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Abstract

The paper presents a robotic system design methodology based on the concept of an embodied agent decomposed into
communicating subsystems, whose activities are specified in terms of FSMs invoking behaviours parameterised by transition
functions and terminal conditions. In the implementation phase, this specification is transformed into a system composed
of a whiteboard providing communication means and logically labelled FSMs (LLFSMs) defining the system behaviour.
These concepts are used to generate the code of the robot controller. The inclusion of inter-subsystem communication
model completes the resulting system design with respect to our previous work that did not account for this model.
Thus communication plays a central role in this presentation. The design methodology is exemplified with a rudimentary
table tennis ball-collecting robot. The presented methodology and the implementation tools are suitable and beneficial for

application to the design of other robotic systems.

Keywords Robotic system specification - Robotic system design methodology - Communication model

1 Introduction

Good practises of software engineering require that the
creation of systems involves a specification phase that
defines the model of what has to be created, and an
implementation phase that discloses how this is done
[84]. This paper uses the specification method based
on the concept of an embodied agent [54, 92]. The
novelty is twofold. Our first contribution is the method
of implementation of robotics systems using the concepts
of logic-labelled finite-state machines (LLFSMs) and
whiteboards. Secondly, we show the simplicity of the
transformation of the embodied agent based specification
into an (executable) implementation using LLFSMs and the

b4 Cezary Zielinski
c.zielinski @ia.pw.edu.pl

Maksym Figat
m.figat@ia.pw.edu.pl

René Hexel
rhexel @griffith.edu.au

Institute of Control and Computation Engineering,
Warsaw University of Technology, Nowowiejska 15/19,
00-665 Warsaw, Poland

2 School of ICT, Griffith University, 170 Kessels Road, Nathan,
QLD 4111, Australia

whiteboard for communication. Especially the decoupling
achieved by the method of communication between the
components of a robotic system is of interest here. We
start with a motivation for the presented research and the
structure of the paper.

1.1 Motivation

The design of a robotic system starts with the specification
of its architecture. As Andrew Tanenbaum points out
in his seminal work [86], the term architecture pertains
to: the instruction set, memory organisation, I/O, and
bus structure. This obviously refers to the architecture
of computer systems. However current robotic systems
are computer based, thus their architecture has the same
foundation. The instruction set defines what the processing
capabilities of the system, i.e. possible activities, are.
The remaining elements refer to the structure, i.e. the
components and their interconnections [23, 55]. In the
approach that we follow in our work, the structure refers
to the division of the system into subsystems and their
interconnections, whilst the activities are specified by a
set of such concepts as: Finite State Machines (FSMs),
behaviours, transition functions and their arguments, and
inter subsystem communication means, all of which
will be detailed later in the paper. However, in many
existing robotic systems, it is difficult to determine their
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architecture [55]. Robot control systems are inherently
complex, nonetheless their authors rarely formally specify
them. Lack of a formal system specification usually
results in an obscure architecture that is difficult to
modify or extend it in future projects or to integrate
with other systems. The process of developing robotic
systems requires both appropriate development methods
(procedures, architectures, etc.) and tools (modelling
languages, middleware and other frameworks). Many
attempts have been made to introduce formal languages
based on mathematics to determine both the controller
structure and its activities [18, 63, 90, 92, 96]. However,
the majority of the robot systems were developed based on
software engineering [16, 17, 68], downplaying the domain-
specific information required by robotics. The proposed
method of modelling and specifying robotic systems, based
on the concept of the embodied agent [54, 92, 94], relies
on such fundamental concepts of robotics as: effectors,
i.e. devices influencing the physical environment, and
receptors, i.e. sensors gathering the information about
the state of that environment, as well as mathematical
concepts underlying decision making and sub-system
behaviour. However, up till now this design methodology
lacked a detailed representation of a vital component:
inter-subsystem communication. Hence, the present paper
delves into that issue. The main purpose of this paper
is therefore to present the system design methodology
split into two phases, as required by good practises in
software engineering. The first phase produces the system
model specification based on the concept of an embodied
agent, whilst the second one is the implementation phase,
which first transforms the model into the composition of
a whiteboard and LLFSMs as an interim implementation
model that is subsequently transformed into executable
robotic system controller code.

1.2 Structure of the Paper

In Section 2 the classification of communication methods
from the robotics perspective is introduced. Section 3 briefly
presents the concept of an embodied agent, showing both
its structure and its activities. The embodied agent is the
primary concept of the robotic system design method used
in this paper. The universality of an embodied agent is
expounded in Section 4. Section 5 describes the interim
implementation model, i.e. the elements necessary for the
implementation of an embodied agent, focusing on the
communication aspect.

As ROS currently is the most popular robot programming
framework, the comparison of whiteboard and ROS com-
munication mechanisms is presented in Section 6. Section 7
showcases the proposed design and implementation meth-
ods on a robot collecting table-tennis balls. This example
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is kept concise to enable the reader to focus on the pre-
sented methods rather than being forced to deal with the
complexity of the robotic system. The last section presents
the conclusions derived from the presented work.

2 Communication

In telecommunications, the concept of the communication
channel is central to the operation of a communication
system [44, 83], distinguishing between free propagation
(broadcast, one-to-many) and guided propagation (point-to-
point, one-to-one) communication types. Telecommunica-
tion deals with such characteristics of the communication
channel as its linearity or non-linearity, time variability or
invariance, bandwidth, or power limitation. However those
physical properties are of secondary importance and can
be abstracted away for communication of software imple-
mented subsystems of robots. In the most rudimentary view,
the communication model consists of the communicating
systems/subsystems and the communication channel. The
communication channel (the transmission medium) can be
either based on technological means (e.g. wired or wireless)
or use natural means (e.g. voice communication using air)
[44, 83]. In the latter case the environment itself can be used
as a communication channel [4], then stigmergy results [12].
Both technological and natural communication channels can
contain buffers, which can store the transmitted information
for some time, or exist without a buffer. Transmission delays
should not be treated as a capacity of the channel to store
data. For communication to take place not only the transmis-
sion medium is necessary, but also a common protocol has
to exist, as the transmitter and the receiver of the informa-
tion must have a common understanding of the transmitted
information.

In robotics, diverse communication methods
been considered. Three different types of communication
between robots were discussed in [25]: two-way commu-
nication, explicit one-way communication, and completely
implicit communication. This work also points out that there
are several difficulties that should be considered in com-
munication between collective robots, i.e. efficiency, fault
tolerance and cost, and that in contrast to centralised com-
munication approaches, e.g. [88], communication between
robots should be distributed. Comparison of three types of
communication, i.e. through the environment, using trans-
mission of state between the agents, and utilising the trans-
mission of the detected goal, was introduced in [8]. Similar
criteria were discussed in [65], distinguishing direct (purely
communicative act) and indirect communication (based on
observed behaviour of other agents). Direct communica-
tion was further decomposed into one-to-one (peer-to-peer)
and one-to-many (broadcasting), based on the the number
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of communicating entities. Another division of commu-
nication is direct vs indirect communication [34]. Direct
communication occurs when a dedicated on-board hardware
device is utilised, whilst indirect communication occurs
through the environment. The paper also notices that indi-
rect communication is particularly useful from the point of
view of Multirobot Systems (MRS), in contrast to direct
communication, which in MRS may result in much more
expensive and unreliable solution. However, that paper also
points out that direct communication in Multi-Agent Sys-
tems (MAS) may be used to guarantee locality of inter-
actions and to avoid synchronisation procedures amongst
agents. A similar criterion based on how the information
may be obtained by robots was introduced in [75], where
three types of communication were distinguished: implicit
communication through the world, passive action recog-
nition (robots use sensors to directly observe the actions
of other robots) and explicit communication (robots com-
municate directly and intentionally through an artificial
communication channel). Either way, care must be taken
to avoid the hidden channel problem that results when
differing temporal precedence between these means of com-
munication creates inconsistencies between the intent of the
system designer and the actual timing and order in which
information is delivered [21].

