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Abstract

Currently, robotic grasping methods based on sparse partial point clouds have attained excellent grasping performance
on various objects. However, they often generate wrong grasping candidates due to the lack of geometric information
on the object. In this work, we propose a novel and robust sparse shape completion model (TransSC). This model has a
transformer-based encoder to explore more point-wise features and a manifold-based decoder to exploit more object details
using a segmented partial point cloud as input. Quantitative experiments verify the effectiveness of the proposed shape
completion network and demonstrate that our network outperforms existing methods. Besides, TransSC is integrated into a
grasp evaluation network to generate a set of grasp candidates. The simulation experiment shows that TransSC improves the
grasping generation result compared to the existing shape completion baselines. Furthermore, our robotic experiment shows
that with TransSC, the robot is more successful in grasping objects of unknown numbers randomly placed on a support

surface.

Keywords Robotic grasping - Point cloud - Sparse shape completion - Object segmentation

1 Introduction

Robotic grasping evaluation is a challenging task due to
incomplete geometric information from single-view visual
sensor data [28]. Many probabilistic grasp planning models
have been proposed to address this problem, such as
Motel Carlo, Gaussian Process and uncertainty analysis
[10, 17, 26]. However, these analytic methods are always
computationally expensive. With the development of deep
learning techniques, data-driven grasp detection methods
have shown great potential [4, 15, 22, 31] to solve this
problem. They generate lots of grasp candidates and
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estimate the corresponding grasp quality, resulting in a
better grasp performance and generalization. However, as
most of these methods still rely on original sensor input like
2D (image) and 2.5D (depth map), there exists a physical
grasping defect when the gripper interacts with real object
surfaces or edges because of the incomplete pixel-wise
and point-wise representations. Otherwise, traditional data-
driven grasping algorithms [15, 21, 22]are mostly based
on the partial point clouds. Due to the object’s missing
geometric and semantic information, these algorithms are
easily to generate wrong grasp candidates and causing a
research gap.

To improve grasp performance, the sparse point cloud
is necessary to be restored or repaired to generate a
better grasping interaction. Additional sensor input such
as a tactile sensor is introduced to supplement original
vision sensing [30]. However, object uncertainty still exists
and extra sensor interference with the object will directly
affect the final grasping result. Another strategy is to use
shape completion to infer the original object shape while
traditional grasping-based shape completion methods use
a high-resolution voxelized grid as object representation
[17, 18, 27], causing a high memory cost and information
loss due to the sparsity of the sensory input. To avoid
extra sensor cost and obtain complete object information,
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a novel transformer-based shape completion module is
proposed in this work based on an original sparse point
cloud. Compared with the traditional convolutional network
layer, the transformer has achieved state-of-the-art results
in visual recognition and segmentation recently [11, 25],
which enables our shape completion module to achieve
better performance.

As illustrated in Fig. 1, we present a novel grasping
pipeline that uses a sparse point cloud to execute the grasp
directly, without converting it into discrete voxel grids
during the shape completion process and then transforming
it into a mesh in the grasp planning process. The pipeline
consists of two sub-modules: The transformer-based shape
completion module and the grasp evaluation module. In
the first module, a non-synthetic segmented partial point
cloud dataset based on YCB objects was constructed.
Not cropping the object randomly or viewing the object
in a physical simulator, our dataset contains many real
cameras and environmental noise, which guarantees an
improved grasping interaction in a real robot environment.
Based on this dataset, we propose a novel point cloud
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completion network (TransSC), where the segmented partial
point cloud of an object is input, and the complete point
cloud is output. In the second module, our previous work
[15] is involved. We use PointNet [24] to obtain feature
representation of the repaired point cloud and build a
grasp detection network to generate and evaluate a set of
grasp candidates. The grasp with the highest score will
be executed in a real robot experiment. The proposed
pipeline is validated in a simulation experiment and robotic
experiments, which demonstrate that our shape completion
pipeline can significantly improve grasping performance.
Our contributions in this paper can be listed as:

— A large-scale non-synthetic partial point cloud dataset
is constructed based on the YCB-Video dataset. As the
dataset is based on 3D point cloud data captured by a
real RGB-D camera, the noise that comes from it will
facilitate the generalization of our work, especially in
real robot environments.

— A novel point cloud completion network TransSC
is proposed. The transformer-based encoder and
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Transformer- Manifold-based

—
Decoder

Output Points

—_—

Movelt Task
Constructor

PointNetGPD

Fig. 1 Overview of our shape completion based grasp pipeline. The
top row shows the shape completion module. In this module, a seg-
mented partial point cloud ¢, with n points is first input into a
transformer-based encoder to extract point-wise and self-attention
features, which outputs a latent vector with m dimensions. Then,
the latent vector is concatenated with another latent feature from a
flat/spatial point seed generator to predict multiple spatial surfaces in
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Motion Planning

the manifold-based decoder. Finally, these surfaces are assembled into
a complete point cloud ¢.. The bottom row is the grasp evaluation
module, the complete point cloud ¢ is the input of our grasp detec-
tion pipeline PointNetGPD to compute the grasp quality Q;. The grasp
with the highest score Gp.s; will be sent to calculate a collision-free
trajectory and will be executed in a real robot experiment
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manifold-based decoder are introduced into the shape
completion task to improve its performance.

