2.9). Then for 2J−1 ≥ N and k = (k1, k2) ∈ Z
2, we have

(i) c
(2)
J−1,k =

2J −1
∑

n1,n2=0

a∗
n1−2k1

a∗
n2−2k2

c
(2)
J,n1,n2

,

(ii) d
(2)
1,J−1,k =

2J −1
∑

n1,n2=0

a∗
n1−2k1

b∗
n2−2k2

c
(2)
J,n1,n2

,

(iii) d
(2)
2,J−1,k =

2J −1
∑

n1,n2=0

b∗
n1−2k1

a∗
n2−2k2

c
(2)
J,n1,n2

,

(iv) d
(2)
3,J−1,k =

2J −1
∑

n1,n2=0

b∗
n1−2k1

b∗
n2−2k2

c
(2)
J,n1,n2

,

where N is stated in (2.6).

2.3 Laplace Local Sine Transforms

First we consider the one-dimensional case. Let �1 := [0, 1
2 ]

and let the function f be defined on �1 and f ∈ C2(�1). We
split the function f into two components

f (x) = u(x) + v(x) on �1

The first function u(x) = 2(f ( 1
2 ) − f (0))x + f (0) and the

second function satisfies

v(0) = v

(

1

2

)

= 0.

After an odd extension, the second function v is periodized
to be v∗, i.e., v∗ is a periodic odd function. Finally we ex-
pand v∗ into the Fourier sine series.

Next, we consider the two-dimensional case. Let �2 :=
[0, 1

2 ]2 and the function f be defined on �2 and f ∈
C2(�2). We split the function f into two components

f (x, y) = u(x, y) + v(x, y) on �2

where u(x, y) is the harmonic function which satisfies
Laplace’s equation Δu(x, y) = 0 ((x, y) ∈ �2) and
u(x, y) = f (x, y) on the boundary of �2. So the residual
satisfies

v(x, y) = 0 ((x, y) ∈ ∂�2).

After an odd extension, the residual component v is peri-
odized to be v∗, i.e., v∗ is a periodic odd function. Finally
we expand v∗ into the Fourier sine series.

3 Harmonic Wavelet Transform

Now we present a notion of the Harmonic Wavelet Trans-
form (HWT). We show that for the HWT algorithm, the de-
cay rate of periodic wavelet coefficients is faster than those
generated by the periodic wavelet transform algorithm and
the folded wavelet algorithm.

3.1 One-dimensional HWT Algorithm

We assume that f is defined on [0, 1
2 ]. Let

f (t) = u(t) + v(t)

(

t ∈
[

0,
1

2

])

,

where u(t) = 2(f ( 1
2 )−f (0))t +f (0) and the residual com-

ponent v(t) satisfies v(0) = v( 1
2 ) = 0.

We do the odd extension vodd of the residual component
v to [− 1

2 , 1
2 ]. We again do the 1-periodic extension of vodd,

denoted by v∗. Finally, we expand v∗ into the biorthonor-
mal periodic wavelet series. We call this process the one-
dimensional HWT.

Now we examine the decay rates of the coefficients of
various wavelet algorithms in the one-dimensional case.

(i) The 1D periodic wavelet algorithm. Let f ∈
C2([− 1

2 , 1
2 ]). In the periodic wavelet algorithm, we directly

expand f into a biorthonormal periodic wavelet series.
Clearly, the coefficients

d(1)
m,n =

∫ 1
2

− 1
2

f (t)ψ
per
m,n(t)dt =

∫

R

f ∗(t)ψm,n(t)dt

= 2
m
2

∫

R

f ∗(t)ψ(2mt − n)dt, (3.1)
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where f ∗ is the 1-periodic extension of f . Since f ∗ ∈
L∞(R), ψ ∈ L1(R), we have

d(1)
m,n = O(2

m
2 )

∫

R

|ψ(2mt − n)|dt

= O(2− m
2 )

∫

R

|ψ(t − n)|dt

= O(2− m
2 )

∫

R

|ψ(t)|dt = O(2− m
2 ). (3.2)

(ii) The 1D folded wavelet algorithm. Let f ∈ C2([0, 1
2 ]).

In the folded wavelet algorithm, we do an even extension
of f

feven(t) =
{

f (t), t ∈ [0, 1
2 ],

f (−t), t ∈ [− 1
2 ,0).

Then

feven(t) ∈ C

[

−1

2
,

1

2

]

and feven

(

−1

2

)

= feven

(

1

2

)

.

Again let f ∗(t) be a 1-periodic extension of feven(t), we
have

Proposition 3.1 The periodic wavelet coefficients of f ∗ sat-
isfy

d(1)
m,n = O(2− 3m

2 ). (3.3)

The partial sum S2M (f ∗) of the periodic wavelet expansion
of f ∗ satisfies

‖f ∗ − S2M (f ∗)‖
L2([− 1

2 , 1
2 ]) = O(2−M). (3.4)

Proof Since f ∈ C2[0, 1
2 ], we have f ∗ ∈ lip 1 on R, i.e.,

there is a constant K such that
∣

∣

∣

∣

f ∗(t) − f ∗
(

n

2m

)∣

∣

∣

∣

≤ K

∣

∣

∣

∣

t − n

2m

∣

∣

∣

∣

(t ∈ R).

Since f ∗ ∈ lip 1,
∫

R
ψ(t)dt = 0, and (3.1), we have

∣

∣d(1)
m,n

∣

∣ =
∣

∣

∣

∣

2
m
2

∫

R

f ∗(t)ψ(2mt − n)dt

∣

∣

∣

∣

=
∣

∣

∣

∣

2
m
2

∫

R

(

f ∗(t) − f ∗
(

n

2m

))

ψ(2mt − n)dt

∣

∣

∣

∣

≤ K 2
m
2

∫

R

∣

∣

∣

∣

t − n

2m

∣

∣

∣

∣

|ψ(2mt − n)|dt

= K 2− 3m
2

∫

R

|t − n||ψ(t − n)|dt

= K 2− 3m
2

∫

R

|tψ(t)|dt = O(2− 3m
2 ).

