Skip to main content
Log in

Characterization, drug release profile and cytotoxicity of Dentatin-Hydroxypropyl-β-Cyclodextrin complex

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This current work has been conducted mainly to increase solubility and drug release properties for high hydrophobic Dentatin (DEN) by incorporation it into Hydroxypropyl-β-Cyclodextrin (HPβCD) cavity. To confirm that inclusion be succeeded, the produced complex were installed onto different machines. The latter includes: Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and field emission-scanning electron microscopy (FE-SEM). The hydrodynamic diameter and zeta potential of DEN-HPβCD complex were 2.025 ± 0.39 nm and −33.6 mV, respectively. Ultra-violet spectroscopy was employed to further confirmation of complexation process as well as to determine drug release profile. The result showed an initial burst release (19.9% within first two minutes) and then a continuous release for an extended period of 41 h (100%). The solubility of DEN was enhanced by >300 fold following complexation when a compared to DEN alone. Moreover, MTT finding showed that this complexation did not reduce cytotoxicity of DEN after applying on prostate cancer (LNCaP), human adenocarcinoma breast cancer (MDA-MB-231) and human gastric adenocarcinoma cell line (HDT). However, further investigations are required to validate efficacy of our produced inclusion using molecular analysis and in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Merisko-Liversidge, E.M., Liversidge, G.G.: Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol. Pathol. 36(1), 43–48 (2008)

    Article  CAS  Google Scholar 

  2. Shaikh, J., Ankola, D., Beniwal, V., Singh, D., Kumar, M.R.: Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci. 37(3), 223–230 (2009)

    Article  CAS  Google Scholar 

  3. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98(5), 1743–1754 (1998)

    Article  CAS  Google Scholar 

  4. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: basic science and product development. Journal of pharmacy and pharmacology. 62(11), 1607–1621 (2010)

    Article  CAS  Google Scholar 

  5. Al-Rawashdeh, N.A., Al-Sadeh, K.S., Al-Bitar, M.-B.: Physicochemical study on microencapsulation of hydroxypropyl-β-cyclodextrin in dermal preparations. Drug Dev Ind Pharm. 36(6), 688–697 (2010)

    Article  CAS  Google Scholar 

  6. Harada, A., Hashidzume, A., Takashima, Y.: Cyclodextrin-based supramolecular polymers. In: Supramolecular polymers polymeric betains oligomers. pp. 1–43. Springer, Berlin (2006)

    Chapter  Google Scholar 

  7. Anirudhan, T.S., Nima, J., Divya, P.L.: Synthesis, characterization and in vitro cytotoxicity analysis of a novel cellulose based drug carrier for the controlled delivery of 5-fluorouracil, an anticancer drug. Appl. Surf. Sci. 355, 64–73 (2015)

    Article  CAS  Google Scholar 

  8. Domańska, U., Pelczarska, A., Pobudkowska, A.: Effect of 2-hydroxypropyl-β-cyclodextrin on solubility of sparingly soluble drug derivatives of anthranilic acid. International journal of molecular sciences. 12(4), 2383–2394 (2011)

    Article  Google Scholar 

  9. Danciu, C., Soica, C., Oltean, M., Avram, S., Borcan, F., Csanyi, E., Ambrus, R., Zupko, I., Muntean, D., Dehelean, C.A.: Genistein in 1: 1 inclusion complexes with ramified cyclodextrins: Theoretical, physicochemical and biological evaluation. Int. J. Mol. Sci. 15(2), 1962–1982 (2014)

    Article  Google Scholar 

  10. Singh, R., Bharti, N., Madan, J., Hiremath, S.: Characterization of cyclodextrin inclusion complexes—a review. J. Pharm. Sci. Technol. 2(3), 171–183 (2010).