— Combining our previous work PointNetGPD for grasp
evaluation and the Movelt Task Constructor for motion
planning, we demonstrate that a robust grasp planning
pipeline using the shape completion result as input can
achieve a better grasp planning result compared to the
single view without shape completion work.

The paper is organized as follows. We first contrast
related approaches for visual grasping, dense point cloud
completion and traditional robotic grasping strategies based
shape completion in Section 2. Then, we propose our prob-
lem formulation in Section 3. Furthermore, we explain the
different components of our grasping evaluation approach:
dataset construction, transformer-based shape completion
network architecture and grasping detection module in
Section 4. After that, we evaluate our method through quan-
titative evaluation, simulation grasping experiments and real
robotic experiments on single-object and object-occlusion
scenes in Section 5. Finally, our conclusion and future work
is drawn in Section 6.

2 Related Work

Deep Visual Robotic Grasping With the development of
deep learning, many methods for deep visual grasping have
been proposed. Similar to 2D object recognition, monocular
camera images were firstly used to predict the probabil-
ity that the input grasps were successful [14]. In [5] and
[26], a single RGB-D image of the target object was used to
generate a 6D-pose grasp and effective end-effector trajec-
tories. However, this work is not suitable to deal with sparse
3D object information and spatial grasps. Compared with
the 2D feature representations from images, 3D voxel
or point cloud data could provide robotic grasping with
more semantic and spatial information. Given a synthetic
grasp dataset, [4] transformed scanning 3D object infor-
mation into Truncated Signed Distance Function (TSDF)
representations and passed them into a Volumetric Grasp-
ing Network (VGN) to directly output grasp quality, gripper
orientation and gripper width at each voxel. Wu et al.
[31] designed a special grasp proposal module that defines
anchors of grasp centers and related 3D grid corners to pre-
dict a set of 6D grasps from a partial point cloud. Based
on the scaled point cloud, [22] used hand-crafted outline
features and a CNN-based method to build a grasp qual-
ity evaluation model. In our previous work [15], we used
PointNet [24] to extract raw point cloud features and built
a grasp evaluation network, which performs great in robotic
grasping experiments. However, due to the lack of complete
geometric information on the object, we found that some

grasp candidates are still infeasible and cause a collision
with the object.

Dense Point Cloud Completion The task of point cloud
completion has been attracting more and more attention in
the field of computer vision. Yuan et al. [36] firstly used
Multi-layer Perceptrons (MLP) to extract the local geome-
tric features of point clouds to accomplish the reconstruc-
tion. Groueix et al. [9] introduced a morphing learning
strategy to generate different shapes of 3D surfaces, which
shows great potential for point cloud and voxel reconstruc-
tion. Liu et al. [16] combined the above work and proposed
a morphing and sampling network, which shows a higher
fidelity and quality for the dense point cloud. Furthermore,
[34] proposed a Gridding Residual Network to restore more
structural details, especially for the dense point cloud. How-
ever, these methods cannot be applied to robotic research
directly because all trained objects in their datasets are at the
same pose and status. This would create dense point cloud
models too complicated to pursue the details of the point
cloud. It is better to restore a sparse completion of object
surfaces for robotic tasks.

Shape Completion for Robotic Grasping For robotic grasp-
ing, the critical challenge is recognizing objects in 3D space
and avoiding potential perception uncertainty. When the
RGB-D camera captures an object from a particular view-
point, the 3D information on the object is incomplete, which
means a lot of semantic and spatial information is missing.
The missing of complete 3D object information will lead
to the grasp generation process generating wrong grasping
poses.

Recently, researchers have proposed to use shape com-
pletion to enable robotic grasping. In [27], the observed
object from 2.5D range sensors was firstly converted to oc-
cupancy voxel grid data. Then the voxelized data were input
into a CNN and formed a high-resolution voxel output. Fur-
thermore, the completion result was transformed into mesh
and then loaded into Graspit! [20] to generate a grasp.
Lundell et al. [17] used dropout layers to modify the net-
work, which enabled the prediction of shape samples at run-
time. Meanwhile, Monte Carlo Sampling and probabilistic
grasp planning were used to generate grasp candidates. As
traditional analytic grasping methods are computationally
expensive, [18] combined the shape completion of a voxel
grid and a data-driven grasping planning strategy (GQCNN)
[19] to propose a structure called FC-GQCNN, where syn-
thetic object shapes were obtained from a top-down physics
simulator and grasps were generated from depth images.
Traditional grasp-based shape completion solutions mainly
concentrate on completing a single object from different
camera views, while they hardly consider the lack of geome-
tric information caused by occlusion from other objects.
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In conclusion, traditional grasp shape completion meth-
ods mainly voxelized the 2.5D data into occupancy grids
or distance fields to train a CNN. However, these high-
resolution voxel grids will entail a high memory cost.
Moreover, detailed semantic information is often lost in
the form of occlusions of other objects, which causes
meaningful geometric features of objects not to be learned
from the neural network. We propose a transformer-based
shape completion module to obtain the complete geomet-
ric features and retain original object information. Without
converting the observed partial point cloud into the voxel
grid and mesh, our completion method segments the sparse
point cloud of the target object and outputs a repaired point
cloud at arbitrary resolution, which outperforms existing
methods. Furthermore, PointNet [24] is introduced for the
representation learning of the repaired point cloud and a
grasp evaluation network is constructed to generate grasp
candidates. Finally, our grasp evaluation pipeline achieves
a better grasping performance than the baseline method
without point cloud completion.