So (3.3) holds.
By (2.2) and (2.3), we know that the difference between

f ∗ and the partial sum of its periodic wavelet series

f ∗ − S2M+1(f
∗) =

∞
∑

m=M

2m−1
∑

n=0

d(1)
m,n

˜ψ
per
m,n

is in the space L2([− 1
2 , 1

2 ]). By (3.3), we get

‖f ∗ − S2M (f ∗)‖2
L2([− 1

2 , 1
2 ]) = O(1)

∞
∑

m=M

2m−1
∑

n=0

∣

∣d(1)
m,n

∣

∣

2

= O(1)

∞
∑

m=M

2m−1
∑

n=0

(2− 3m
2 )2

= O(1)

∞
∑

m=M

2−2m = O(2−2M).

So (3.4) holds. Proposition 3.1 is proved. �

(iii) The 1D HWT algorithm. Let f ∈ C2([0, 1
2 ]). Now

we introduce the HWT algorithm.

(a) We first decompose f on [0, 1
2 ] as follows

f (t) = u(t) + v(t)

(

t ∈
[

0,
1

2

])

,

where u(t) = 2(f ( 1
2 ) − f (0))t + f (0). So v(0) =

v( 1
2 ) = 0.

(b) We do the odd extension of v, i.e., let

vodd(t) = v(t)

(

t ∈
[

0,
1

2

])

and

vodd(−t) = −v(t)

(

t ∈
[

0,
1

2

])

.

So vodd(
1
2 ) = vodd(− 1

2 ) = vodd(0) = 0. Since vodd(−t)
−t

=
vodd(t)

t
, letting t → 0+, we get (vodd)

′−(0) = (vodd)
′+(0).

Hence vodd(t) is differentiable at t = 0.
(c) We do the 1-periodic extension v∗ of vodd, i.e., v∗ is a

1-periodic function and v∗(t) = vodd(t) (|t | ≤ 1
2 ). Fur-

thermore, we easily prove d
dt

v∗ ∈ lip 1 on R.

Proposition 3.2 Let v∗ be stated as above, i.e., v∗ is a 1-
periodic function and dv∗

dt
∈ lip 1 on R. Then the periodic

wavelet coefficients of v∗ satisfy

d(1)
m,n = O(2− 5m

2 ). (3.5)

The partial sum S2M (v∗) of the periodic wavelet expansion
of v∗ satisfies

‖v∗ − S2M (v∗)‖
L2([− 1

2 , 1
2 ]) = O(2−2M). (3.6)
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Proof Since
∫

R
ψ(t)dt = 0 and

∫

R
tψ(t)dt = 0, we have

d(1)
m,n = 2

m
2

∫

R

v∗(t)ψ(2mt − n)dt

= 2
m
2

∫

R

(

v∗(t) − v∗
(

n

2m

)

− v∗′
(

n

2m

)(

t − n

2m

))

ψ(2mt − n)dt. (3.7)

Again, since dv∗
dt

∈ lip 1 on R, we know that there is a con-
stant K such that for any t0 ∈ R,

|v∗′(t) − v∗′(t0)| ≤ K|t − t0| (t ∈ R).

This implies that

|v∗(t) − v∗(t0) − v∗′(t0)(t − t0)|

=
∣

∣

∣

∣

∫ t

t0

(

v∗′(t ′) − v∗′(t0)
)

dt ′
∣

∣

∣

∣

≤ K(t − t0)
2 (t ∈ R).

Taking t0 = n
2m in this formula, by (3.7) we have

∣

∣d(1)
m,n

∣

∣ ≤ K

2
2

m
2

∫

R

(

t − n

2m

)2

|ψ(2mt − n)|dt

= K

2
2− 5m

2

∫

R

t2|ψ(t)|dt = O(2− 5m
2 ). (3.8)

By the similar argument to (3.4), from (3.8) we now have

‖v∗ − S2M (v∗)‖
L2([− 1

2 , 1
2 ]) = O(2−2M).

So (3.6) holds. Proposition 3.2 is proved. �

3.2 Two-dimensional HWT Algorithm

We assume that f is defined on [0, 1
2 ]2. Let

f (x, y) = u(x, y) + v(x, y)

(

(x, y) ∈
[

0,
1

2

]2)

,

where u(x, y) is a harmonic function and v(x, y) satisfies
v(x, y) = 0 for (x, y) ∈ ∂([0, 1

2 ]2). We do the odd extension
vodd of the residual component v to [− 1

2 , 1
2 ]2, that is,

vodd(x, y) = v(x, y)

(

(x, y) ∈
[

0,
1

2

]2)

and

vodd(−x, y) = vodd(x,−y)

= −vodd(x, y)

(

(x, y) ∈
[

−1

2
,

1

2

]2)

.

Again we do the 1-periodic extension of vodd, denoted by v∗.
Finally, we expand v∗ into a biorthonormal periodic wavelet
series. We call this process the two-dimensional HWT.

Now we examine the decay rates of the coefficients of
various wavelet algorithms in the two-dimensional case.

(i) The 2D periodic wavelet algorithm. Let f ∈
C2([− 1

2 , 1
2 ]2). Denote the 1-periodic extension of f on R

2

by f ∗. By (2.9), the periodic wavelet coefficients are

d(2)
μ,m,n =

∫

R

∫

R

f ∗(x, y)ψμ,m,n(x, y)dx dy (μ = 1,2,3).