Criteria pertaining to the communication range, commu-
nication topology and communication bandwidth were dis-
cussed in [24, 26]. However, those criteria concern mainly
physical aspects of communication, already discussed in
[44, 85]. Yet other criteria pertain to interaction distance
(distance between the agents during the communication, i.e.
direct physical contact, visual range, hearing range and long
range), interaction simultaneity (period between the signal
emission and reception, i.e. immediate, long time), sig-
nalling explicitness (explicitness of the emitter’s signalling
behaviour) and sophistication of interpretation (the com-
plexity of the interpretation process that gives meaning to
the signal) [48].

The above analysis shows that whilst similar terminology
is used for the purpose of communication classification, the
meaning attributed to the same names is slightly different,
making it difficult to propose a comprehensive communi-
cation model. Some of the subdivision criteria are based on
physical aspects of communication (topology, place, types
of communication channels, bandwidth, etc.), neglecting
other also very important criteria (e.g. whether the commu-
nicating entities block each other whilst sending/receiving
data). Thus, to make the presentation clear, we summarise
the criteria most relevant to the subject of this paper as
follows. From the point of view of robot control system
design, of importance is the possible number of subsys-
tems writing to or reading from the communication channel.
This leads to four communication types [39], depending

on the number of message producers and the number of
consumers: one-to-one (peer-to-peer), one-to-many (e.g.
broadcast), many-to-one and many-to-many (e.g. multicast).
An example of one-to-one communication is presented in
[66] where a system composed of many robots executes a
box-pushing task. Cases of one-to-many communication are
presented in [7, 45, 65, 74, 76], where the consumers either
utilise broadcast messages at their will or ignore them. The
many-to-many communication can be organised as e.g. a
blackboard system [41] or by stigmergy [12].

Another criterion worth considering is based on the
location of the communication channel: inter-system or
intra-system. Here the terms intra-system and inter-system
need to be disambiguated. We assume that in the case
of intra-system communication, the transmission occurs
between nodes existing on a single computer (composed
of a single or multiple processors), and in the case of
inter-system communication transmission is between nodes
residing on many computers. Thus in this case the word
system does not refer to the robotic system as a whole,
but only to the communicating nodes that are within the
robotic system, located either on a single computer or
on several computers forming a network. The importance
of this distinction is due to each of these types of
communication requiring different software and hardware
means of implementation.

Still another criterium pertains to whether the producer
or consumer block until message delivery has completed.
Blocking producer behaviour requires the consumer to
respond in order to unblock the producer, whilst in the
non-blocking mode this is not required, i.e. after initiating
the communication, the producer can continue with other
activities. Similarly the consumer can either be blocked
whilst waiting for the message or not. In the latter case,
the consumer can poll the communication channel when
required to find out whether there is a message for it to
attend to. Still another criterion is storage, i.e. whether the
communication channel contains a buffer or not. In the
latter case the communication channel does not have the
capability to store messages. In the former case the size and
type of the buffer is of relevance. The commonly used buffer
types in robotics are either queues or cyclic buffers.

Moreover, it should be noted that communication
is sometimes associated with cooperation. However the
former refers to the ability to transmit information between
systems and the latter with the ability to jointly execute a
task. Cooperation can be achieved both by using implicit
and explicit communication. The former refers to a situation
where the consumer of the message is not clearly defined,
and thus the interpretation of the message by a consumer
may be difficult (as in the case of stigmergy) and in the
latter case the consumer is clearly defined, and thus the
interpretation of the message using the commonly known
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protocol is straightforward (as is the case with the majority
of technologically based channels or such natural channels
as air used for voice communication). In robotics, there
is a vast body of literature dealing with cooperation using
implicit communication, especially stigmergy. For example
[4] presents a schema based control of a multi-robot
system used for common object retrieval, [81] describes
robots communicating using sensors for detecting infrared
radiation reflected by the environment, [87] presents robots
communicating using traction forces, [25] describes robots
communicating indirectly using on-board visual sensing,
whilst [20] reports on the system composed of 20 e-puck
robots pushing three different objects based on inputs from
infrared proximity sensors, [89] describes a multi-robot
system where individual robots use an adaptive behaviour
selection strategy based on sensoric information about the
location of the transferred object and the other robots, [95]
presents multi-robot box pushing based on the detection of
the motions of the translocated box. On the one hand the
examples of implicit communication are abundant in the
literature and on the other hand this form of communication
does not influence the system specification from the point
of view of communication, as it is realised by the perception
subsystem. Thus this paper will limit itself to explicit forms
of communication.

3 Embodied Agent

A single- or multi-robot system (a robotic system, in short)
is represented by communicating agents [14, 46]. An agent
which has a physical body is called an embodied agent [14,
54, 94, 96] — its general structure is presented in Fig. 1.
An embodied agent a; (j is its designator) is decomposed
into 5 types of subsystems: control subsystem c;, virtual
receptors r; i, virtual effectors e; ,, real receptors R;; and
real effectors E ,,,, where k, n, [ and m are the designators
of particular subsystems of the agent a; [94].

Virtual receptors r; ; aggregate data acquired from the
environment through real receptors R; ;. Virtual effectors
e n transform control commands received from the control
subsystem c; into a form acceptable by the real effectors
Ejm. An embodied agent contains a single control
subsystem and zero or more subsystems of each of the other
types.

The activity of a system as a whole depends on the
individual activities of its subsystems and their interactions.
The activity of each subsystem s € {c, e, r} is represented
by a hierarchical FSM *F; , [35], where v indicates the
subsystem name. An FSM is represented as a directed graph
composed of nodes and directed arcs. Each node represents
a state, whilst each arc represents a state transition. Arcs
are labelled by initial conditions, being predicates, which,
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which determines the duration of the behaviour iteration.
The behaviour subsequently sends the results of calculations
from the output buffers S;jl to the inputs of the associated
subsystems and acquires from them new data loading it
into input buffers ij.’U. Based on the obtained data an
associated error condition *f ﬁvﬁ 8 and terminal condition
$ J.T’U’E are tested (B and & are their designators). The
duration of a single iteration of the subsystem behaviour
defines its sampling period. The iterations of the behaviour
terminate when the associated error or terminal condition
is fulfilled. At this moment the main subsystem FSM °F; ,,
resumes its activity, changing its state.

4 Universality of the Embodied Agent

The structure of the embodied agent and its ability to
connect to other such agents, thus producing networks,
enables the reproduction of other well known and studied
architectures. Hence, the embodied agent can be treated
as a general means for designing robotics systems. The
most popular architectures employed in robotics are: Sense-
Plan-Act (SPA), multi-tier (usually either two- (2T) or
three-tier (3T) are used), subsumption, and the ones based
on some forms of schemata. The universality of the
concept of an embodied agent will be briefly justified
here by showing its relationship to those architectures.
Robotic system software reflects its architecture. Although
some work has been done on formal specification of
robot control software, e.g. [6, 62, 63, 91, 93] and its
formal verification, e.g. [49, 50], unfortunately this has
not gained widespread adoption [56]. Usually, architectures
are presented by informal text descriptions supplemented
by block diagrams, with varying level of details. Early
approaches to formalisation of the specification of a robotic
system treated such systems as composed of computational
modules and followed operational semantics in describing
their structure and activities [62, 63]. One of the few systems
that employs formal specification and generation of code
for the implementation of the lowest layer of robotic system
controller is G*"oM (Generator of Modules) [1, 36]. It is
integrated with the BIP (Behaviour Interaction Priorities)
[10] framework and toolset, which is used to formally
specify and verify the correctness of the produced system,
treated as a real-time, component-based complex structure.
However, as the majority of architectures presented in the
literature is not specified formally this discussion will not
rely on a formal description.