3 Problem Formulation

We consider a setup consisting of a robotic arm with
parallel-jaw grippers, an RGB-D camera, and objects of
unknown number that are set on a flat support surface while
we define a target object via user input. Meanwhile, we
assume that the RGB-D camera could capture the depth map
of objects, where a semantic segmentation network is used
to extract the mask of the target object and convert it into
a 2.5D partial point cloud P € RN*3. For simplicity, all
spatial quantities are in camera coordinates.

Given a gripper configuration C and camera observation
O, our goal is firstly to extract the target object point
cloud P using semantic segmentation. Then a point cloud
completion network is used to repair the segmented 2.5D
partial point cloud P € RY*3, turning it into a complete
3D point cloud P, € RN*3. After that, a grasp evaluation
network based on P, is used to predict a set of grasp
candidates G; and compute the relative grasp quality Q;.
The grasp with the highest score Gpes; and highest kinematic
possible, i.e., a collision-free grasp, will be executed in the
real robot experiment.

4 Robotic Grasping Evaluation via Shape
Completion and Grasp Detection
4.1 Dataset Construction

Traditional shape completion models use synthetic CAD
models from the ShapeNet [35] or ModelNet [32] datasets
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to generate partial and corresponding complete point cloud
data, while these synthetic data contain no real-world noise.
As a result, synthetic data often do not work well in the
real world. To tackle this problem, we summarize a shape
completion dataset from the YCB-Video Dataset [33]. Non-
synthetic RGB-D video images (~ 133,827 frames) in the
YCB-Video Dataset are firstly chosen, while most of them
vary insignificantly. Thus, a preprocessed image dataset
is obtained by reducing every five frames. Meanwhile, to
cover distinguishable shapes with different levels of detail,
18 objects are also chosen from the YCB-Video dataset.
In this work, the ground-truth point cloud of 18 objects is
created by the farthest point sampling (FPS) of 2048 points
on each object model. Not randomly sampling or cropping
complete point clouds on the unit sphere to get partial
point clouds, RGB-D images and related object label images
in the preprocessed dataset are loaded to compute the
matching partial point clouds using related camera intrinsic
parameters. To approximate the distribution of point cloud
data of real objects and retain the semantic information,
a large number of cameras and environmental noise data
are kept on, though a small radius is used to remove
partial outliers. For the convenience of network training, the
partial point clouds are also unified into the size of 2048
points by FPS or replicating points. To enable an accurate
comparison with existing baselines, the canonical center of
the partial point cloud of each object is transformed into the
canonical center of the ground-truth point cloud using pose
information. Finally, more than 70,000 partial point clouds
are collected in our dataset. Compared to other synthetic
point cloud datasets, our dataset also does well at preserving
the real point cloud distribution of occluded objects.

4.2 Semantic Segmentation

As shown in Fig. 1, the scene of our grasping task is that
objects of unknown number are set on a flat support surface.
To obtain the target object point cloud, we first build
a semantic segmentation network branch, where different
YCB objects are assigned a particular semantic label value.
It can be seen that the performance of the segmentation
network is good enough that it can also be deployed in a
grasping task of multi-object occlusion.

Our segmentation network [2] takes an RGB image as
input and outputs a binary mask of the expected object.
The network has an encoder-decoder architecture based on
CNN, where the encoder consists of convolutional layers
with ReLLU activation followed by max-pooling layers. At
the same time, the decoder utilizes unpooling operations
whereby the pooling indices from the corresponding
encoder layers are recalled. Convolutional layers again
follow this upsampling strategy. Moreover, several data
augmentation strategies like adjusting brightness, contrast
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and saturation are used to make the network generalize
well. After getting the expected object mask, the sparse
2.5D point cloud P e RN*3 of the target object
could be extracted through the corresponding depth image.
Meanwhile, we also remove the redundant background
(support surface) point cloud by setting a threshold value of
the z-axis (support surface height).