So, for each μ, we have

∣

∣d(2)
μ,m,n

∣

∣ =
∣

∣

∣

∣

2m

∫

R

∫

R

f ∗(x, y)

× ψμ(2mx − n1,2my − n2)dx dy

∣

∣

∣

∣

= O(2−m)

∫

R

∫

R

|ψμ(x − n1, y − n2)|dx dy

= O(2−m)

∫

R

∫

R

|ψμ(x, y)|dx dy = O(2−m).

(ii) The 2D folded wavelet algorithm. Let f ∈
C2([0, 1

2 ]2), we do an even extension to [− 1
2 , 1

2 ]2, and then
we do a 1-periodic extension to R

2, denoted by f2. Then
f2 ∈ lip 1 on R

2.

Proposition 3.3 Let f2 be stated as above, i.e., f2 is a 1-
periodic function and f2 ∈ lip 1 on R

2. Then the periodic
wavelet coefficients of f2 satisfy

d(2)
μ,m,n = O(2−2m). (3.9)

The partial sum S22M of the periodic wavelet expansion of
f2 satisfies

‖f2 − S22M (f2)‖L2([− 1
2 , 1

2 ]2)
= O(2−M). (3.10)

Proof For convenience, let z = (x, y) and dz = dx dy.
Since f2 ∈ lip 1(R2) and

∫

R2 ψ(z)dz = 0, we have

d(2)
μ,m,n =

∫

R2
f2(z)ψμ,m,n(z)dz

=
∫

R2

(

f2(z) − f2

(

n

2m

))

ψμ,m,n(z)dz,

so

∣

∣d(2)
μ,m,n

∣

∣ = O(2m)

∫

R2

∣

∣

∣

∣

z − n

2m

∣

∣

∣

∣

|ψμ(2mz − n)|dz

= O(2−2m)

∫

R2
|ψμ(z)|dz = O(2−2m).

So (3.9) holds.
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By (2.10), we know that the difference between f2 and
the partial sum of its periodic wavelet series

f2 − S22M (f2) =
3

∑

μ=1

∞
∑

m=M

2m−1
∑

n=0

d(2)
μ,m,n

˜ψ
per
μ,m,n

is in the space L2([− 1
2 , 1

2 ]2). So, we have

‖f2 − S22M (f2)‖2
L2([− 1

2 , 1
2 ]2)

= O(1)

3
∑

μ=1

∞
∑

m=M

2m−1
∑

n1=0

2m−1
∑

n2=0

∣

∣d(2)
μ,m,n

∣

∣

2
,

where n = (n1, n2) ∈ Z
2+. Again, by d

(2)
μ,m,n = O(2−2m), we

have

‖f2 −S22M (f2)‖2
L2([− 1

2 , 1
2 ]2)

= O(1)

∞
∑

m=M

2−2m = O(2−2M).

So we get (3.10). Proposition 3.3 is proved. �

(iii) The 2D HWT algorithm. We can easily prove that
1-periodic function v∗ satisfies

∂v∗

∂x
(x, y) ∈ lip 1 and

∂v∗

∂y
(x, y) ∈ lip 1 ((x, y) ∈ R

2).

(3.11)

Proposition 3.4 Let v∗ be stated as above, i.e., v∗ is a
1-periodic function and (3.11) holds. Then the periodic
wavelet coefficients of v∗ satisfy

d(2)
μ,m,n = O(2−3m). (3.12)

The partial sum S22M (v∗) of the periodic wavelet expansion
of v∗ satisfies

‖v∗ − S22M (v∗)‖
L2([− 1

2 , 1
2 ]2)

= O(2−2M). (3.13)

Proof For z = (x, y) and z0 = (x0, y0), we have

v∗(z) − v∗(z0) − ∂v∗

∂x
(z0)(x − x0) − ∂v∗

∂y
(z0)(y − y0)

=
∫ x

x0

(

∂v∗

∂x′ (x
′, y0) − ∂v∗

∂x′ (x0, y0)

)

dx′

+
∫ y

y0

(

∂v∗

∂y
(x, y) − ∂v∗

∂y
(x, y0)

)

dy

+
∫ y

y0

(

∂v∗

∂y
(x, y0) − ∂v∗

∂y
(x0, y0)

)

dy

=: J1 + J2 + J3. (3.14)

By (3.11), we get

|J1| ≤ K(x − x0)
2 ≤ K|z − z0|2,

|J2| ≤ K(y − y0)
2 ≤ K|z − z0|2,

|J3| ≤ K|x − x0||y − y0|
≤ K

2
((x − x0)

2 + (y − y0)
2) = K

2
|z − z0|2.

Again, by (3.14),
∣

∣

∣

∣

v∗(z) − v∗(z0) − ∂v∗

∂x
(z0)(x − x0) − ∂v∗

∂y
(z0)(y − y0)

∣

∣

∣

∣

≤ 3K|z − z0|2. (3.15)

By the definition of ψμ(x, y) (μ = 1,2,3), we obtain that
for μ = 1,2,3,

∫

R2
xψμ(z)dz =

∫

R2
yψμ(z)dz =

∫

R2
ψμ(z)dz = 0.

(3.16)

By (2.9) and (3.16), taking z0 = (x0, y0) = n
2m (n =

(n1, n2)), we deduce that

d(2)
μ,m,n = 2m

∫

R2
v∗(z)ψμ(2mz − n)dz

= 2m

∫

R2

(

v∗(z)−v∗
(

n

2m

)

− ∂v∗

∂x

(

n

2m

)(

x − n1

2m

)

− ∂v∗

∂y

(

n

2m

)(

y − n2

2m

))

ψμ(2mz − n)dz.