Frequently, hierarchical layered architectures are
designed. One of the oldest hierarchical architectures is
the sense-plan-act (SPA) structure, used for instance by
the Shakey robot in the 1960s [71]. Shakey sensed its

environment, invoked action planning, and then executed
the thus derived plan. Later, different criterions have been
used for the decomposition into layers. Usually, the time
of the execution of a single behaviour iteration of a com-
ponent within the layer is the discriminating factor. The
higher the layer within the system, the longer the time of its
single iteration execution. In some cases, task abstraction
is the criterion, i.e. a single activity at an upper layer is
decomposed into several lower layer activities, e.g. NAS-
REM (NASA Standard Reference Model) [60]. Usually, as
a consequence, the utilised ontology becomes more abstract
going up the layers. The lowest layer is behavioural and
is tightly coupled with actuators and sensors. The mid-
dle layer is the sequencing layer (sometimes termed as
executive layer [56]), responsible for selecting behaviours
that will eventually realise the task. The uppermost tier
usually involves deliberation. In robotics, deliberation is
associated with planning. From what has been said, it is
evident that planning and sequencing layers act together
to accomplish the plan and in some systems are tightly
bound together (e.g. CRAM [9], CLARALty [68]), hence 2T
instead of 3T architecture results. The proposed embodied
agent based architecture can accommodate all of these
possibilities. By design, an embodied agent forms a two
tier architecture: virtual entities controlling the real devices
form the first tier and the control subsystem forms the
second one. Above that, a hierarchy of computational
agents (embodied agents lacking effectors and recep-
tors) can form supplementary tiers. A computationally
demanding planning task can be decomposed into several
parts, implemented as several interacting computational
agents.

As planning is a time-consuming task, the subsumption
architecture was proposed [13—15]. Its overall behaviour is
the result of the interaction of the activities of modules,
which react to input from other modules and sensoric
stimulus. If lower layer reactions can not cope with
the task, upper layer reactions suppress or inhibit them,
taking over control, thus subsuming their actions. As the
SPA architecture tends to be prohibitively slow and the
subsumption architecture, although very reactive, lacks
foresight, hybrid architectures emerged [5]. Those were
usually designed as three tier systems (e.g. [1, 38]),
having: planning (deliberative layer), sequencing (usually
implemented as a finite state machine governing the actions
of the system), and device control layers (responsible for
motor control and sensor data aggregation — a reactive layer
resulting if both were combined). Behavioural systems [,
6], based on reactivity, have gained widespread attention.
In order to satisfy the requirement of the fastest possible
response, reactivity should be implemented at the lowest
level. The shortest possible loop starts with proprioceptors
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and directly influences the real effector. As the activities of
the reactive layer rely mainly on sensor input and to a very
limited degree on internal state (i.e. memory) it is very easy
to reproduce this layer within an embodied agent, where the
quickest responses are organised within the virtual effector
and are based on proprioceptive input. An example of this
approach is the utilisation of force/torque sensing directly
within the virtual effector (e.g. [97]). If a subsumption
architecture [13, 15] is to be reproduced, its modules can
be represented by blocks within the data flow diagram
definition of a transition function by using inhibiting and
suppressing links (as presented in [54]). Otherwise, the
modules can deliver the results of their computations into
a composition unit, which will compute the final outcome,
subsequently dispatched to a real effector for execution. If
a slower reaction is permissible, exteroceptive input from
the virtual receptors can be used by the control subsystem,
which will use the same scheme of operation as the
virtual effector. Thus, the same pattern will be reproduced
at different levels of the control hierarchy. This can be
continued at even higher levels of the hierarchy by using
extra computational agents [98].

Schema Theory was formulated for the purpose of
representing systems created to study both artificial
intelligence and brain theory [2, 3, 5, 62, 63]. Schema
Theory provides guidance to building models of animal
and artificial agent behaviour, stating that behaviour is the
result of competition and cooperation between schemata,
which are conglomerates of knowledge and methods of
processing [2]. Instances of schemas are created either
by other schemas or as a reaction to sensory stimulus.
Perceptual schemas process sensory input, whilst motor
schemas produce action patterns. A network of schemas
is called an assemblage. The overall behaviour of an
agent is produced as a result of interactions between
schemas composing the network. Such schemas can be
embedded in an embodied agent, as virtual receptors reflect
perceptual schemas, whilst virtual effectors reflect motor
schemas. At a higher level, embodied agents without
effectors match perceptual schemas, whilst those without
receptors match motor schemas, this multi-agent networks
can also reproduce assemblages. The application of Schema
Theory in robotics followed different paths. One of them
is described in [3, 5]. In this case, motor schemas are
basic units of behaviour. Motor schemas act in conjunction
with embedded perceptual schemas. Concurrently acting
behaviours, i.e. motor schemas, compute individual results
that are composed together into the final control outcome.
This architecture is easily reproduced in an embodied agent.
Perceptual schemas are reproduced by virtual sensors.
The control subsystem implements a behaviour that is
parameterised by a transition function which in turn is
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decomposed into concurrently computed functions that
define the computations of individual motor schemas. The
transition function composes the results produced by partial
transition function into an outcome that is dispatched to
the virtual effector. A more formalised approach to Schema
Theory is called Robot Schemas (RS) [63]. RS form a
formal model of distributed computing in the robotics
domain. The model is built of concurrent computing agents,
each being a Schema Instance (SI). SIs communicate
through ports, with which data types are associated. At
SI instantiation time, its ports are connected to the ports
of other SIs. Communication occurs when an SI writes
to one of its output ports. Basic schemas are defined by
the port connections, local variables and the procedural
behaviour section, which specifies how the schema reacts
to input. Basic schemas, once initiated, iteratively execute
the behaviour section, synchronously reading or writing
to ports, performing computations on local variables and
input ports and instantiating and deinstantiating other
SIs. Complex schemas, i.e. assemblages, are a recursive
composition of basic schemas into ever more complex
ones. Assemblages do not have the behaviour definition
part, as that is defined by the schemas they are composed
of. Only the port connection part exists. SIs form a
dynamical network which grows or shrinks as the activities
of the system take place. The task is represented as
the outermost assemblage. Thus, the system is composed
of sensory schemas, motor schemas and schemas that
connect them, i.e. task schemas. In general, this reflects the
structure of an embodied agent or can be reproduced as
a network of embodied agents with some of their internal
components missing. It should be noted that the design of
an RS-based system focuses on computation, however this
involves also instantiation and deinstantiation as well as
communication, all considered at the same computational
level. Thus, the basic level is flat and all aspects of
system activities are entangled, hence intelligibility is
sacrificed. Hierarchy emerges from assembling lower level
schemas into higher level ones, but as the design principles
of the lowest level are not expressed explicitly the
creation of such systems is difficult. An embodied agent
introduces a hierarchy of concepts starting from the lowest
level: transition function and terminal condition (purely
computational), behaviour (adds communication), FSM
(selects behaviours), subsystems (distinguish perception,
action and task control), agents (form networks of any size).
Each of those concepts can be dealt with separately, thus
it is easier for the designer to focus on a single entity at a
time, simplifying the process of system creation. Systems
composed of embodied agents, besides being capable of
reproducing the well known architectures, can be used to
create other architectural patterns [94, 98].
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5 Implementation of an Embodied Agent

The architecture of an embodied agent presented in
Section 3 is implemented using several earlier-mentioned
concepts. Here we shall concentrate on two important
ones associated with the communication and behaviour
selection [31]: the whiteboard, which is used as the main
communication means between subsystems, and Logic-
Labelled Finite State Machines (LLFSMs), which govern
the actions of each of the subsystems present in the agent,
including the exchange of information between subsystems.
The whiteboard is our implementation of the general
concept of a blackboard [42], thus whenever we refer here
to the former we refer to our implementation and for the
general concept, the latter is referred to.