4.3 Transformer-Based Encoder Module

As shown in Fig. 2, we compare our proposed encoder mod-
ule with several common competitive methods. Multi-layer
Perception (MLP) is a simple baseline architecture to extract
point features. This method maps each point into different
dimensions and extracts the maximum value from the final
K dimensions to formulate a latent vector. A simple gen-
eralization for MLP is to combine semantic features from
a low-level dimension with those of a high-level dimen-
sion. The MSF (Multi-scale Fusion) [13] module inflates the
dimension of the latent vector from 1024 to 1408 to obtain
semantic features from different dimensions. To improve the
performance of the feature extractor, L-GAN [1] proposed
to use a Maxpooling layer appropriately. Concatenated Mul-
tiple Layer Perception (CMLP) [12] maxpools the output
of the last k layers to guarantee that multi-scale feature
vectors are concatenated directly. An overview of our pro-
posed Transformer-based multi-layer perception (TMLP)
module is shown in Fig. 2(d). Without an extra skip con-
nection structure and a maxpooling operation from different
layers, the Multi-head Self-attention (MHSA) [29] module
is introduced to replace the traditional convolutional layer
[128 x 256 x 1].

MHSA aims to transform (encode) the input point feature
into a new feature space, which contains point-wise and

3x64x1 3x64x1 3x64x1
l l l Ma_x
64x128x1 64x128x1 64x128x1 =20
128x256x1 128x256x1 128x256x1 o
l l l Pooling
256x1024x1 256x1024x%1 256x1024x%1
Max
Pooling
(a) MLP (b) MSF (c) CMLP

Fig. 2 Illustration of various encoder structures for point cloud com-
pletion. (a) is a simple multiple-layer perception (MLP) structure.
(b) is a multi-scale fusion (MSF) module, which can fuse features
from different layers directly. (¢) is concatenated multiple layer per-
ception (CMLP), which can also concatenate multi-dimensional latent

self-attention features. Figure 2(e) shows a simple MHSA
architecture used in TMLP, which includes two sub-layers.
In our first layer, the multi-head number is set to 8 and the
input feature dimension for each point is 128. Unlike natural
language processing (NLP) problems, the 128-dimensional
feature vector A;, € R2M8*128 will enter into the multi-
head attention module directly without positional encoding.
This is because each point in the point cloud has its unique
x — y — z coordinates. The output feature Z is formed
by concatenating the attention of each attention head. A
residual structure is also used to add and normalize the
output feature Z with A;,. This process can be formulated
as follows:

Ai =SA; (A i=1,2,..,8 €))]
Z = concat (Ay, Az, ..., Ag) * Wy 2)
Aour = Norm (A, + Z) (3)

where SA; represents the i-th self-attention layer, each has
the same output dimension size with input feature vector
Ain, and Wy is the weight of the linear layer. A,,; represents
the output point-wise features of the first sub-layer.

The second sub-layer is called Feed-forward module,
which is a fully connected network. Point-wise features
Aoy are processed through two linear transformations and
one ReLLU activation. Furthermore, a residual network is
also used to fuse and normalize the output features. Finally,
we can get the MHSA module output FF,,; € R2048x128
as:

FF = ReLU(Apus * Wi +b1) * Wo + by “4)
ffgut:NOVm(Agut—’—ff) (5)
3x64x1

}

64x128x1 .
Inputs Multi-Head
l (D =128) Attention Add&Norm
MHSA
Max
Pooling o
utputs Feed
128><1024><1 (D =128) Add&Norm Forward
(d) TMLP (e) MHSA Module

features while the max pooling operation is used to extract latent fea-
tures further. (d) shows our Transformer-based multiple layer percep-
tion (TMLP) module, which integrates the Multi-head Self-attention
(MHSA) module into the MLP structure. (e) depicts the architecture
of the MHSA module
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where W1, W and b1, b, represent the weight and bias value
of the corresponding linear transformation, respectively.

4.4 Manifold-Based Decoder Module

Inspired by the AtlasNet [9], a manifold-based decoder
module is designed to predict a complete point cloud from
partial point cloud features. As shown in Fig. 3, a complete
point cloud could be assumed to consist of multiple sub-
surfaces. Therefore, we only concentrate on obtaining each
sub-surface, then we gather them and make an appropriate
montage to form the final complete point cloud. To obtain
each sub-surface, a point seed generator is used to concate-
nate with global feature vector P, € R2048x1024 guput
from the encoder, where point initialization values are com-
puted from a flat (f) or spatial (g) sampler. As the coordi-
nate values of the ground-truth point cloud are limited to
between [—1, 1], point initialization values are also limited
in this range. After that, the concatenated feature vector
Peoncar € RPUM (M = 1026 or 1027) is input into K
convolutional layers, where all sampled 2D or 3D points
will be mapped to 3D points on each sub-surface. In our de-
coder, the sub-surface number is set to 16. Unlike other
voxel-based shape completion methods, our decoder modu-
le achieves an arbitrary resolution for the completion results.

Evaluation Metrics To evaluate our shape completion
results, we used two permutation-invariant metrics called
Chamfer Distance (CD) and Earth Mover’s Distance (EMD)
as our evaluation goal [7]. Given two arbitrary point clouds
S1 and S7, CD measures the average distance from each
point in one point cloud to its nearest point coordinates in
the other point cloud.