From this and (3.15), noticing that x0 = n1
2m and y0 = n2

2m , we
have

∣

∣d(2)
μ,m,n

∣

∣ ≤ 3K 2m

∫

R2

∣

∣

∣

∣

z − n

2m

∣

∣

∣

∣

2

|ψμ(2mz − n)|dz

≤ 3K 2−3m

∫

R2
|z|2|ψμ(z)|dz = O(2−3m). (3.17)

So (3.12) holds.
By the similar argument to (3.10) above, from (3.7) we

now have

‖v∗ − S22M (v∗)‖
L2([− 1

2 , 1
2 ]2)

= O(2−2M).

Proposition 3.4 is proved. �

4 Discrete HWT

In this section, we will discuss the discrete HWT and study
the symmetry property of the coefficients.

We always assume that ψ and ˜ψ be a pair of biorthonor-
mal wavelets generated by the scaling functions ϕ, ϕ̃ that are
compactly supported real-valued even functions. We also as-
sume that ψ and ˜ψ are real-valued functions. Let the filters
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{ak} and {bk} be defined in (2.5) and let us assume the for-
mula (2.6) holds. Since ϕ and ϕ̃ are symmetric at t = 0, by
the known result [4], we know that ψ and ˜ψ are symmetric
at t = 1

2 and t = − 1
2 , respectively.

4.1 Definition of One-dimensional Discrete HWT

Let f ∈ C2([0, 1
2 ]) be a signal of the interval [0, 1

2 ]. We are

given the discretized version of f sampled at { n
2J }2J−1

n=0 :

xn = f

(

n

2J

)

(n = 0, . . . ,2J−1).

Then x0 = f (0) and x2J−1 = f ( 1
2 ). Using the HWT decom-

position, we get

f (t) = 2

(

f

(

1

2

)

− f (0)

)

t + f (0) + v(t)

= 2(x2J−1 − x0)t + x0 + v(t)

(

0 ≤ t ≤ 1

2

)

.

So, for n = 0, . . . ,2J−1,

yn := v

(

n

2J

)

= xn − (x2J−1 − x0)
n

2J−1
− x0.

In particular, y0 = y2J−1 = 0.
Since the odd extension vodd of v to [− 1

2 , 1
2 ] satisfies

vodd(t) = −v(−t)

(

t ∈
[

−1

2
,0

])

,

the sequence {yodd
n }2J−1

n=−2J−1 , where yodd
n := vodd(

n
2J ), satis-

fies the conditions

yodd
n = −yodd−n (−2J−1 ≤ n ≤ 2J−1) and

yodd
0 = yodd

2J−1 = yodd
−2J−1 = 0.

Let v∗ be a 1-periodic extension of vodd. We define the se-
quence {zn}n∈Z:

zn := v∗
(

n

2J

)

(n ∈ Z). (4.1)

So we obtain that for n ∈ Z and l ∈ Z,

z−n = −zn, zn+2J = zn and z2J−1l = 0. (4.2)

Hence {zn}n∈Z can be determined by 2J−1 − 1 different val-
ues z1, . . . , z2J−1−1.

4.2 The Relationships Between the Coefficients
in the HWT Representation

Let {c(1)
m,n} and {d(1)

m,n} be periodic wavelet coefficients of
v∗ ∈ L2([− 1

2 , 1
2 ]). Taking J sufficiently large, the following

formula holds [1].

v∗(t) �
2J −1
∑

n=0

c
(1)
J,nϕ̃

per
J,n(t)

and

c
(1)
J,n � v∗

(

n

2J

)

= zn. (4.3)

By (2.4), we get

2J −1
∑

k=0

c
(1)
J,kϕ̃

per
J,k =

2J−1−1
∑

k=0

c
(1)
J−1,kϕ̃

per
J−1,k +

2J−1−1
∑

k=0

d
(1)
J−1,k

˜ψ
per
J−1,k.

By Proposition 2.1, we know that

c
(1)
J−1,k =

2J −1
∑

n=0

a∗
n−2kzn and d

(1)
J−1,k =

2J −1
∑

n=0

b∗
n−2kzn,

(4.4)

where {a∗
n} and {b∗

n} are stated in (2.7).

Proposition 4.1 Let c
(1)
J−1,k = αk (k = 1, . . . ,2J−2 − 1) and

d
(1)
J−1,k = βk (k = 0, . . . ,2J−2 − 1). Then

(i)
{

c
(1)
J−1,k

}2J−1−1
k=0 = {0, α1, . . . , α2J−2−1,

0, −α2J−2−1, . . . , −α1};
(ii)

{

d
(1)
J−1,k

}2J−1−1
k=0 = {β0, . . . , β2J−2−1,

−β2J−2−1, . . . , −β0}.

We need a couple of lemmas.

Lemma 4.2 Let {a∗
n} and {b∗

n} be stated in (2.7). Then, for
any n ∈ Z,

a∗−n = a∗
n and b∗

n = b∗
2−n.

Proof Since ϕ, ϕ̃ are both real-valued even functions and
an = √

2
∫

R
ϕ(t)ϕ̃(2t − n)dt (by (2.5)), we have

a−n = √
2
∫

R

ϕ(t)ϕ̃(2t + n)dt

= √
2
∫

R

ϕ(−t)ϕ̃(−2t + n)dt

= √
2
∫

R

ϕ(t)ϕ̃(2t − n)dt = an.

From this and (2.7), we get

a∗−n = a∗
n, a∗

2J +n
= a∗

n (n ∈ Z). (4.5)
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By (2.5), bn = √
2
∫

R
ψ(t)ϕ̃(2t −n)dt . Since ψ( 1

2 − t) =
ψ( 1

2 + t), we have

bn = √
2
∫

R

ψ

(

1

2
+ t

)

ϕ̃(2t + 1 − n)dt

= √
2
∫

R

ψ

(

1

2
− t

)

ϕ̃(2t + 1 − n)dt

= √
2
∫

R

ψ(t)ϕ̃(−2t + 2 − n)dt

= √
2
∫

R

ψ(t)ϕ̃(2t − 2 + n)dt

= b2−n.

