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Abstract Two broad classes of robot controllers are the modular, and the model
based approaches. The modular approaches include the Reactive or Behavior Based
designs. They do not rely on mathematical system models, but are easy to design,
modify and extend. In the model based approaches, a model is used to design a
single controller with verifiable system properties. The resulting designs are however
often hard to extend, without jeopardizing the previously proven properties. This
paper describes an attempt to narrow the gap between the flexibility of the modular
approaches, and the predictability of the model based approaches, by proposing a
modular design that does the combination, or arbitration, of the different modules
in a model based way. By taking the (model based) time derivatives of scalar,
Lyapunov-like, objective functions into account, the arbitration module can keep
track of the time evolution of the objectives. This enables it to handle objective
tradeoffs in a predictable way by finding controls that preserve an important ob-
jective that is currently met, while striving to satisfy another, less important one that
is not yet achieved. To illustrate the approach a UAV control problem from the
literature is solved, resulting in comparable, or better, performance.
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1 Introduction

The field of robotic control can loosely be divided into model based and modular
control approaches. In model based control, a mathematical model of the dynamic
or kinematic behavior of the robot is used to synthesize a single controller and
analyze and prove attractive system properties such as safety or convergence to a goal
location. Model-based approaches to robot control with multiple objectives include
[13, 14, 21, 24]. These approaches perform well, but are tailor made to the specific
problems they address, and adding additional objectives to be met is often difficult
or impossible without spoiling the structures being used in the proofs.

The modular control methods include [3, 4, 7-11, 15, 17-19, 22, 23, 25], and a nice
overview can be found in [1]. These methods are perhaps more often referred to as
Behavior Based, or Reactive, but throughout this paper we will call them modular
in order to emphasize this key property. In modular approaches, each controller is
designed with a specific control objective in mind, more or less independently from
the rest of the controllers. The outputs of the controllers are then merged in some
clever fashion in an arbitration module that outputs the overall control action, as
illustrated in Fig. 1.

This merging, or arbitration, can be either a selection of the most important
controller at each time instant, or a fusion of a set of control signals into a single
output. Examples of selection schemes are [4, 5, 10], while fusion methods include
[7, 8,15, 17, 19]. The modular methods have received a lot of attention due to the
fact that they are flexible, robust and easy to use. However, it is well known [23],
that it often gets hard to predict the overall system behavior when more modules are
added.

In this paper, which is an extension of our work in [12], we attempt to narrow the
gap between the modular approaches and the model based methods. The proposed
controller will thus retain the modular structure of Fig. 1, but do the arbitration in a
more predictable and model based fashion, inspired by Control Lyapunov Functions
(CLFs) [2]. This is done by letting each individual Control Module Output, see Fig. 1,
include not only its preferred control signal, but also a scalar function measuring
to what extent the objective of that module is met. The arbitration then keeps
track of, and works towards satisfying, these objectives in a predictable way. This is
done by making sure that the (model based) time derivatives of the scalar functions
satisfy certain inequalities, reflecting the user priorities regarding the corresponding
objectives.

In order to formalize the user priorities, we first note that all modular approaches
address a more or less implicit multi objective control problem. We then formally state
this problem, and include a scalar function and a user defined order of importance
for each control objective. As indicated above, the scalar functions and user priorities
are then used in the model based arbitration.

We illustrate the approach by solving an example problem taken from [21], where
a solution to a multi objective UAV surveillance problem is presented. Applying the
proposed approach to the problem we get controllers that are modular and flexible,
but also somewhat less conservative than previous solutions, due to the fact that the
bounds are handled explicitly.

As noted above, this work is an extension of [12]. In this paper, the theoretical
material has been thoroughly revised, including definitions, lemmas and proposition,
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Fig.1 A typical modular control architecture, as described in [1]. The format of the Control Module
Output depends on the type of Arbitration being used, as explained in Section 2 below. The proposed
approach aims at making this arbitration in a more model based fashion

and the simulation section is completely new, with a complex UAV problem, taken
from [21], replacing the ground robot obstacle avoidance problem investigated
in [12].

The organization of this paper is as follows. In Section 2 we review the structure
of some existing modular control architectures. Section 3 then formalizes the Multi
Objective Control Problem and Section 4 presents the proposed modular model
based controller design. Finally, the approach is illustrated by a UAV example in
Section 5 and conclusions are drawn in Section 6.

2 Background: Modular Control Architectures
In this Section, we will describe a number of modular control approaches that will

be used as inspiration in our attempt to find a model based modular architecture.
As noted above, the modular approaches are sometimes also called Reactive, or
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Behavior Based, but in this context their key property is modularity, hence the name
modular for them used in this paper.