1 1
d S1,8) = — min|x —y|34+— min||y—x |2
cp(S1, 82 = 5= 3 minlr—yl5+ - 3 minly—x|3
XGSI yESz

(6)
2 ~
£ S 2
Feature Vector S % -
.. X = X
: - Z
- z E =
. X ) £
Point Seed 2 X E
S 2 %
X X E 3
= X

Fig. 3 Illustration of the decoder structure for point cloud comple-
tion. The feature vector with m dimensions from the encoder is firstly
concatenated with a latent feature from a special point seed gen-
erator f or g. Then three convolutional layers as the backbone are
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While Earth Mover’s Distance considers two equal point
sets S7 and S, and is defined as:

1
d S1, 82) = in — -0 7
eup(S1.$) = min < Yl =8l (7)

XGSl

CD has been widely used in most shape completion
tasks because it is efficient to compute. However, EMD
is chosen as our completion loss because CD is blind
to some visual inferiority and ignores details easily [1].
With @ : 8] — Sy being bijective, EMD could solve the
assignment and transformation problem in which one point
cloud is mapped into another.

4.5 PointNetGPD Based Grasping Detection Module

Given the complete point cloud from the previous steps,
we put the point cloud into a geometric-based grasp pose
generation algorithm (GPG) [23], which outputs a set of
grasp proposals G;. We then transform §; into a gripper
coordinate system and use points inside the gripper as
the input of PointNetGPD, a data-driven grasp evaluation
framework. The output grasp will then be sent to the Movelt
Task Constructor [8] to plan a feasible trajectory for a pick
and place task.

PointNetGPD [15] is trained on a grasp dataset generated
using a reconstructed YCB object mesh and evaluates the
input grasp quality. The grasp candidates in the grasp dataset
all proceeded collision-free to the target object. As a result,
the grasp evaluation network assumes that all the input grasp
candidates are not colliding with the object. If the object
has occlusion due to the camera viewpoint, the current
geometric-based grasp proposal algorithm will generate
grasp candidates that collide with the object. Thus, using a
complete point cloud could ensure that the grasp candidate
generation algorithm generates grasp sets that do not collide
with the graspable objects. Figure 4 shows the comparison

Complete
Point Cloud

@ : Concatenating
@ : Gathering and Montaging

used to extract features and form different manifold-based surfaces,
respectively. Finally, these surfaces are gathered and montaged into a
complete point cloud
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(b)

(c)

Fig.4 Comparison of grasp candidates generated using GPG. (a) RGB image to show the example environment, (b) grasp generated with partial

point cloud, (¢) grasp generated with complete point cloud

of the grasp generation result using GPG [23] with and
without point cloud completion, where Fig. 4(b) shows a
candidate generated using a partial point cloud and Fig. 4(c)
shows a grasp candidate generated using a complete point
cloud. We can see that the grasp in Fig. 4(b) collides with
the real object while Fig. 4(c) avoids generating that kind of

grasp.

5 Experiments

5.1 Quantitative Evaluation of Proposed Shape
Completion Network

Training and Implementation Details To evaluate model
performance and reduce training time, eight categories of
different objects in our dataset are chosen to train the
shape completion model. The training set and validation
set are split into 0.8:0.2. We implement our network on
PyTorch. All the building modules are trained using the
Adam optimizer with an initial learning rate of 0.0001 and
a batch size of 16. All the parameters of the network are
initialized using a Gaussian sampler. Batch Normalization
(BN) and ReLU activation units are all employed at the

encoder and decoder module except the final tanh layer
producing point coordinates, and Dropout operation is used
in the MHS A module to suppress model overfitting.

5.1.1 Comparison with Existing Methods

In this subsection, we compare our method against several
representative baselines that are also used for point cloud
completion, including AtlasNet [9], MSN [16] and GRNet
[34]. The Oracle method means that we randomly resample
2048 points from the original surface of different YCB
objects. Corresponding EMD and CD distances between
the resampled point cloud and the ground-truth point cloud
provide an upper bound for the performance. Relative
comparison results are shown in Tables 1 and 2. Our method
is developed into two models based on the different point
seed generators (f/g) in the decoder module. It can be
seen that our method outperforms other methods in most
objects on both EMD and CD distances. Though for some
objects like banana and cracker box, the evaluation metrics
of Earth Mover’s Distance and Chamfer Distance from
our both models are bigger than other baselines. However,
for other objects in our datatset, our flat/spatial models
both achieve a better performance than other baselines.

Table 1 Comparison of earth mover’s distance with different sparse point cloud completion models for 2048 points and multiplied by 103

Model Cracker box  Banana  Pitcher base = Bleach cleanser = Bowl  Mug  Powerdrill  Scissors Average
Oracle 34 1.7 4.6 29 1.9 2.0 3.8 1.5 2.7
AtlasNet [9] 9.7 49 10.5 10.0 8.8 53 15.0 52 8.7
MSN (fusion) [16] 10.7 4.6 124 14.0 11.5 12.9 234 53 11.8
MSN (vanilla) [16] 11.0 3.8 9.3 83 10.2 39 5.9 34 7.0
GRNet (sparse) [34] 8.4 4.3 8.8 6.0 6.0 4.3 5.8 4.5 53
Our (flat) 8.5 39 9.4 6.7 6.0 3.7 5.2 4.1 4.9
Our (spatial) 10.1 44 8.4 5.8 5.6 3.7 7.0 39 6.1