So we get b1+n = b1−n. By (2.7), we have

b∗
1+n = b∗

1−n (|n| ≤ 2J−1).

Again since b∗
n+2J = b∗

n, we have b∗
1+n = b∗

1−n for all n ∈ Z.
So we get

b∗
n = b∗

2−n (n ∈ Z). (4.6)

�

Lemma 4.3 The periodic wavelet coefficients {c(1)
m,n} and

{d(1)
m,n} satisfy the following relationships

c
(1)
J−1,k = −c

(1)

J−1,2J−1−k
,

d
(1)
J−1,k = −d

(1)

J−1,2J−1−1−k
(k ∈ Z).

(4.7)

Proof From (4.2) and (4.5), it follows by (4.4) that

c
(1)

J−1,2J−1−k
=

2J −1
∑

n=0

a∗
n+2k−2J zn

= −
2J −1
∑

n=0

a∗
n+2kz−n = −

0
∑

n=−2J +1

a∗−n+2kzn.

Again thanks to the periodicity of the {an} and {zn}, we have

0
∑

n=−2J +1

a∗−n+2kzn =
2J
∑

n=1

a∗−n+2kzn

=
2J −1
∑

n=1

a∗−n+2kzn + a∗
2k−2J z2J

=
2J −1
∑

n=1

a∗−n+2kzn + a2kz0

=
2J −1
∑

n=0

a∗−n+2kzn. (4.8)

So we have

c
(1)

J−1,2J−1−k
= −

2J −1
∑

n=0

a∗−n+2kzn

= −
2J −1
∑

n=0

a∗
n−2kzn = −c

(1)
J−1,k. (4.9)

On the other hand, by (4.4) and (4.6),

d
(1)
J−1,k =

2J −1
∑

n=0

b∗
n−2kzn =

2J −1
∑

n=0

b∗
2−n+2kzn

= −
2J −1
∑

n=0

b∗
2−n+2kz−n

= −
0

∑

n=−2J +1

b∗
2+n+2kzn. (4.10)

By the similar argument to (4.8), we have

0
∑

n=−2J +1

b∗
2+n+2kzn =

2J −1
∑

n=0

b∗
2+n+2kzn.

So we get

d
(1)
J−1,k = −

2J −1
∑

n=0

b∗
n−(2J −2k−2)

zn = −d
(1)

J−1,2J−1−1−k
.

�

Proof of Proposition 4.1 By the first formula of (4.7), we
get c

(1)

J−1,2J−2 = −c
(1)

J−1,2J−2 , i.e.,

c
(1)

J−1,2J−2 = 0. (4.11)

Since a∗
n = a∗−n = a∗

2J −n
and zn = −z−n = −z2J −n, by

(4.4), we have

c
(1)
J−1,0 =

2J −1
∑

n=0

a∗
nzn =

2J
∑

n=1

a∗
nzn

= −
2J
∑

n=1

a∗
2J −n

z2J −n = −
2J −1
∑

n=0

a∗
nzn = −c

(1)
J−1,0.

So c
(1)
J−1,0 = 0.

Let c
(1)
J−1,k = αk (k = 0, . . . ,2J−1 − 1). Then, by

c
(1)
J−1,0 = 0, and (4.9) and (4.11), we get

α0 = 0, α2J−2 = 0, and

αk = −α2J−1−k (k = 1, . . . ,2J−2 − 1)
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i.e., (i) holds. Let d
(1)
J−1,k = βk (k = 0, . . . ,2J−1 −1). By the

second formula of (4.7), we have

βk = −β2J−1−1−k (k = 0, . . . ,2J−2 − 1),

i.e., (ii) holds. Proposition 4.1 is proved. �

From Proposition 4.1, we see that in order to recover the
signal, we only need 2J−1 − 1 periodic wavelet coefficients
and two boundary values of the signal f . On the other hand,
the number of the sampling points {xn}2J−1

0 is just 2J−1 + 1.
So the 1D HWT is not a redundant transform.

4.3 Two-dimensional Discrete HWT

We will now discuss the two-dimensional discrete HWT and
study the symmetry property of the coefficients.

Let an image f ∈ C2([0, 1
2 ]2). For some large J , take the

(2J−1 + 1)2 sample points of f

xn1,n2 = f

(

n1

2J
,
n2

2J

)

(n1, n2 = 0, . . . ,2J−1).

Using the HWT decomposition, we get

f (x, y) = u(x, y) + v(x, y)

(

(x, y) ∈
[

0,
1

2

]2)

,

where u(x, y) is a harmonic function satisfying Laplace’s
equation Δu = 0 and u = f on the boundary of [0, 1

2 ]2.
We can efficiently and accurately compute u by using the
Averbuch-Israeli-Vozovoi (AIV) method [2]. Let us now dis-
cuss the residual component v.

Let yn1,n2 = v( n1
2J , n2

2J ). Then

y0,n2 = yn1,0 = y2J−1,n2
= yn1,2J−1 = 0

(n1, n2 = 0, . . . ,2J−1).

Let vodd be an odd extension of v to [− 1
2 , 1

2 ]2, i.e.,

vodd(x, y) = v(x, y)

(

(x, y) ∈
[

0,
1

2

]2)

and

vodd(x, y) = −vodd(−x, y) = −vodd(x,−y)

= vodd(−x,−y)

(

(x, y) ∈
[

−1

2
,

1

2

]2)

.

Denote zn1,n2 = vodd(
n1
2J , n2

2J ). Then

zn1,n2 = −z−n1,n2 = −zn1,−n2 = z−n1,−n2

(n1, n2 = 0,±1, . . . ,±2J−1) (4.12)

and

z0,n2 = zn1,0 = z2J−1,n2
= zn1,2J−1 = z−2J−1,n2

= zn1,−2J−1 = 0.