A typical modular architecture is seen in Fig. 1. The different controllers work
in parallel, supplying the Arbitrator with Control Module Outputs. These are then
merged in some fashion to produce a control action. The key property of the modular
approaches is not that their execution is modular, but that they facilitate modular
design. This means that each module can be designed without knowledge of the
other modules, and that the arbitration can be designed without knowledge of what
individual control modules it will be connected to. The only part of the design process
that takes the whole setup into account is when the user sets a number of parameters
in the arbitration module, typically describing some form of user priorities.

Note that modular design is a very attractive and important feature. This is due
to the fact that the design of robot systems is often an evolutionary process and
the robot itself, as well as its tasks and its environment often change over time
[23]. For example, new sensors might be added to the robot, new tasks might
be added to a typical mission, and the environment in which the missions are
performed might change. In such circumstances, a modular design enables not only
the addition of functionality, but also the possibility of switching control modules
on and off depending on the situation. Finally, the importance of modular design
can be deduced from the apparent popularity of all the modular approaches [3, 4, 7-
11,15, 17-19, 22, 23, 25].

We will now give a brief description of five important arbitration schemes, from
which the proposed design borrows ideas and inspiration.

1. In Suppression [5], the Control Module Output of Fig. 1 is a suggested control
action and a binary value indicating whether or not the module is applicable
to the situation. The Arbitration then reviews a given priority list and picks the
behavior with highest priority of the active ones, and executes the corresponding
control action. For example, Avoid-obstacle can override Arrive-at-Goal-on-
Time if there is an obstacle close by.

2. In Selection [10], the Control Module Output of Fig. 1 is a suggested control
action and a scalar activation level indicating how urgent the proposed action
is. The Arbitration then picks the behavior with highest activation level, and
executes the corresponding control action.

3. In Voting [18], the Behavior Output is a list where a number of votes has been
distributed over a finite set of control choices. The Arbitration then sums up all
votes from the different behaviors and executes the choice with the most votes.

4. In Vector summation [7], the Behavior Output is in the form of a desired control
action, usually a vector corresponding to the desired velocity or acceleration. The
Arbitration then sums all vectors to get the executed control action.

5. In Spikes and Zones [15], the Behavior Output includes both spikes, desired
control outputs, and zones, acceptable intervals for the control output. The
Arbitration then tries to find a spike inside the intersection of all zones. If there
is no such spike it chooses the control signal closest to the current one inside the
intersection. If the intersection is empty the zones of lower priority are ignored
until the intersection is non-empty.

In the proposed approach we will use inspiration from all of the above. The
priority list of Suppression is turned into a priority table, such as Table 1, where not

@ Springer



J Intell Robot Syst (2011) 63:257-282 261

Table 1 A priority table containing the values of b;;

bjj 0 1 2 3 4
Vi< 00 a a c —00
V) < 00 00 b b —00

Each row corresponds to a scalar objective function V;, while each column corresponds to a different
priority level. The problem corresponding to this Table is illustrated in Fig. 2

only objectives, but also different levels of objective satisfaction is given different
priorities. The notion of an active behavior is translated into checking whether a high
priority objective is close to being violated or not. In Selection, the activation levels
depend on how close an objective is to being violated. We incorporate such ideas
by measuring how close an objective is to being violated and adjusting the control
constraints accordingly. The idea behind Voting and Spikes and Zones, that a behav-
ior can transmit information on what actions are best, but also acceptable relative to
the behavior goal, is incorporated into the constraints on the time derivatives of the
scalar functions measuring objective satisfaction. The brief statements above will be
discussed in more detail once we have presented the proposed approach. However,
first we state the problem being addressed.

3 A Multi Objective Control Problem

In this section we will formalize what we mean by a multi objective control problem.
As hinted above, there is no point in using a modular approach of the type illustrated
in Fig. 1 if the underlying control problem does not include multiple objectives.
Examples of such objectives can be found in Fig. 1 and include Arrive at Goal on
Time, Avoid Obstacles and Stay in formation. In some situations, these objectives will
be contradictory, e.g., if two vehicles have different goal locations, Arrive at Goal on
Time and Stay in formation can probably not be simultaneously satisfied throughout
the execution. Thus, an important task for the arbitration is to handle such tradeoffs.
Therefore, the problem formulation must include user priorities, based on which the
tradeoffs can be made.