The concept of a blackboard was created for the
purpose of studying artificial intelligence (AI) [69]. The
blackboard model consists of three major components [22,
43, 70, 82]: knowledge sources (KSs) — corresponding
to the domain experts, blackboard data structure — the
global resource where information to be shared is written,
and control mechanism — responsible for processing the
knowledge contained in the blackboard and ensuring that
only one domain expert has access to the blackboard
at a given time. The blackboard can be any data
structure accessible by all the KSs. Each KS operates
in the following sequence: reads the information from
the blackboard, acts based on the information found and
writes its conclusions and hypothesis into the blackboard.
The work on blackboards in Al concentrated on several
aspects: the organisation of knowledge data structures,
reasoning utilising those data structures as well as providing
access to them. The concept of the whiteboard focuses
on data access. The use of data-centric communication
similar to blackboards has transcended Al and found its
way into the wider software engineering community. The
Data Distribution Service (DDS) is a standard formulated
by the Object Management Group (OMG), implementing
Data-Centric Publish/Subscribe (DCPS) communication
model [40, 58]. The main purpose of DDS is to
assure dependable communication in dynamic, networked
environments between distributed producers and consumer
fulfilling real-time constraints. Whiteboard implements
the pull approach, whilst the DDS, which is based on
Publish/Subscribe model, is based on the push approach.

Blackboards have also been used in robotics. The
following examples show only a fraction of the diversity
of their applications. A reconfigurable mobile robot used
a blackboard enabling a horizontal system decomposition
allowing the cooperation between all the subsystems
considered as knowledge sources executing a specific task
[72]. The CrunchBot [37] used a Bayesian blackboard to
solve the mapping problem for a mobile robot equipped

with whisker sensors. Autonomous mobile robots dealing
with hazardous material spill emergency situation used a
blackboard system to integrate information from various
sensor-based and knowledge-based subsystems [73]. Those
examples and the plethora of other works on the utilisation
of blackboards in robotics show that the effort has
concentrated on either different aspects of knowledge
processing or on providing a balanced access to knowledge
to all involved actors or on both. The concept of
a whiteboard is derived from blackboards, however it
focuses on information sharing, thus the communication
aspect. The contents of the whiteboard is of secondary
importance as is the purpose of information processing.
The focus is on providing efficient communication means.
A similar communication concept was introduced in
[1], namely a poster. It uses shared memory for the
purpose of communication. A poster is a structured shared
memory only writable by its owner and readable by
any element of the architecture. Posters are completely
independent from each other. They are not regions of a
common blackboard and cannot be written to by many
producers, thus they do not have all the properties of
a blackboard. A whiteboard has all the communication
abilities of a blackboard, so it is more general than
a poster.

5.1 Whiteboard

The gusimplewhiteboard (Griffith University Simple
Whiteboard) is a library for organising inter-process
communication [31]. It implements a mutation of the
general blackboard concept [42]. It enables the transfer of
C++11 objects through shared memory. As it is linked in,
no broker is necessary. The message transfer is idempotent,
i.e., if the transfer is repeated the result does not change. No
queues need to be involved, however, if necessary, they can
be organised, as the whiteboard does not determine the data
structures it will be storing — this is the choice of the system
designer using the whiteboard.

Shared memory communication exhibits certain advan-
tages over the traditional approach taken by, e.g. ROS
messages and services, [47]. Producers and consumers use
local instances of classes to communicate. When a producer
sends a message, it copies an object containing the mes-
sage from its local store to the static instance of the class
in the gusimplewhiteboard. When a consumer wants
to retrieve the message, the current instance of the object
in the gusimplewhiteboard is transferred to the local
memory of the consumer. When operating in a distributed
system, a UDP-based sharing algorithm that also makes use
of the Time-Triggered Architecture (TTA) [52] is used to
broadcast data to other receivers [61]. The implementation
of the distributed version of the whiteboard uses efficient,
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fault-tolerant communication for distributed systems as pre-
sented in [11, 51, 57] [52, 53]. Compared to the DCPS [58],
the whiteboard does not offer inherent mechanisms for dis-
tributed reconfiguration, but offers a statically defined data
classes and O(1), fail-silent communication within bounded
real-time constraints [31]. A more detailed discussion of the
networked version of the whiteboard [61] is presented in
Section 6.

5.2 Communication Model

The blackboard can be considered as a broker, which
enables the producer to depose in it, in a non-blocking way,
whatever data it has to send out, whilst the consumer may
act in one of the following modes. Either it acts in the
push mode (similar to the DCPS), where the blackboard
invokes a specific function of the consumer-subscriber, thus
notifying it of the arrival of new data, or in pull mode,
where the consumer accesses the data when it requires. The
former usually involves queuing of messages, whilst the
latter implies the delivery of only the most current data. The
push model implies close coupling of modules, where the
subscriber must react to all messages issued by the producer
[30]. In the pull model, the components are decoupled, the
consumer may react in its own time, and only to some
of the produced messages. In both communication models,
the publisher introduces a message into the blackboard.
In the case of the push model the blackboard notifies
the consumer that the message it has subscribed to is
available and the subscriber invokes a call back function
in response. The messages are queued, so the consumer
should somehow react to all of them. An event driven
architecture results. It relies on an assumption that there is
enough of computational power to handle the messages as
they come. However, in the case of the pull model, such an
assumption is not necessary. The consumer is not notified
about the arrival of a new message. When the consumer
needs the new message it retrieves form the blackboard the
most current one, neglecting the obsolete ones (in reality
usually they will even not be available). The publisher and
subscriber are very loosely coupled, without assumptions as
to the available computational power, and thus the ability to
respond timely to the incoming stream of messages results.
Obviously, the pull model works on the principle that we get
a better response, if the system at any moment uses the most
current data. Both the publisher and the subscriber act with
their own frequencies, without having to synchronise their
activities. This way, no global timing schedule is required,
fully decoupling the development of both components. The
pull model is immune to messages being lost by definition,
as it does not require response to every message, whilst
the push model requires delivery guarantees, because every
message attracts attention. The majority of middleware
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utilising the concept of a blackboard still relies on the
push model. For instance, ROS topics act in push mode.
However the blackboard provides an opportunity to base
the communication on the pull model. Whilst the proposed
whiteboard can be used in both push and pull modes, the
latter should be the method of choice. In the majority of
middleware, the structure of the contents of the messages
transferred is limited, whilst in gusimplewhiteboard
any C++11 objects can be used [31].

5.3LLFSM

LLFSMs are FSMs, in which transitions from one state to
another state are based on the fulfilment of logic expressions
rather than events. As events are usually queued and logic
expressions are computed just on the basis of current
data, as is more appropriate for robot control, this form
of an FSM is preferred. In the implementation presented
here, the LLFSMs, in principle, operate concurrently,
but in reality are scheduled sequentially, thus critical
sections and synchronisation points become unnecessary.
This inherently removes the possibility of race conditions.
The communication between LLFSMs uses whiteboards.
The utilised LLFSMs are synchronous automatons. With
every state, three portions of code are associated: the
code that is executed on entering the state, the exit code
invoked when the logic expression with one of the outgoing
transitions (directed arcs) is satisfied, and the code that is
executed when none of those logic labels is true, hence the
execution of this code may be repeated many times.