    CAS  Google Scholar 

  11. Aiassa, V., Zoppi, A., Albesa, I., Longhi, M.R.: Inclusion complexes of chloramphenicol with β-cyclodextrin and aminoacids as a way to increase drug solubility and modulate ROS production. Carbohydr. Polym. 121, 320–327 (2015)

    Article  CAS  Google Scholar 

  12. Mennini, N., Bragagni, M., Maestrelli, F., Mura, P.: Physico-chemical characterization in solution and in the solid state of clonazepam complexes with native and chemically-modified cyclodextrins. J. Pharm. Biomed. Anal. 89, 142–149 (2014)

    Article  CAS  Google Scholar 

  13. Mazzaferro, S., Bouchemal, K., Gallard, J.-F., Iorga, B.I., Cheron, M., Gueutin, C., Steinmesse, C., Ponchel, G.: Bivalent sequential binding of docetaxel to methyl-β-cyclodextrin. Int. J. Pharm. 416(1), 171–180 (2011)

    Article  CAS  Google Scholar 

  14. Davis, M.E.: Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv. Drug Deliv. Rev. 61(13), 1189–1192 (2009)

    Article  CAS  Google Scholar 

  15. Szente, L., Szejtli, J.: Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv. Drug Deliv. Rev. 36(1), 17–28 (1999)

    Article  CAS  Google Scholar 

  16. Pose-Vilarnovo, B., Perdomo-Lopez, I., Echezarreta-Lopez, M., Schroth-Pardo, P., Estrada, E., Torres-Labandeira, J.J.: Improvement of water solubility of sulfamethizole through its complexation with β-and hydroxypropyl-β-cyclodextrin: characterization of the interaction in solution and in solid state. Eur. J. Pharm. Sci. 13(3), 325–331 (2001)

    Article  CAS  Google Scholar 

  17. Yu, Z., Cui, M., Yan, C., Song, F., Liu, Z., Liu, S.: Investigation of heptakis (2, 6-di-O-methyl)-β-cyclodextrin inclusion complexes with flavonoid glycosides by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 21(5), 683–690 (2007)

    Article  CAS  Google Scholar 

  18. Blumenthal, R.D., Lew, W., Reising, A., Soyne, D., Osorio, L., Ying, Z., Goldenberg, D.M.: Anti-oxidant vitamins reduce normal tissue toxicity induced by radio-immunotherapy. Int. J. Cancer. 86(2), 276–280 (2000)

    Article  CAS  Google Scholar 

  19. Arbab, I.A., Abdul, A.B., Abdelwahab, S.I.: Clausena excavata Burm. f.(Rutaceae): A review of its traditional uses, pharmacological and phytochemical properties. (2015).

  20. Sharif, N.M., Mustahil, N., Noor, N.M., Sukari, M., Rahmani, M., Taufiq-Yap, Y., Ee, G.: Cytotoxic constituents of Clausena excavata. Afr. J. Biotechnol. 10(72), 16337–16341 (2013)

    Google Scholar 

  21. Arbab, I.A., Looi, C.Y., Abdul, A.B., Cheah, F.K., Wong, W.F., Sukari, M.A., Abdullah, R., Mohan, S., Syam, S., Arya, A.: Dentatin induces apoptosis in prostate cancer cells via Bcl-2, Bcl-xL, Survivin downregulation, caspase-9,-3/7 activation, and NF-κB inhibition. Evidence-Based Complementary and Alternative Medicine 2012 (2012).

  22. Kumar, M.: Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci. 3(2), 234–258 (2000).

    Google Scholar 

  23. Higuchi, T., Connors, A.: Phase-solubility techniques (1965).

  24. Songsiang, U., Thongthoom, T., Zeekpudsa, P., Kukongviriyapan, V., Boonyarat, C., Wangboonskul, J., Yenjai, C.: Antioxidant activity and cytotoxicity against cholangiocarcinoma of carbazoles and coumarins from Clausena harmandiana. Science-Asia: 38, 75–81 (2012)

    Article  CAS  Google Scholar 

  25. Nakamura, T., Kodama, N., Arai, Y., Kumamoto, T., Higuchi, Y., Chaichantipyuth, C., Ishikawa, T., Ueno, K., Yano, S.: Inhibitory effect of oxycoumarins isolated from the Thai medicinal plant Clausena guillauminii on the inflammation mediators, iNOS, TNF-α, and COX-2 expression in mouse macrophage RAW 264.7. J. Nat. Med. 63(1), 21–27 (2009)