To formalize objectives and priorities, we assign a scalar objective function V; and
a set of bounds b;; of increasing difficulty to each objective. The bounds b;; can be
listed in a priority table, such as Table 1, where the first priority objectives are found
in the first column and so on. The columns thus correspond to different intersections
of level sets of the Vs, as illustrated in Fig. 2. Formally we write as follows.

Problem 1 (A Multi Objective Control Problem) Suppose we have a control affine
dynamic system x = f(x) + g(x)u, with x € R?, u € Upgm C R™ where Uy is a
closed, bounded and convex set of admissible controls, and a set of piecewise C!
functions V;: R" — R, and constants b;; € R where b;; > b4y ie{l...N;}, je
{0... Nj}. Then, let the Current Level of Satisfaction be

J(x) = max{j: Vi(x) < by, Vi}, 6))
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Fig.2 An example multi Vi = a
objective control problem, !
corresponding to the priorities
in Table 1. The horizontal
stripes correspond to column 2
and the vertical stripes to
column 3. Thus, the control
objective in the example is to
bring the state of the system
from some x, to satisfy the
bounds b;; in the order of
Table 1, and finally reaching
the vertically striped area

and the Multi Objective Control Problem at time t, is to solve the following
optimization

min 7T,
st jx(T)) > j(x(to)),
jx(@) = j(x(to)), t € [to, T1. )

O

Thus, the current level of satisfaction j(x) is the rightmost column of the priority
table where all bounds are satisfied at state x, and the Multi Objective Control
Problem corresponds to increasing j(x) in minimum time T, without allowing it to
decrease, even momentarily, on the way. We conclude this section with an example
execution of a multi objective control problem.

Example 1 Suppose we have two scalar functions V|, V, measuring objective sat-
isfaction and the set of bounds b;; given in Table 1. The two rows of the table
correspond to V; and V), and the columns of the table correspond to different priority
levels. Looking at the table we see that the zero:th priority (which is always satisfied)
in column 0 is to have V| < oo, V; < co. Then, the first priority, in column 1, is to
achieve V| < a. Similarly, the second priority, in column 2, is to achieve V, < b,
while keeping V| < a. Finally, the third priority, in column 3, is to achieve V| < ¢ < a,
while keeping V, < b. Consider Fig. 3, and suppose the system starts in some x,
with f(xo) = 0. Now imagine that some version of the arbitration method Selection
was used. Then, we would first apply some controller tailored to the first objective,
until V| < a, making ](x) = 1. Then, some other controller might be selected until
V, <b,and f(x) = 2. Finally, the first controller might be applied again until V| < ¢
and j(x) = 3.

Remark 1 Note that, whenj(x) =1 1in Fig. 3, the bound V| < a is almost violated.
This would have reduced j(x) and caused a possible chattering between the two
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Fig. 3 An illustration of
Example 1. A series of Multi
Objective Control Problems
are solved until j(x) = 3. A
simulation plot corresponding
to this illustration can be
found in Fig. 6

controllers. To avoid such effects, the modular approach proposed below takes the
time derivative V; into account, as well as the size of the available slack, b;; — V;
when addressing the multi objective control problem.

Remark 2 Note that a number of model based approaches could be applied to the
problem defined above. However, in this paper we are looking for a modular model
based controller, of the type illustrated in Fig. 1. The advantage of a modular design
is, as explained in Section 2, that it can be extended if Problem 1 is extended with an
additional objective.

Remark 3 Finally, note that is is quite straightforward to create a Multi Objective
Control Problem that is impossible to solve. For instance, for any Vi, if V, = -V,
and b;; = b, = —1, then we can not have V; < —1 and —V; < —1 at the same time
and thus j(x) = 0 for all x. Thus, its pointless to look for an arbitration scheme that
solves all instances of Problem 1.

Having made these remarks, we are ready to look at the proposed design.

4 Proposed Modular Solution

In this section we will describe the proposed arbitration module and state two
propositions showing that it is a reasonable choice for doing modular multi objective
control. Before going into details, we give an overview of the ideas and results.
Informally, with a slight abuse of notation, the basic arbitration idea is as follows.
First, given that we are at state x the current level of satisfaction f(x) is determined,
i.e., the appropriate column of the priority table is located. For technical reasons
explained in Remark 4 below, we then re-label f(x) to j*(x). Then, the set of
acceptable control choices u are narrowed down to U*, the controls satisfying
Vl-(x, u) < k(b — Vi(x)), k > 0, i.e, the increase in V; is bounded by the size of
the slack b;- — V;. Then, we analyze the priority table to find I*(x), the objective(s)
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to be focused on next. Finally, a control is chosen inside U* that is close to u;, i € I*,
the controls that were tailored to the objective(s) in 7*.