Let v∗ be a 1-periodic extension of vodd to R
2. Denote

z∗
n1,n2

= v∗( n1
2J , n2

2J ). Then

z∗
n1,n2

= zn1,n2 (n1, n2 = 0, ±1, . . . , ±2J−1),

z∗
n1+2J ,n2

= z∗
n1,n2

, z∗
n1,n2+2J = z∗

n1,n2

(n1 ∈ Z, n2 ∈ Z).

(4.13)

For μ = 1,2,3, m ∈ Z, n ∈ Z
2, let c

(2)
m,n1,n2 and d

(2)
μ,m,n1,n2

be the periodic wavelet coefficients of v∗ ∈ L2([− 1
2 , 1

2 ]2)

(see (2.9)).
Take J sufficiently large such that

v∗(x, y) �
2J −1
∑

n1,n2=0

c
(2)
J,n ϕ̃

per
0,J,n and

c
(2)
J,n � v∗

(

n1

2J
,
n2

2J

)

= z∗
n1,n2

, n = (n1, n2).

Again, by (2.11), we have

v∗(x, y) �
2J−1−1
∑

n1,n2=0

c
(2)
J−1, n1, n2

ϕ̃
per
0, J−1, n1, n2

+
3

∑

μ=1

2J−1−1
∑

n1, n2=0

d
(2)
μ,J−1, n1, n2

˜ψ
per
μ,J−1, n1, n2

.

(4.14)

Now we discuss the symmetry property of the coeffi-
cients c

(2)
J−1,k1,k2

and d
(2)
μ,J−1,k1,k2

. From Proposition 2.2,
Lemma 4.2, (4.12), and (4.13), we can get

Proposition 4.4 For k1, k2 ∈ Z, we have

(i) c
(2)

J−1,2J−1−k1, k2
= −c

(2)
J−1, k1, k2

,

c
(2)

J−1, k1,2J−1−k2
= −c

(2)
J−1, k1, k2

,

c
(2)

J−1,2J−2, k2
= c

(2)
J−1,0, k2

= c
(2)

J−1, k1,2J−2

= c
(2)
J−1, k1,0 = 0;

(ii) d
(2)

1, J−1,2J−1−k1, k2
= −d

(2)
1, J−1, k1, k2

,

d
(2)

1, J−1,k1, 2J−1−k2−1
= −d

(2)
1, J−1, k1, k2

,

d
(2)

1, J−1,2J−2, k2
= d

(2)
1, J−1,0, k2

= 0;
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(iii) d
(2)

2, J−1,2J−1−k1−1, k2
= −d

(2)
2, J−1, k1, k2

,

d
(2)

2, J−1, k1,2J−1−k2
= −d

(2)
2, J−1, k1, k2

,

d
(2)

2, J−1, k1,2J−2 = d
(2)
2, J−1, k1,0 = 0; and

(iv) d
(2)

3, J−1,2J−1−k1−1, k2
= −d

(2)
3, J−1, k1, k2

,

d
(2)

3, J−1, k1,2J−1−k2−1
= −d

(2)
3, J−1, k1, k2

.

From Proposition 4.4, the symmetry of the matrix
(c

(2)
J−1,k1,k2

), k1, k2 = 0,1, . . . ,2J−1 − 1 is described as fol-
lows:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 · · · 0 0 0 · · · 0
0 α1,1 · · · α1,2J−2−1 0 −α1,2J−2−1 · · · −α1,1
...

...
...

...
...

...
...

...

0 α2J−2−1,1 · · · α2J−2−1,2J−2−1 0 −α2J−2−1,2J−2−1 · · · −α2J−2−1,1

0 0 · · · 0 0 0 · · · 0
0 −α2J−2−1,1 . . . −α2J−2−1,2J−2−1 0 α2J−2−1,2J−2−1 · · · α2J−2−1,1
...

...
...

...
...

...
...

...

0 −α1,1 · · · −α1,2J−2−1 0 α2J−2−1,2J−2−1 · · · α2J−2−1,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where

αk1,k2 = c
(2)
J−1,k1,k2

(k1, k2 = 1, . . . ,2J−2 − 1).

Therefore, the matrix (c
(2)
J−1,k1,k2

), k1, k2 = 0,1, . . . ,

2J−1 − 1, is determined by (2J−2 − 1)2 values. Similarly,
we have

(i) the matrix (d
(2)
1,J−1,k1,k2

), k1, k2 = 0, . . . ,2J−1 − 1, is

determined by 2J−2(2J−2 − 1) values;
(ii) the matrix (d

(2)
2,J−1,k1,k2

), k1, k2 = 0, . . . ,2J−1 − 1, is

determined by 2J−2(2J−2 − 1) values; and
(iii) the matrix (d

(2)
3,J−1,k1,k2

), k1, k2 = 0, . . . ,2J−1 − 1, is

determined by 22J−4 values.

Noticing that

(2J−2 − 1)2 + 2J−2(2J−2 − 1) + 2J−2(2J−2 − 1) + 22J−4

= (2J−1 − 1)2

we know that in order to recover v∗, we only need
(2J−1 − 1)2 periodic wavelet coefficients. To obtain the har-
monic function u, we need 4(2J−1 −1)+4 boundary sample
points of the image f on ∂([0, 1

2 ]2). Since the number

(2J−1 − 1)2 + 4(2J−1 − 1) + 4 = (2J−1 + 1)2

is exactly equal to the number of sampling points of f , the
2D HWT is not redundant.

5 Image Approximation Experiments via HWT

We will examine the approximation performance of the 2D
HWT algorithm. The quality of approximation in this paper
is measured by PSNR (or peak signal-to-noise ratio) defined
as

PSNR := 20 × log10

(

max
x∈�

|f (x)|/RMSE
)

,

where RMSE is the absolute �2 error between the original
and the approximation divided by the square root of the total
number of pixels in the original image. The unit of PSNR is
decibel (dB).