    Article  CAS  Google Scholar 

  26. Wang, L., Yan, J., Li, Y., Xu, K., Li, S., Tang, P., Li, H.: The influence of hydroxypropyl-β-cyclodextrin on the solubility, dissolution, cytotoxicity, and binding of riluzole with human serum albumin. J. Pharm. Biomed. Anal. 117, 453–463 (2016)

    Article  CAS  Google Scholar 

  27. Zhang, L., Zhu, W., Lin, Q., Han, J., Jiang, L., Zhang, Y.: hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs. Int. J. Nanomed. 10, 3291 (2015)

    Article  CAS  Google Scholar 

  28. Swaminathan, S., Pastero, L., Serpe, L., Trotta, F., Vavia, P., Aquilano, D., Trotta, M., Zara, G., Cavalli, R.: Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 74(2), 193–201 (2010)

    Article  CAS  Google Scholar 

  29. Sancho, M.I., Russo, M.G., Moreno, M.S., Gasull, E., Blanco, S.E., Narda, G.E.: Physicochemical Characterization of 2-Hydroxybenzophenone with β-cyclodextrin in Solution and Solid State. J. Phys. Chem. B 119(18), 5918–5925 (2015)

    Article  CAS  Google Scholar 

  30. Liu, M., Cao, W., Sun, Y., He, Z.: Preparation, characterization and in vivo evaluation of formulation of repaglinide with hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 477(1), 159–166 (2014)

    Article  CAS  Google Scholar 

  31. Williams, R.O. III, Mahaguna, V., Sriwongjanya, M.: Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-cyclodextrin. Eur. J. Pharm. Biopharm. 46(3), 355–360 (1998)

    Article  CAS  Google Scholar 

  32. Pires, M.A.S., Souza dos Santos, R.A., Sinisterra, R.D.: Pharmaceutical composition of hydrochlorothiazide: β-cyclo-dextrin: Preparation by three different methods, physico-chemical characterization and in vivo diuretic activity evaluation. Molecules 16(6), 4482–4499 (2011)

    Article  CAS  Google Scholar 

  33. Klein, S., Wempe, M.F., Zoeller, T., Buchanan, N.L., Lambert, J.L., Ramsey, M.G., Edgar, K.J., Buchanan, C.M.: Improving glyburide solubility and dissolution by complexation with hydroxybutenyl-β-cyclodextrin. J. Pharm. Pharm. 61(1), 23–30 (2009)

    Article  CAS  Google Scholar 

  34. Zoeller, T., Dressman, J.B., Klein, S.: Application of a ternary HP-β-CD-complex approach to improve the dissolution performance of a poorly soluble weak acid under biorelevant conditions. Int. J. Pharm. 430(1), 176–183 (2012)

    Article  CAS  Google Scholar 

  35. Nasongkla, N., Wiedmann, A.F., Bruening, A., Beman, M., Ray, D., Bornmann, W.G., Boothman, D.A., Gao, J.: Enhancement of solubility and bioavailability of β-lapachone using cyclodextrin inclusion complexes. Pharm. Res. 20(10), 1626–1633 (2003)

    Article  CAS  Google Scholar 

  36. Eid, E.E., Abdul, A.B., Suliman, F.E.O., Sukari, M.A., Rasedee, A., Fatah, S.S.: Characterization of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin. Carbohydr. Polym. 83, 1707–1714 (2011)

    Article  CAS  Google Scholar 

  37. Vrečer, F., Vrbinc, M., Meden, A.: Characterization of piroxicam crystal modifications. Int. J. Pharm. 256(1), 3–15 (2003)

    Google Scholar 

  38. Su, Y., Rao, S., Cai, Y., Yang, Y.: Preparation and characterization of the inclusion complex of hypocrellin A with hydroxypropyl-β-cyclodextrin. Eur. Food Res. Technol. 231(5), 781–788 (2010)

    Article  CAS  Google Scholar 

  39. Huang, Z., Tian, S., Ge, X., Zhang, J., Li, S., Li, M., Cheng, J., Zheng, H.: Complexation of chlorpropham with hydroxypropyl-β-cyclodextrin and its application in potato sprout inhibition. Carbohydr Polym. 107, 241–246 (2014)