The LLFSMs can be composed hierarchically. Each
LLFSM can be suspended, thus enabling the execution
of a subLLFSM. It can also be restarted from the state
it was suspended in or restarted from its initial state'.
The subLLFSMs act like subprograms and need not act
simultaneously — this prevents state replication [19]. The
higher level LLFSM becomes dormant during the actions
of the subLLFSMs, increasing the degree of determinism of
the system performance.

From what has been said here, it is evident that the
implementation of both the subsystem FSM S}'fv and

the behaviour subFSM S}“fv’ » (specifying the behaviour
*Fjvw), as LLFSMs is straightforward, as the directed
arcs of those FSMs are labelled by predicates, i.e. logic
expressions, hence their equivalence is ascertained.

5.4 Scheduler

An embodied agent is composed of one control subsystem
and usually several virtual effectors and receptors. Each of

Incidentally, this property also enables the implementation of the
subsumption architecture [13] by using those automatons [19].
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those subsystems is governed by one FSM — here imple-
mented as an LLFSM. The proposed solution schedules
sequentially the LLFSMs representing producers and con-
sumers, thus minimising the problems of determining the
delays in servicing the transfer of data. The majority of mid-
dleware, e.g. ROS, Microsoft Robotics Studio, relies on con-
currency, data queuing and the non-deterministic TCP/IP
suite. Hence real-time performance is compromised. Deter-
ministic scheduling has the following advantages over the
non-deterministic multi-threaded approach. Full concur-
rency, where switching between threads is operating system
dependent, is much more difficult to envision and correctly
apply by the robot control system designer, as it necessi-
tates: thread synchronisation, vigilance of nondeterministic
communication delays, managing critical sections, prob-
lems with fairness as well as avoiding deadlocks, live-locks,
and starvation. Moreover, CPU context switch overhead has
to be taken into account. The sequential LLSFSM switching
procedure enables fairly simple formal correctness veri-
fication of models, as it avoids the usual combinatorial
explosion of concurrent threads. The sequential switching
is time-triggered in contrast to the frequently used event-
triggered approach, where due to peak-load situations it is
often impossible to assure reliability. Specifications using
LLFSMs constitute executable models that can be formally
verified. A more detailed treatment of this subject can be
found in [29, 32, 33].

Each iteration of an LLFSM operation starts with reading
the relevant variables from the whiteboard and it ends with
depositing the results of computations in it. Each iteration
is treated as atomic, thus no inconsistencies can arise. The
LLFSMs are executed in a round-robin fashion one iteration
of each LLFSM at a time.

To show how the scheduler works in conjunction with the
LLFSMs, a simple example is presented here. It is assumed
that within the robotic system, only two subsystems v
and & exist, where v and & are the specific names of the
subsystems. The exemplary activities of each subsystem
may be represented by hierarchical FSMs: °F; ,, and °F j,
presented in Fig. 3.

With each FSM state a behaviour is associated. It is
represented as a subFSM based on behaviour template from
Fig. 2. For simplicity it was assumed that the terminal

SR . s
@ BJ"U71 @ Bj7h71

s12 . 5
@ Bj.v,2 @ Bj.n2

Fig.3 The activities of two subsystems v and / of a;

condition of each behaviour is always fulfilled, whilst
error condition is not. This implies that all behaviours
are executed only once in each state of the FSM. The
functioning of the scheduler is presented assuming that
initially FSM °F; , is in the state S}’ , and the FSM “F; j, is
in the state S]1 The scheduler activates one state of each
FSM or subFSM at a time, switching between all FSMs
and subFSMs. Obviously this causes the execution of the
code associated with that state. In this case the scheduler
starts with state §; I of SF; , and then switches to S; ! nof

SF;jn. Being in S j,v transits to SJ1 of the subFSM
executing the behav10ur *Bj,v,1, so this W111 be the next state
activated by the scheduler. The fourth state activated will be
S ! .1 Of the subFSM “F; j, ;. The full switching sequence
for both FSMs * v and °F; j, and their subFSMs executing
behaviours is presented in Fig. 4.

Whiteboard communication in conjunction with this
way of switching the LLFSMs by the scheduler avoids
deadlocks, because only one FSM accesses the whiteboard
at a time. Moreover, because the variables contained in the
whiteboard are located in cyclic buffers, always there is
available data that can be accessed, alas not always the most
current.

5.5 Communication Organisation

As in many cases, the example that follows requires only
intra-system communication between subsystems. Whilst
the utilised whiteboard is capable of providing inter-system
communication [61], this is not our focus here. It should
be noted that the whiteboard intra-system communication
gives real-time guaranties (when the underlying operating
system is real-time), whereas the inter-system one would
depend on the network protocol.

The whiteboard is a table with slots. Each slot creates a
separate communication channel containing a cyclic buffer.
Hence, buffered communication based on a cyclic buffer of
limited size is realised. The whiteboard as a whole supports
concurrent many-to-many communication, but a message
slot (buffer) with multiple producers requires locking and
is therefore not recommended. We therefore recommend
one-to-one oOr one-to-many communication, which is

1 1 1 1 2 2 3 3

—> .

Sjw | Sin |SiwalSina|Sie|Sina S [Ssna

, I

L 4 |ca 2 [c2 |o1 ot 4
Sio|Sina| Siw | Sin |5 2lSn2 S

Fig.4 Sequence of state activations of FSMs *¥ , and *F j, and their
subFSMs executing particular behaviours
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lock-free with O(1) complexity for access operations. In
the following example one-to-one communication will be
utilised. The LLFSMs together with the whiteboard enable
the implementation of both blocking and non-blocking
communication modes both in the case of the producer and
the consumer. However, in the presented example both the
producers and the consumers operate in the non-blocking
mode. In the experiment, a single sequential scheduler is
used, thus subsystem LLFSMs are executed sequentially.

6 Comparison of Whiteboard and ROS
Communication Mechanisms

Initially, ROS was designed for large service robot control
software, which was meant for implementation on several
computers connected via Ethernet [78], thus ROS was
in fact designed for communication between computers.
However later it was mainly used for communication
within a single computer. Hence below we introduce ROS
communication mechanisms provided for a single computer
and compare them with the whiteboard approach.

ROS uses: topics, services, nodelets, and a parameter
server. Those communication concepts may be utilised
only for certain types of communication (based on the
localisation of the communicating nodes), i.e. inter-process
and intra-process. The inter-process communication occurs
between ROS nodes (implemented as processes) utilising
TCP/IP server socket [80] and peer-to-peer topology,
which requires some sort of lookup mechanism to allow
processes to find each other at runtime. This mechanism
is implemented as the ROS master [78]. ROS nodes may
communicate with each other utilising topics, services and
parameter service.

A ROS topic is a named bus implementing communi-
cation between nodes. Communication between two nodes
may only occur if both nodes exist and are already regis-
tered with the ROS master (utilising Remote Procedure Call
(RPC)). Nodes communicate utilising TCP. Since a ROS
topic uses a publish/subscribe mode of operation, thus it
implements the push paradigm, which forces the subscriber
to act in an event-driven fashion. Events are deposited into
the middleware which relays them to call-backs from the
subscribers. It is assumed that there will be sufficient com-
putational resources to enact all the threads generated and
to execute the subscriber callbacks. An additional assump-
tion is that events would occur with enough sparsity that
the call-backs would be completed by the time they are exe-
cuted again or alternatively require handling of concurrency
issues. This event-driven approach also results in coupling
and has timing consequences. The push approach compels
the subscriber to keep up with message reading in order
not to lose any data, even if a specific update rate is not
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necessarily convenient for the subscriber. In congested sys-
tems using TCP, if the acknowledgments do not reach the
publisher on time, the packets will be retransmitted, thus the
subscriber will eventually be flooded with repeated packets
[77]. This means that the subscriber activity is tightly cou-
pled with the publisher update rate. Additionally, the push
approach assumes that the subscriber reacts to transmitted
data immediately (otherwise data is queued), thus the data is
presumed to be fresh and as recent as possible, what might
not be the case. This will result in reaction delays. The neg-
ative influence of such delays on the performance of a drone
are presented in [47]. Timeliness, sequencing and reliabil-
ity of the data are taken for granted. Such scenario is very
optimistic, which in fact, does not occur in reality often.
Therefore, it requires that the producer must eventually be
slowed down or complex handshaking protocols must be
deployed, otherwise the data will be lost [30]. The push
paradigm, used by topics, does not assure idempotent trans-
fer of messages, thus an additional effort must be done to
ensure that the data was received exactly once [30].