Bold values indicate the best performance
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Table 2 Comparison of chamfer distance in different sparse point cloud completion models for 2048 points and multiplied by 10

Model Cracker box ~ Banana  Pitcher base =~ Bleach cleanser ~ Bowl Mug  Powerdrill ~ Scissors  Average
Oracle 0.24 0.52 0.28 0.12 0.10 0.09 0.13 0.38 0.23
AtlasNet [9] 451 0.87 497 5.61 421 1.37 6.18 0.92 3.58
MSN (fusion) [16] 5.59 1.25 5.71 2.71 10.81 1.77 8.34 1.58 4.73
MSN (vanilla) [16] 6.01 0.71 4.01 4.68 7.51 0.76 1.28 0.38 3.17
GRNet (sparse) [34]  2.28 0.97 3.78 1.67 2.85 0.76 1.48 0.88 1.90
Our (flat) 3.28 0.92 4.09 1.50 2.55 0.66 1.25 0.82 1.88
Our (spatial) 5.81 0.87 3.19 1.20 2.79 0.69 2.54 0.66 222

Bold values indicate the best performance

More importantly, the final average evaluation metrics of
Earth Mover’s Distance and Chamfer Distance of Our(flat)
model are both the best evaluation results. For the same
completion loss function, our (flat) model achieves an
average of about 9% improvement in terms of the EMD
distance to the latest GRNet model. Since our dataset
contains much noise from the camera and the environment,
we found that fusing the output completion result with the
original point cloud makes the performance significantly
worse, which can be seen from the comparison of MSN
(fusion) and MSN (vanilla). It also implies that our model is
robust enough, which is conducive to rapid deployment in
real robot experiments. Furthermore, compared with ideal
results from the Oracle method, it demonstrates that point
cloud completion remains an arduous task to solve.

To understand the computational complexity of the pro-
posed transformer-based model, we analyse the floating-
point operations(FLOPs) and the number of network para-
meters and summarize in Table 3. It can be seen that the
self-attention module introduced in our transformer-based
encoder is lighter than traditional convolution layer, redu-
cing the computational complexity. Moreover, after remov-
ing a large number of redundant convolution layers existing
in traditional dense shape completion, our FLOPs value is
also decreased significantly.

5.1.2 Ablation Studies

This section provides a series of ablation studies on our
YCB-based dataset to evaluate our proposed shape comple-
tion model comprehensively. Accordingly, the effectiveness
of each particular module in our model is analyzed as
follows: We first evaluate our transformer-based encoder

Table 3 Number of FLOPs and network parameters

Method AtlasNet MSN MSN(fusion) GRNet Ours
# Params (M) 29.46 30.32 33.65 76.71  30.02
# FLOPs (GMac) 14.36 2146 —— 2590 9.87
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module with other representative encoder modules under the
same setting of convolutional/transformer layer number and
object inputs. As shown in Table 4, our encoder has a bet-
ter result overall, though CMLP gets a great result on Mug’s
completion. When the point seed in the decoder is flat, we
further analyze the influence of different point seed distribu-
tions and surface numbers in Tables 5 and 6. We can see that
both Uniform and Gaussian sample methods can achieve
a better result at (0, 1). We choose Uniform(0, 1) in our
model to achieve the best results. Like the weight parame-
ters in the neural network, the initialization value of points
cannot be close to zero, which predicts the worst result.
As illustrated in Table 6, when the sub-surface number
increases, the overall model performance improves. How-
ever, the improvement of completion results is limited when
the number is above 16.

5.1.3 Visualization Analysis

Figure 5 shows the visualized shape completion results
using our TransSC. In the visual analysis, each object’s
input partial point cloud is first preprocessed to remove
noisy data from the camera and the environment. It can
be seen that the geometric loss of the input point cloud in
our dataset comes from the change of the camera viewpoint
and the occlusion by other objects, which causes a big
challenge for our model. The output results of the canonical
pose show that our model works well on all simple and
complex objects. Moreover, our model can generate realistic
structures and details like the mug handle, bowl edge and
bottle mouth. In robotic grasping, as the target object pose
is randomly put on the support surface, another shape
completion model based on the arbitrary ground-truth pose
is retrained. This is done by transforming the ground truth
pose to the original pose of the input partial point cloud. The
completion results are also shown in Fig. 5. Arbitrary output
is not as good as the canonical output while it still restores
the overall shape of each object well. It also demonstrates
that achieving object completion of arbitrary poses in a real
environment is still a formidable task.
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Table 4 Comparison of EMD and CD from different encoder structures