    Article  CAS  Google Scholar 

  40. Nan, H., Ma, H., Zhang, R., Zhan, R.: Physiochemical properties of the complex of myricetin and hydroxypropyl-β-cyclodextrin. Trop. J. Pharm. Res. 13(11), 1791–1796 (2014)

    Article  CAS  Google Scholar 

  41. Liu, B., Zhu, X., Zeng, J., Zhao, J.: Preparation and physicochemical characterization of the supramolecular inclusion complex of naringin dihydrochalcone and hydroxypropyl-β-cyclodextrin. Food Res. Int. 54(1), 691–696 (2013)

    Article  CAS  Google Scholar 

  42. Liu, J., Qiu, L., Gao, J., Jin, Y.: Preparation, characterization and in vivo evaluation of formulation of baicalein with hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 312(1), 137–143 (2006)

    Article  CAS  Google Scholar 

  43. Albanese, A., Tang, P.S., Chan, W.C.: The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012)

    Article  CAS  Google Scholar 

  44. Chen, L., Mccrate, J.M., Lee, J.C., Li, H.: The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology. 22(10), 105708 (2011)

    Article  Google Scholar 

  45. Al-Rawashdeh, N.A., Al-Sadeh, K.S., Al-Bitar, M.B.: Inclusion complexes of sunscreen agents with β-cyclodextrin: spectroscopic and molecular modeling studies. J. Spectrosc (2013).

  46. Moriwaki, C., Costa, G., Ferracini, C., de Moraes, F., Zanin, G., Pineda, E., Matioli, G.: Enhancement of solubility of albendazole by complexation with β-cyclodextrin. Braz. J. Chem. Eng. 25(2), 255–267 (2008)

    Article  CAS  Google Scholar 

  47. Xia, S.-J., Ni, Z.-M., Xu, Q., Hu, B.-X., Hu, J.: Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs. J. Solid State Chem. 181(10), 2610–2619 (2008)

    Article  CAS  Google Scholar 

  48. Ye, Y.-J., Wang, Y., Lou, K.-Y., Chen, Y.-Z., Chen, R., Gao, F.: The preparation, characterization, and pharmacokinetic studies of chitosan nanoparticles loaded with paclitaxel/dimethyl-β-cyclodextrin inclusion complexes. Int. J. Nanomed. 10, 4309 (2015)

    CAS  Google Scholar 

  49. Yousaf, A.M., Kim, D.W., Oh, Y.-K., Yong, C.S., Kim, J.O., Choi, H.-G.: Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation. Int. J. Nanomed. 10, 1819 (2015)

    CAS  Google Scholar 

  50. Ismail, A., Ahmad, B., Mohd, A., Rasedee, A., Suvitha, S., Behnam, K., Mohamed, Y., Manal-Mohamed, E., Siddig, I., Hapipah, M.: Dentatin isolated from Clausena excavata induces apoptosis in MCF-7cells through the intrinsic pathway with involvement of NF-kB signaling and G0/G1 cell cycle arrest: a bioassay-guided approach. J. Ethnopharmacol. 145, 343–354 (2013)

    Article  Google Scholar 

  51. Ucisik, M.H., Küpcü, S., Schuster, B., Sleytr, U.B.: Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. J. Nanobiotechnol. 11(1), 1 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by science fund research grant (02-01-04-sf1210), Ministry of science, Technology and innovation, Malaysia. The author (Al-Abboodi Sh Ashwaq) is grateful to University of AL-Qadisiyah, Ministry of Higher Education and Scientific Research, Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al-Abboodi Shakir Ashwaq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwaq, AA.S., Rasedee, A., Abdul, A.B. et al. Characterization, drug release profile and cytotoxicity of Dentatin-Hydroxypropyl-β-Cyclodextrin complex. J Incl Phenom Macrocycl Chem 87, 167–178 (2017). https://doi.org/10.1007/s10847-016-0688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0688-y

Keywords

Navigation