The ROS service is a simple RPC, thus the client is
blocked until it obtains the response from the server. This
type of communication has three additional features. It
uses only plain old data (POD) structures, collections of
basic types, thus object oriented concepts using inheritance
and polymorphism can hardly be modelled [27], whilst the
approach based on whiteboards implements object oriented
approach [30]. Additionally, ROS service forces client-
server relationship between the two communicating nodes,
possibly resulting in delays due to waiting for the server
reply. Moreover, the ROS service again uses the TCP/IP
communication protocol.

Parameter server is the last of the inter-process ROS
communication concepts for intra-system inter-process
communication. It is a shared, multi-variate dictionary
stored in the ROS master. It is accessible by nodes via
network APIs. However, it was not designed to be high-
performance, as it is to be used for static data such as
configuration parameters [79].

Nodelets are threads that use intra-process communication
of ROS. Data is exchanged between nodlets executed within
the same process by sharing memory. However, the develop-
ers have to take care to avoid contention due to concurrent
access to the data, e.g. by using mutexes or by allocat-
ing new memory whenever new data is written. This again
results in a large performance penalty as shown in [27].

There exist robotic systems that have special communi-
cation requirements. In some of them, both the producer and
the consumer should be able to operate in a non-blocking
fashion (i.e. the communicating nodes should be decou-
pled), as blocking implies possible lack of reaction from the
system, when such a reaction is necessary. The communi-
cation should be capable of operating in the time-triggered
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mode, because in this mode of operation the system can
react both to the message and its lack (usually those reac-
tions are different), i.e. lack of a message is also a message.
It is required that the communication be low latency and low
jitter in the case of intra-system transmission, as quick reac-
tions to events occurring in the environment may influence
the survival of the robot. Finally, communication should be
implemented in the same way both for threads and pro-
cesses, because the imposition of single process system
structure (even with many threads) is not acceptable, i.e.
multi-process implementation is treated as an advantage.

None of the four ROS communication methods fulfils
all of these requirements. The parameter server introduces
high latency. ROS services use RPC, thus they block both
the producer and the consumer. In the case of ROS topics,
the consumer is activated by an event associated with
the producer depositing a message in the communication
channel, thus communication is event triggered, not time
triggered. However non-blocking operation of the consumer
using ROS and C++ can be realised through a separate
thread dealing with acquisition of the message and using
nodlets — rather a complex solution introducing significant
communication delays. Unfortunately, nodelets can be used
only for communicating threads, but not processes. As
none of the ROS communication mechanisms satisfies the
above-mentioned requirements, the whiteboard was chosen
(in fact, a ROS package for the whiteboard is available
at [67]). This approach provides intra-system inter-process
communication, which does not block neither the producer
nor the consumer; as it operates on common memory it
is very low-latency [31, 47]; by using the pull mode of
operation it operates in time triggered mode; and moreover
it can be used both by threads and processes in the same
fashion.

If whiteboards could be used only for intra-system commu-
nication the proposed approach would not be scalable. How-
ever there exists a network implementation of the white-
boards [61], but here the latency introduced both by them
and ROS are similar. In general, network based implementa-
tion of the concept of the whiteboard requires that each com-
puter in the system instantiates its own whiteboards. One
of those whiteboards contains variables for local communi-
cation whilst the others reflect the variables in the remote
whiteboards. The latter variables are updated periodically
broadcasted to other computers in the network utilising
the UDP Bridge module. The UDP Bridge module is used
for all network connectivity and connects directly to the
shared data structures of the whiteboard. The UDP Bridge
can either be run as an independent process (for debugging
purposes) or can be started as a thread by an instance of
the Remote Whiteboard class. The UDP Bridge has three
main components: Listener — listening for incoming pack-
ets, Broadcaster — broadcasting packets when scheduled,

and Manager — interacting with the whiteboards. Due to the
fact that whiteboars contain cyclic buffers that are transmit-
ted as a whole, even if (due to the use of UDP) a transmitted
message is lost, in the next transmission period both the
most recent data and previous data will be delivered.

7 Experiment

The robot system design methodology described in, e.g.
[92], utilising hierarchical FSMs [35], has been applied
to the design of the control system of a mobile robot
collecting table-tennis balls. The robot (inspired by [64])
uses a suction mechanism to collect table-tennis balls and
a camera to detect them, as well as a sonar to avoid
obstacles. Based on the estimated ball position, the robot
moves in the direction of the closest ball and vacuums it
into its container. This simple, yet useful, robot is used
here for the purpose of exemplifying the proposed general
robotic system specification method and the implementation
of the resulting system. Both the system architecture and
the behavioural approach used resemble the well known
solutions presented in Section 4. As the purpose of the
example is the presentation of the proposed specification
and implementation method, a well known architectural
solution and control paradigm have been used, to enable the
reader to focus only on the methodology.

7.1 Specification

The specification describes both the structure of the
designed system and its activities. For the purpose of
briefness, only relevant excerpts from the full system
specification are presented here. Only a single behaviour of
the control subsystem is specified formally here to provide
an example — the others follow the same pattern.

Structure It suffices to represent the structure of the ball
collecting robot (bc) by a single embodied agent ap (Fig. 5).
This agent contains: the control subsystem cp. and four

rCLbc l, Che )\

\ A

Y (

\
[ Tbe,cam ] Crbc,sonar] Cebc,body ) Gbc,vacuum)
\

\ A
( Y A

Rbc,cam Rbc,sonar Ebc,body Ebc,vacuum

& /

Fig. 5 Embodied agent representing the table-tennis ball collecting
robot
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virtual subsystems: rpc,cam, Tbe,sonar» €be,body> €be,vacuum
and four corresponding real subsystems: Rpc,cam, Rbc,sonars
Ebe,body and Evpc vacuum- The real receptor Ry cam detects
balls, whilst the real receptor Ry sonar detects obstacles. The
real effector Eyc pody controls four motors to which wheels
are attached (a skid-steering mobile platform is used),
whereas Epc vacuum controls the vacuum cleaner providing
suction. Rpc cam acquires images of the environment and
sends them to the virtual receptor rpccam, SO that it can
detect table-tennis balls and subsequently inform the control
subsystem cp. Whether it detected at least one ball. If a ball
is detected rpc cam Sends to cpe an estimated position of the
ball within the image space. Ry sonar provides to the virtual
receptor rpe sonar the measured time (i.e. interval between
the emission of the ultrasonic signal and receiving its echo),
based on which it calculates the distance to the obstacle.
Next it sends the information to cp. whether an obstacle
was detected. The cp. commands both virtual effectors
€be,body and ep,vacuum using the information obtained from
Tbe,cam ANd I'pe sonar- Finally epe body controls Epe body, Whilst
€be,vacuum CONLrols Epe vacyum-

Each subsystem has its own input, output and internal
buffers. Below only those control subsystem cp. buffer
contents are introduced, which are relevant for this partial
presentation of the specification.