5.1 Comparison with the Periodic and Folded Wavelet
Algorithms

To approximate an image sampled on a square by the 2D
HWT algorithm, we first decompose the image into the har-
monic component u and the residual v (see Fig. 1). The har-
monic component u is determined by the data at boundary
of the square. Hence in order to approximate u, it suffices to
approximate the data on the boundary of the square. Since
the boundary consists of four segments, we simply apply
one-dimensional LLST on each segment. For the residual v,
we do an odd extension and a periodic extension (see Fig. 2)
and expand it into a periodic wavelet series with respect to
a biorthonormal periodic wavelet basis with the symmetric
filter bank (see Fig. 3). Our image approximation and recon-
struction strategy consists of the following steps: (1) Retain
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Fig. 1 HWT decomposition of the Barbara face image. Each image is displayed using its full dynamic range

Fig. 2 The odd extension of the residual component v

all the “DC” components of the 1D LLST of each bound-
ary segment of the square; (2) Select a certain number of
the largest coefficients in terms of energy from the rest of
the coefficients (both 1D and 2D); (3) Reconstruct u and v

from these retained coefficients using the AIV algorithm [2]
and the Mallat algorithm, respectively; and (4) Compute
u + v.

For approximation and reconstruction of the image by
the periodic wavelet algorithm and the folded wavelet al-
gorithm, we simply retain a certain number of the largest
coefficients in terms of energy from all the coefficients and
reconstruct the image from them.

First, we compare the performance of HWT with that
of the periodic wavelet transform (PWT) and the folded
wavelet transform (FWT). We use the 9/7 biorthogonal
filter bank (see [7, Sect. 7.4] for the actual filter coeffi-
cients). The depths of decomposition J we test here are
J = 2,4, log2(N) for an image of size N × N . The original
image sizes we use are all dyadic, i.e., N = 2n, which are

Fig. 3 The periodic biorthonormal wavelet coefficients of the odd ex-
tension of the residual component v when the depth of decomposition
is one

suitable for PWT and FWT. Hence, for HWT, we duplicate
the last column and row of each image to make it suitable
for HWT.

As for the images, we use the face part of Barbara im-
age (with 128 × 128 pixels) as well as the standard images
“Bridge”, “Truck”, and “Moon surface”, each of which con-
sists of 256 × 256 pixels. Figure 4 shows the latter three
images.

Figures 5, 6, and 7 show the quality of approximations of
these four images when the depth of decomposition J is set
to two, four, and maximum (seven for the Barbara face im-
age and eight for the other three images), respectively. From
these figures, the performance of HWT is consistently supe-
rior to that of PWT and FWT. For J = 2, we observe that
the big performance difference between HWT and that of
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Fig. 4 The three more standard images used in our experiments

Fig. 5 Quality of approximation of the four standard images measured by PSNR values as a function of the ratio of the number of the retained
coefficients to the total number of the coefficients. The depth of decomposition is set to two in each case
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Fig. 6 Quality of approximation of the four standard images measured by PSNR values as a function of the ratio of the number of the retained
coefficients to the total number of the coefficients. The depth of decomposition is set to four in each case

PWT and FWT particularly when the ratio f the retained
coefficients is less than about 6%. This can be explained
as follows. For any image of size N × N , if the depth of
decomposition J is set to 2, then the number of low-pass
wavelet coefficients in PWT and FWT is N2/16, i.e., very
large. Since the low-pass wavelet coefficients are not sparse,
we need many coefficients to approximate such an image
well. In other words, we cannot efficiently approximate such
an image using a small number of coefficients if J is set
to a small number such as 2. In fact, N2/16 is 6.25% of
the original image size N2, which agrees with our observa-
tion. On the other hand, HWT decomposes an image into
two components: the harmonic component and the residual.
We can approximate the harmonic component very well us-

ing a few 1D LLST coefficients. For the residual, we still
have the same problem as PWT and FWT if J = 2. How-
ever, since the norm of the residual is much smaller than that
of the original image thanks to the removal of the harmonic
component, the reconstruction error is kept small.

When J = 4 or J is set to its maximum, the performance
of HWT is about 0.2 ∼ 0.5 dB better than that of PWT, and
the 0.1 ∼ 0.2 dB better than that of FWT. In general, the
smaller the number of the retained coefficients, the clearer
the performance difference becomes. This is also due to the
harmonic component in HWT.

We now would like to show the reconstructed images be-
cause the PSNR plots do not tell the whole story. Figures 8,
9, and 10 show the reconstructed Barbara face images using
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Fig. 7 Quality of approximation of the four standard images measured by PSNR values as a function of the ratio of the number of the retained
coefficients to the total number of the coefficients. The depth of decomposition is set to the maximum in each case, i.e., seven for the Barbara face
image and eight for the others

top 5% coefficients of PWT, FWT, and HWT for J = 2,4,7,
respectively. From these figures, we can see that the HWT
algorithm is also perceptually better than the PWT algorithm
and the FWT algorithm, particularly for J = 2. We can also
notice some difference around the frame boundary of the im-
ages. This is due to the use of LLST on the boundary pixels
in HWT. Overall, for each algorithm, the difference between
J = 4 and J = 7 is not noticeable.