Earth Mover’s distance (EMD) MLP CMLP MSF TMLP Chamfer distance (CD) MLP CMLP MSF TMLP
Mug 6.01 3.69 9.45 3.69 Mug 2.15 0.65 13.80 0.66
Bleach cleanser 10.51 8.10 11.70 6.70 Bleach cleanser 6.88 2.63 13.89 1.50
Bold values indicate the best performance
Table 5 Comparison of
average EMD and CD from Similarity metrics Uniform distribution: Gaussian distribution: ZERO
different point generators
0:1 —0.5:0.5 —1:1 0.5,0.5/3 0,0.5 0,1
Avg EMD 5.94 7.09 6.50 6.34 6.15 6.14 9.88
Avg CD 1.89 3.25 242 2.39 2.38 2.12 6.17
Bold values indicate the best performance
Table 6 Influence of different surface numbers in the decoder
Earth Mover’s distance (EMD) n=4 n=8 n=16 n=32 Chamfer distance (CD) n=4 n=8 n=16 n=32
Mug 4.71 3.94 3.70 3.61 Mug 9.01 6.70 6.61 6.69
Bleach cleanser 10.10 7.82 6.69 5.94 Bleach cleanser 3.69 1.70 1.51 1.53
Bold values indicate the best performance
Fig.5 Shape completion result Output Output
using TransSC. The canonical Input (canonical pose) (arbitrary pose) Ground Truth
pose result is trained under a
fixed point cloud coordinate Bowl
system while the arbitrary pose
result is trained under the
camera perspective. In the robot
experiment, the arbitrary pose
training result is used to Mug
generate grasps
Y
Bleach }
cleanser i
—f
Mustard
bottle
Power
drill
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5.2 Simulation Grasp Experiments with Complete
Shape

Experimental Setup of Simulation Experiments We use
Graspit! [20] to evaluate the quality of shape completion
similar to [27]. First, the Alpha shapes algorithm [6] is
used to implement surface reconstruction of the completion
object. The output 3D mesh is then imported into Grasplt!
Simulator to calculate grasps. To have a fair comparison, we
also use a Barrett Hand to generate grasps. After finishing
the grasp generation, we remove the completion object
and import the ground-truth object into the same place.
Meanwhile, the Barrett Hand is moved back 20 cm along
the approach direction and then approaches the object until
the gripper detects a collision or reaches the calculated grasp
pose. Furthermore, we adjust the gripper to the calculated
grasp joint angles and perform the auto-grasp function in
Grasplt! to ensure the gripper makes contact with the object
surface or reaches the joint limit. The different values of
joint angles at different positions are then recorded. We use
four objects (bleach cleanser, cracker box, pitcher base and
power drill) from the YCB objects set and calculate 100
grasps for each object in our experiment.

Assuming the grasp pose is the same, we compare
the average difference of the joint angle from our shape
completion model to that of Laplacian smoothing in
Meshlab (Partial), mirroring completion [3] (Mirror) and
voxel-based completion [27]. Note that we use two different
models, canonical and arbitrary. The canonical model
means all the training is transformed into the same object
coordinate system and the arbitrary model means all the
training data are transformed into the camera’s coordinate
system. Although we can see from Fig. 5 that the canonical
model has a better shape completion result, it requires
a 6D pose of the target object if we want to map the
complete point cloud into the real environment. To avoid
this complication of adding a 6D pose estimation module
and achieve real robot experiments, the arbitrary model is
also trained. The simulation result is shown in Table 7. It
can be seen that Ours (canonical) gets the best simulation
grasping performance, which outperforms other completion
types. Ours (arbitrary) also obtains a great simulation result
though its average joint angle is slightly smaller than voxel-
based methods. Moreover, the average difference between
the two models also demonstrates that a perfect shape
completion in an arbitrary pose is much harder than in a
canonical pose.

5.3 Robotic Experiments on Single Objects
Experimental Setup of Single Objects To evaluate the

performance improvement using a complete point cloud for
robotic grasping, we choose six YCB objects to test the

@ Springer

grasping success rate. The robot for evaluation is a URS
robot arm equipped with a Robotiq 3-finger gripper. The
vision sensor is an Industrial 3D camera from Mechmind! to
acquire a high-quality partial point cloud. The selected six
objects are listed in Table 8. We select these objects because
they are typical objects that may fail to generate good grasp
candidates without shape completion. Other objects such as
a banana or a marker are quite simple and small, so that
improvement of shape completion on the grasping result is
minor. In our robotic experiments, each YCB object is firstly
placed on the center of flat table and then moves randomly
as long as it can appear in the field of the vision sensor and
within the executable range of our URS robot arm.

For the selected six objects, we perform grasp evaluation
based on PointNetGPD [15] on two different methods:
Without our shape completion (WOSC) and with our
shape completion (WSC). We run the robot experiment by
randomly putting the object on the table and grasping it
ten times, then calculating the success rate. The experiment
result is shown in Table 8. We can see that all six objects’
grasp success rates from our grasp pipeline outperform or
are even with the original method. The low success rate of
the power drill for both methods is due to the contact area of
the power drill head being too slippery for the robot to grasp.
The failures of WOSC with the observed point cloud input
are mainly due to the limit of the camera viewpoint, and
GPG generates grasp candidates that sink into the object. An
example of this situation is shown in Fig. 4, which is strong
evidence that our shape completion model can improve the
grasp success rate in some particular objects.