— Internal memory “cp:

r_min — minimum ball size triggering the vacuum
cleaner (constant)

—  Output buffer § cbe,body:

cmd — command for epc body»

cmd € {MOVE, LEFT, RIGHT, STOP},

d_x — X coordinate of the location of the centre of
the ball with respect to the image centre (expressed
in pixels)

vel — velocity of the robot (range: 0-100)

—  Output buffer § cbe, vacuum:

cmd — command for epc vacuums
cmd € {TURN_ON, TURN_OFF},

— Input buffer ’, cbc, sonar:

obst_det — signals whether an obstacle was detected
or not;

—  Input buffer }; cbc, cam:
ball_det — ball was detected or not;
X,y — X and Y coordinates of the detected ball
centre (in pixels)

w, h — image width and height (in pixels)
r — detected ball radius (in pixels)
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Activities The behaviour of ap. is defined by the activities
of its subsystems and the interactions between them. The
activities of cp are defined using a hierarchical FSM
“Fove presented in Fig. 6. Each state of the FSM “Fy. is
associated with the corresponding behaviour: ©Byc search
(robot searches for the balls within the environment),
€ B, collect (tobot collects balls) and © By, avoid (robot avoids
obstacles). Each behaviour is modelled using the general
behaviour template presented in Fig. 2, requiring the
definition of a transition function, terminal condition, and
the determination of the communication model. Below,
the definition of the behaviour ‘B collect 1S presented,
thus transition function € fic collect and terminal condition
“ foe.collect are presented. Other behaviours are defined in a
similar way.

Canonical decomposition of the transition function
€ foc.collect, based on the components of the output buffer, is
as follows:

e A
e fbc,collect =

¢ Cheboaylemd]l = MOVE

;C{Ji:)ody [dx] = ;c{)c,cam [x] =% CII‘Jc,cam[W]/2

f.c{;:tody[vel] = calculate,vel(f(c{m camlTD

¢ Cor vacuum[cmd] = TURNON,  forfch . [r] =€ cf, [r-min]

e Ci+l
¥y “bc,vacuum

[cmd] = TURN_OFF, for’c!

Lévc,cam [r] <¢ Cé,c [r, I’l’lin]

)

The internal memory contains only constants, thus it does
not require a transition function. The virtual receptors do not
have input buffers fed by the control subsystem, thus those
transition functions are not needed.

The partial function (1) calculates the parameters of
the control commands for epc,body and epc,vacuum- In every
iteration of the behaviour, “ By collect @ new desired velocity
of the robot is calculated using the function calculate_vel,
which takes into account the size of the detected ball
image. Using the X coordinate of the the centre of the
ball with respect to the centre of the image, an offset is
computed that is used to navigates the robot towards the ball.

c
Bbc,search CBbc,collect

o
_'fbc obst_det -

o
_'fbc,obst_det

o o
bc,obst_det bc,obst_det

el |

avoid
bc

i o
“Jbe,ball_det bc,ball_det

c
Bbc,avoid

Fig.6 Activities of the control subsystem represented by an FSM “Fy,
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The behaviour stops iterating when the terminal condition
is fulfilled:

crT
f be,collect

A

“f ch,collect _'; Cbe,cam[ball_det] V; Cbe, sonar[Obst_det]
Other two behaviours are specified similarly. Behaviour
€Bhc,search 1s responsible for moving the robot in search for
the balls. It terminates when either a ball or an obstacle
is detected. Whenever an obstacle is detected behaviour
“Bhc,avoid 1s invoked. It uses the bug algorithm [59] for
obstacle avoidance.

All other subsystems of ay, i.e. virtual receptors and
virtual effectors, are governed by single state FSMs. The
associated behaviours execute in their endless loops the
subFSM template presented in Fig. 2 (thus the terminal
conditions of those behaviours are always false). The virtual
receptor rpe,cam executes the behaviour "Bpc cam,detect- The
transition function of this behaviour uses the RGB image
loaded into the buffer frbc,cam connected to Rpc cam,
transforms this image into the HSV space, cheques whether
pixels are in the appropriate colour range, erodes the image,
dilates it, finds contours, cheques the shape of the detected
contours, assuming that all circular contours represent balls,
so the one with the largest circumscribed area is used to
calculate the estimated ball position within the image space.
Thus the transition function is defined as a composition of
the above functions, as a result producing a pure function
(no side effects are involved). This is an intrinsic property
of all transition functions. Virtual receptor ruc sonar €Xecutes
" Bhe, sonar. detect- Its transition function calculates the distance
from the obstacle, based on the measured time of flight

/

/gsearch
org S bc

is_suspended_at(°Bhe.collect )\

received from Rpc sonar- The virtual effectors: epc pody
and epc,vacuum €Xecute: eBbc,body,move and “Byc, vacuum,set»
respectively. “Bpc,body,move USing its transition function
transforms the commands received from cp. into PWM
values and sends them to Epc pody- * Boc,vacuum, set transforms
the commands obtained from cpc to an appropriate PWM
value and dispatches it to Epc vacuum. Only two states of the
vacuum cleaner are considered: turned on or off, thus PWM
is either of maximum value or zero.

The intra-system communication between subsystems
of ap. is realised as one-to-one communication. The
communication between cy, and its virtual subsystems uses
cyclic buffers. Both producers and consumers use non-
blocking mode of operation, thus subsystems must react
appropriately to lack of new data.

7.2 Implementation

The above defined subsystems are implemented using the
MiCASE modelling tool [28]. It enables the high-level
specification of the activities of the software-implemented
subsystem (i.e. control subsystem and virtual subsystems)
using hierarchical LLFSMs that constitute an executable
model. To this end, a slight modification of the original
FSM SFy. is required [35]. Each *Fy is implemented as
3.7-'{)‘:. The transformation of “Fy, presented in Fig. 6, into
its implementation version © l;C, presented in Fig. 7, is
straightforward. Each state of “ Fy., denoted as S, (w is the
designator of the behaviour associated with the considered
state of “ Fy.), is implemented as a pair of consecutive states
of “F;.: the original state S (depicted as a rectangle

OnEntry:
\ restart,at(CBstearchu

. . C
is_running_at(“Bhc search)

—obst_det

obst_det

/gsearch

is_suspended_at(“Bhe,coltect )\

is_suspended_at(“ B scarch ) A 0bst_det

/Scollect is,running,at (C Bbc,collect )
w bc

/

/gcollect
org S bc

~

wait™~ bc

is_suspended_at(“Bpe,search)/\ obst_det

OnEntry: |

\ restart_at (CBbc,collect)

/ gavoid
org Sbc

A

“C‘HE'\U}

\ restart_at (“Bes,avoid) J

is_running-at(“Bpe avoid )
issuspended,at(clgbc avoid)/\ /Savoid iSfsuspended—at(CBbc,avoid)/\

—ball_det

ball_det

Fig.7 TImplementation of “Fp. FSM as F; . FSM modelling the activities of the control subsystem
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Fig.8 Table-tennis ball collecting robot

with oval corners) and the supplementary state ¢Sy,
(depicted as a small oval). With each state oSy, an action
is associated, where a new submachine /}'li » is executed
by the restart_at(SUBMACHINE) command. It models the
behaviour “Bpc . The FSM C]-'{,C waits in the current
state oS, until the submachine Tg’w starts executing
(i.e. the Boolean expression is_running_at(SUBMACHINE)
returns true). When the submachine (be; » Starts executing,
the FSM “F{  changes its state to the state ., Sq.
The FSM “F/_ being in the state ,;/S{ waits for the
termination of activities of the subFSM ’]—"ﬁ’w by testing
the Boolean expression is_suspended_at(SUBMACHINE)
(it returns true, if the submachine has finished its activities).