5.2 Comparison with LLST

We now compare the HWT algorithm with the LLST algo-
rithm. In general, the decay rate of LLST coefficients de-
pends on global smoothness of the input data while that of

HWT coefficients depends on local smoothness. Since the
global smoothness of a function is determined by its rough
part (even if that part is localized), we need fewer HWT co-
efficients than LLST coefficients in order to reconstruct the
data to the same quality. For LLST, we divide the image
into several blocks and do LLST on each block. The size of
block we use in our experiments is 9 × 9, 17 × 17, 33 × 33,
65 × 65, 129 × 129 for all the four images, and in addi-
tion, we use 257 × 257 block for the “Bridge”, “Truck”, and
“Moon Surface” images. Note that the largest block size for
each image implies that LLST does not divide it into a set
of smaller segments. We first retain all the corner pixel val-
ues of each block, select the certain number of coefficients
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Fig. 8 Approximations of the Barbara face image using the top 5% coefficients when the depth of decomposition is two. The PSNR values (in dB)
of PWT, FWT, and HWT are 17.6182, 17.5961, and 22.0776, respectively

with the largest energy among all the coefficients (both 1D
and 2D) not yet used, reconstruct an approximation from
these coefficients, and finally evaluate its quality of approx-
imation. For HWT, the depth of decomposition is set to the
maximum, and we also use the 9/7 biorthonormal filter bank.
We apply HWT on the whole image and retain the coef-
ficients with the largest energy. Figure 11 shows the qual-
ity of approximation by PSNR values when we retain 2%–
20% of the original coefficients. From this figure, we again
observe that HWT consistently outperforms LLST regard-
less of the block sizes. In particular, HWT’s performance is

significantly better (about 1dB) than that of LLST for the
“Bridge”, “Truck”, and “Moon Surface” images while its
performance on “Barbara face” image is closely followed
by that of LLST with 17 × 17 blocks, especially around the
ratio of the number of the retained coefficients to that of the
original coefficients ranges around 8% to 10%. We believe
that this is due to the existence of textures in the Barbara face
image. We also observe that the performance of LLST at a
particular ratio of the number of the retained coefficients to
that of the whole coefficient strongly depends on the block
size. For example, for heavy compression (i.e., the ratio is
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Fig. 9 Approximations of the Barbara face image using the top 5% coefficients when the depth of decomposition is four. The PSNR values (in dB)
of PWT, FWT, and HWT are 22.9791, 23.1484, and 23.2651, respectively

about 2% to 8%), the LLST with the larger block sizes per-
form better than that with the smaller block sizes while the
situation is opposite if one can afford to keep a larger num-
ber of coefficients (e.g., the ratio is larger than 10%). HWT
does not require the user to choose any such block sizes,
which is one of the major advantage of HWT over LLST.

5.3 Comparison with Wavelets on the Interval

It is appropriate to compare HWT with wavelets on the in-
terval (WOI) introduced by Cohen, Daubechies and Vial [5]

because WOI also tries to overcome boundary effects. Com-
pared to HWT, the periodic wavelets, and folded wavelets,
however, the construction of WOI is quite complicated.
Their starting point is Daubechies’s compactly supported
scaling functions and wavelets. They first construct scal-
ing functions on the interval consisting of three parts: the
left edge scaling function, the interior scaling function, and
the right edge scaling function. Then, they use these scal-
ing functions on the interval to construct the corresponding
wavelets also consisting of three parts: the left edge wavelet,
the interior wavelet, and the right edge wavelet. Although
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Fig. 10 Approximations of the Barbara face image using the top 5% coefficients when the depth of decomposition is seven. The PSNR values
(in dB) of PWT, FWT, and HWT are 22.9962, 23.1476, and 23.2688, respectively

these wavelets on the interval have high vanishing moments,
we cannot apply its discrete version to image approximation
immediately. This is because their corresponding high pass
filter cannot map a simple polynomial sequence to zero. So
when one uses WOI to approximate images, one has to per-
form a prefiltering (or preconditioning) on the data first; see
[5] for the detail.

We now compare the performance of HWT with that of
WOI. Since the harmonic component of HWT takes care of
linear parts on the boundary, in order to be a fair compari-
son with HWT, we use WOI with two vanishing moments.

For HWT, we use Villasenor 5/3 filter bank [10], which also
has two vanishing moments. Figure 12 shows the quality
of approximation measured by PSNR values when we re-
tain 1%–10% of the original coefficients. The depth of de-
composition for both HWT and WOI is set to five for the
Barbara face image and six for the other three images since
these are the maximal depth of decomposition that the WOI
can take. From this figure, we observe that HWT again con-
sistently outperforms WOI. Considering the implementation
complexity of WOI, HWT should be used if one wants to re-
duce the boundary effects.
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Fig. 11 Quality of approximation of the four standard images measured by PSNR values as a function of the ratio of the number of the retained
coefficients to the total number of the coefficients. These figures compare the performance of HWT with that of LLST with different block sizes.
For HWT, the depth of decomposition is set to its maximum level

6 Conclusion

In this paper, we improved PWT and FWT and proposed the
Harmonic Wavelet Transform (HWT) that is not affected by
the boundary of input data. The idea of removing the bound-
ary mismatches of input data originally proposed in LLST
[8] is quite important since the residual component after odd
reflection and periodization, say, the v∗ component, does not
contain any artificial discontinuities caused by the boundary
mismatches. Hence, the expansion coefficients of v∗ with
respect to the periodic wavelet basis truly reflect the local
smoothness of an input image. Moreover, HWT captures the
intrinsic singularities in the interior of the domain more effi-
ciently than LLST that uses the Fourier sine series expansion

for v∗. Also, the implementation of HWT is simpler than
WOI because HWT does not need any special boundary-
dependent filter banks. Finally, our image approximation ex-
periments using four standard images demonstrated the su-
periority of HWT over LLST, PWT, FWT, and WOI. We
also note that the extension of HWT to a higher dimension
is straightforward thanks to the efficient Laplace solver for
higher dimension [3].
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Fig. 12 Quality of approximation of the four standard images measured by PSNR values as a function of the ratio of the number of the retained
coefficients to the total number of the coefficients. These figures compare the performance of HWT with that of WOI. For both HWT and WOI,
the depth of decomposition is set to its maximum possible level
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