5.4 Robotic Experiments on Object Occlusion

Experimental Setup of Object Occlusion When there are
different objects on the flat table, the occlusions from other
objects will cause a lack in geometric information on the
target object. To simulate this scene, we choose bleach
cleanser as the target object and other YCB objects are
picked as a potential occluder where occluder as foreground
is placed directly in front of the target object. All objects
are placed in a natural vertical position while the horizontal
distance between the two types of objects is set to 8 cm. The
experimental objects and segmentation result of the target
object can be seen from Fig. 6. The robot arm and camera
are the same as in the robotic experiment on the single
object. Furthermore, in real experiments, the target object is
placed near the center of table to ensure that vision camera
could capture it accurately and then we randomly change
the 6D pose of target object to grasp ten times.

As shown in Fig. 7, we compare the grasping perfor-
mance of WOSC and WSC when five different YCB objects

Uhttps://en.mech-mind.net/
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Table 7 Comparison of
average difference between
grasp joints from different
completion types

Table 8 Robotic grasping
performance on a single object

Error Partial Mirror

Voxel-based Ours (canonical) Ours (arbitrary)

Grasp joint (degree) 10.07 4.42

2.17 1.15 2.02

Bold values indicate the best performance

Method  Cracker box Mug Meat can  Pitcher base  Bleach cleanser ~ Power drill ~ Average
WOSC  70% 70% 80% 80% 90% 40% 71.67%
wSC 80% 100%  100% 80% 90% 50% 83.33%

Fig.6 The target object and segmentation result with different occlusion settings

Successful Grasping Number

Cracker box Sugar box
Different Occluder

Fig.7 Grasping performance comparison when target object is behind

different occluders

Coffee canMustard bottlePower drill

I ' .
E 10 i A WOSC
5 sla ko X WSC
Z.
5 *
26 A *
z A
© 4 O —
=
= A
S 2
=
N

0

0.2 0.4 0.6 0.8 1.0

Occlusion Ratio (%)

Fig. 8 Grasping performance comparison when target object is in
different occlusion ratio
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occlude the target object (bleach cleanser). The average suc-
cessful grasping rate of WSC is 88% while WOSC is 50%.
It demonstrates that our shape completion method can sig-
nificantly increase the successful grasping rate up to 32%
comparing original grasping strategy. However, we found
that some irregularly shaped objects like the Mustard bottle
and Power drill will divide the original partial point cloud of
the target object into multiple surface parts. Because Point-
NetGPD [15] cannot understand that these separated point
clouds are from the same object, WOSC generates more
wrong grasp candidates without our shape completion. Fur-
thermore, we explored the effect of the occlusion ratio on
the grasp performance through stacking different blocks in
front of the target object as an occlusion. Because the tar-
get object and stacking blocks are all placed on the table
vertically and the horizontal length of each block is big-
ger than the maximum horizontal width of target object, the
occlusion ratio is calculated through measuring the verti-
cal height of stacking blocks (Hp) and target object (H;).
As seen from Fig. 7, we conducted six experiments with
an occlusion rate between 0.2 and 0.9 to compare the two
methods. When the occlusion ratio is less than 0.6, the
grasping success rate of WSC is significantly improved over
that of WOSC. However, because there are few high occlu-
sion scenes in the YCB video dataset, it is still difficult for
TransSC to repair the partial point cloud, especially when
the occlusion ratio is higher than 0.8. Furthermore, when the
occlusion ratio is between 0.8 and 1.0, it means that target
object has been completely obscured. The vision informa-
tion of target object is too little, so it’s also much difficult
to use shape completion to restore complete object informa-
tion. According to our observation in daily life, we found
0.2-0.6 is also the most common object occlusion ratio and
our experiments showed that our shape completion method
could improve successful rate within this range (Fig. 8).

6 Conclusion and Future Work

We present a novel transformer-based sparse shape com-
pletion network (TransSC). This network includes a
transformer-based encoder and manifold-based decoder that
we designed, enabling our model to achieve a great com-
pletion result and outperform other representative methods.
The experiments show that our network is robust to sparse
and noisy point cloud input. Besides, simulation grasp-
ing experiments show our model could achieve a smaller
grasp joint error than traditional robotic completion meth-
ods. Finally, when executing real robotic experiments of
single objects and object occlusion, we demonstrate that
our TransSC can be easily embedded into a existing grasp
evaluation module and improve grasping performance sig-
nificantly in both scenes.

@ Springer

The lack of object geometric information in our dataset
is due to the change of the camera viewpoint and the
occlusion by different objects. Thus, our grasp pipeline
can solve both situations occurring in the grasping task
successfully. However, similar to the research issue of 6
DoF pose estimation, it is still challenging to achieve shape
completion of an arbitrary object at an arbitrary pose due
to the limited object categories in our dataset. So the
main limitation in this paper is that the object catogories
in our constructed datatset are still small and they only
limited in the YCB objects, which causing that our shape
completion model cannot be generalized into other novel
objects. In future work, our goal is to collect more objects
categories to achieve a better generalization for unseen but
similarly shaped objects. Furthermore, we will also consider
more data augmentation strategies like adding more data
representing different object 6 DoF pose and different point
cloud missing ratio as our experiments shown, we think
our shape completion model could achieve a better grasping
performance in the real robotic experiments.
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