The ball collecting robot system requires five FSMs,
because it contains five software subsystems. Additionally,
for each behaviour within each subsystem an additional
subFSMs must be produced. Thus in total there are 12
FSMs/subFSMs. Each of them is governed by the same,
single sequential scheduler, switching their activities. The
communication between subsystems is implemented using
the whiteboard [30].

7.3 Robot Hardware

The table-tennis ball collecting robot (Fig. 8) has four
motors actuating the four wheels, an obstacle detecting
sonar HC-SR04 with a 2-400 cm range, a ball detecting
camera (Microsoft LifeCam Studio Webcam), a 12 V
car vacuum cleaner producing suction, a ball container,
a Raspberry Pi 3B on-board computer, Arduino Micro
microcontroller board and a Xaxxon MALG PCB motor
controller. The Pi 3B executes the software of the
control subsystem and all virtual subsystems, sending
commands to the real effectors: Eycpody (to the motors
through the Xaxxon MALG motor controller), vacuum
cleaner Epc vacuum (Arduino Mirco DC motor velocity
controller MCU-60127) and receives data from the real
receptors: camera Rpccam (Microsoft LifeCam Studio
Webcam camera), sonar Rpc sonar (Arduino Micro and HC-
SR04 sonar). The Raspberry Pi 3B is connected to both the
Arduino Micro and Xaxxon MALG PCB using USB serial
port and to the camera by a SCCB interface (serial camera
control bus).

7.4 Performance of the Communication
within the Robot

If a real-time operating system is used, the execution
times of particular behaviour steps are as presented
in Table 1. The produced system requires both intra-
system communication (i.e. between cp. and virtual
subsystems) and access to the hardware (i.e. between virtual
subsystems and the real subsystems). Communication with
the hardware is organised as either: send operations of
behaviours ¢ By body,move and ¢ Bpc vacuum,set, OF receive
operations of behaviours " Byc cam,detect @nd " Bbe,sonar, detect -
Hardware access uses standard driver interfaces whilst intra-
system communication utilises the whiteboard. The former
communication uses USB serial port which introduces
significant delays, hence those send/receive operations may
take even several milliseconds. In the latter case, the

Table 1 Maximum measured time [us] required by behaviour steps: calculation of transition function ® f; ,, sending and receiving data, where

vac is vacuum and wb is the whiteboard

Behaviour ffiw Receive Send

Bhe,search 3 wb— cpe 16 Che — Wb 18
cBbc,collect 3 wb — cpe 10 Cpe = Wb 29
“Bhe,avoid wb — Che 21 Cbe — Wb 14
erc,cam,detect 20345 Rbc,cam — I'be,cam 4720 Fbe,cam — wb 21
erc,sonar,detect 2 Rbc,sonar — Fbc,sonar 1501 Vbe,sonar —> wb 9
eBbc.body,move wb — €bc,body 10 €bc,body —> Ebc,body 5093
¢ Bhc,vacuum, set 3 wb — epe.wb 9 lgjc,vac — Epc.wb 1384
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messages are transferred using shared memory, thus the time
required for execution a single send/receive operation is at
the most 39us (10us+29us).

The hardware out of which the simple robot was built to
present both the design method and the software used for
the implementation of the controller was inexpensive. The
camera enables image acquisition at the rate of 30 Hz. Thus
the virtual receptor ryc cam collects data every 34 ms. The
balls are detected by the camera at a maximum distance of
2.5 m. The sonar enables the detection of obstacles in the
range 2-400 cm, thus due to the velocity of sound in air,
a data sample is obtained every 60 ms. As the maximum
velocity of the robot is 0.25%, the robot is able to stop
and change the direction of motion well ahead of possible
collisions. The decisions as to the selection of the nearest
ball to collect are also made well in advance, so the robot
does not have to veer overly rapidly. The balls scattered
between obstacles were collected efficiently.

8 Conclusions

This paper extends the robotic system design methodology
(presented in e.g. [35, 92, 96]) by inter-subsystem
communication model [31]. It assumes that the activities of
each subsystem and each of their behaviours is represented
by a LLFSMs. The communication between the subsystems
takes place in specific states of the resulting hierarchic FSM,
being the composition of the higher level FSM defining the
task of the subsystem and the lower level ones governing
the execution of this subsystem’s particular behaviours. The
subsystems in those states access the whiteboard, providing
or acquiring the necessary data. As the scheduler switches
the hierarchic FSMs sequentially no contentions arise. To
refer the proposed communication model to the state of the
art, a classification of communication methods from the
robotics perspective has been introduced.

The choice of LLFSMs and the whiteboard as an
implementation means for the proposed specification
method was dictated by the fact that the specification
method utilises the concept of FSM and transition
function embedded in a behaviour, which organises the
communication, i.e. the concepts into which it was easy
to translate the specification. Importantly, the whiteboard
ensures reliable access to data. The whiteboard gives
precise communication semantics in terms of bounded
timing as well as atomicity. Moreover always the latest
readings are delivered and no buffer overflow occurs
due to the use of a cyclic buffer. If only one scheduler
is employed the LLFSMs ensure reliable sequential
execution of the behaviours of the subsystems. Multi-
scheduler implementation on a multi-processor system is
also possible, but then contention resolution has to be used.

However for simple one-computer implementation of the
system this is not necessary. The presented implementation
approach ensures that at a given time only a single
subsystem is active so there is no contention regarding data
access.

An embodied agent is a set of subsystems communicat-
ing with the control subsystem utilising the whiteboard as a
communication means. The constraint imposed on the inter-
nal structure of an embodied agent, which requires that all
virtual entities contact only the control subsystem, limits the
internal number of communication links. Each subsystem
of an embodied agent is implemented as a separate process.
An additional agent added to the system linearly increases
the number of utilised processes. The number of new con-
nections required within the system is equal to the number
of the subsystems within the embodied agent and usually
low number of interconnections of the added agent with the
already existing agents, thus is scalable.

Embodied agents can be implemented not only by using
LLFSMs and the whiteboard, but also by utilising OROCOS
components, however the transformation procedure is not
that straightforward. OROCOS is a component based
robotics framework, where each component encapsulates
an executable algorithm (primary code). Within the
component there exists an Execution Engine, which
processes asynchronous operations, calls plug-in functions
and executes the primary code, when the component is in
a running state. The FSM is related to the states of the
component (pre-operational, stopped, running, exception
etc.) not the states of the executed tasks. Thus, the FSM
within the component is completely different from the FSM
in the embodied agent. The former changes the state of the
component, and only the running state is of relevance to us,
as only in that state the task is executed. In the latter case,
the FSM is related to the states of the task execution. With
every one of those states a transition function parameterised
behaviour is associated. Thus, if a subsystem would have
to be implemented as an OROCOS component both the
FSM and the behaviours would have to be recreated within
the primary code. Hence no benefit is obtained. Our multi-
layer structure is being flattened within this code. The other
method of using OROCOS is to associate a component
with a behaviour. Then the primary code would represent
a transition function. However then the subsystem FSM
would have to be implemented by an extra component
marshalling the other components (i.e. it would play the
role of a scheduler). The activity of the agent would have to
be produced by still another component executing the FSM
of the control subsystem. However in such a system, not
only the communication between subsystems would have
to be organised, but also between behaviours (behaviours
of subsystems of embodied agents have access to all the
input, output and internal data of that subsystem). Thus, data
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transfers between behaviours would have to be arranged
through ports, which was not the intention of the model
employed by embodied agents.

Both the utility of the design methodology and the
employed communication method have been presented on
a rudimentary robot searching for table-tennis balls. The
system was implemented by using the MiCASE tool [28].
It enables both modelling of the activities of the designed
system and automatic code generation, resulting in an
executable, high-level behaviour model. The resulting robot
control system functions as specified.
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