The definitions below will be followed by a set of performance results. We can not
aim for an arbitration design that solves the general problem, since it was noted in
Remark 3 that by assigning contradicting objectives one could easily create instances
of Problem 1 that can not be solved. Instead, we will show the following results:
First, that the proposed arbitration scheme only violates a satisfied objective when
necessary, due to contradicting objectives (Proposition 1). Second, that it does indeed
solve Problem 1 and progress through the priority table if no objective tradeoffs
occur (Proposition 2).

4.1 Proposed Arbitration Module

In the proposed design, we will keep the modular structure shown in Fig. 1, but let
the Control Module Output include not only a control signal u; that is tailored to
objective i, but also the scalar functions V;(x). Formally, we define the controller as
follows.

Definition 1 Given a Multi Objective Control Problem, and a set of different con-
trollers u; and scalars k > 0, let

. 2
u* = argmin,, ;. Biep[lu — 1] )
where

U, ) ={uecUn:

Vilx, w) < k(bij — Vi(x)), Vi} 4)
J () = max{j: Vi(x) < bjj, Vi, U(x, ) # ¥} )
U'(x) = Ulx, j") (6)
I"(x) ={i : bijrxy > Digj=o+n }- (7)

Informally, Expression 3 corresponds to choosing a control that is close to u;, i €
I*, in order to increase f(x), which at the same time is inside U*, to make sure that
f(x) does not decrease. The rationale behind the choice of U(x, j) in Expression 4
can be seen from Proposition 1 below, but the fact that it gives upper bounds on
V; in terms of the margins b;j — V; indicates that it is related to keeping j(x) from
decreasing. Finally, Expression 7 selects the objective(s) that is focused on next, to
increase f(x).

Remark 4 The added condition on j*(x) in Expression 5, compared to j(x) in Eq. 1, is
introduced to make sure that U*(x) # ¢ which makes u* well defined (see Lemma 1
below).

Remark 5 Note that the control u* above is found by solving a pointwise optimiza-
tion problem. This can often be done very efficiently using optimization software
since u € Uygm C R™ in Problem 1 is often of low dimensionality and the objective
function is quadratic, see Remark 7.
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4.2 Properties of the Proposed Controller

We will now investigate the properties of the proposed controller in a set of
propositions and lemmas. Proposition 1 will show that j(x) only decreases when
necessary, and Proposition 2 will show that in the ideal case, when no tradeoffs
have to be made between the different objectives, all objectives will be achieved in
finite time. Note that since Definition 1 is quite general, see Remark 3, it is hard
to prove properties that are stronger than the ones above. Note also, that these
two properties roughly correspond to stability and asymptotic stability for the Multi
Objective Control Problem.

Apart from the two propositions, we will also state two lemmas. The first shows
that the proposed controller is well defined and the second is related to the prereq-
uisites of Proposition 2.

Lemma 1 The control u* in Definition 1 is well defined.

Proof We first note that the maximization in j* is always well defined since U,gm # ¢
and b,y = co. Next, since Vi(x, u) = (0Vi(x)/9x)(f(x) + g(x)u) and U,gn is closed,
bounded and convex, so is U*, and this makes the minimization in Eq. 3 well defined.
Finally, the fact that b;y, = —oo means that j* < N; which in turn makes I* well
defined. O

To establish the conditions for nondecreasing j(x) and finite time maximization of
satisfaction, as discussed above, we need the following definition.

Definition 2 (Non-arbitrable States) All states x such that
J* 0 # jx)

are called non-arbitrable states.

~ Note that this happens when U (x, ]) is empty, i.e., there is no u € Uygy such that
Vilx,u) < k(bi; — Vi(x)) for all i, meaning that the state x is not arbitrable.

Proposition 1 Suppose that there are no non-arbitrable states in the system, i.e.,
Jjf) = jeo. Y. (®)

Then, when using the control u* none of the currently achieved objectives will be
violated in the future, i.e. if x(t) denotes the corresponding closed loop solution then

J*(x(t0) < j*(x() ©9)
forallt > t.
Proof Suppose that Eq. 8 holds. Then we have
JHx(0) = j(x(0) = max{j: Vi(x(®) < byj, Vi}, =1,

and we define j§ = j*(x(t)).
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Assume j*(x(t)) < j; for some t>t, then f(x(t)) = j*(x()) < j; and thus
Vi(x(#)) > bj; for some i. Define

¢ =inf{t >ty : 3i : Vi(x(0)) > by} (10)
Then, by continuity of the involved functions there exists an index i’ such that
Vi (x(@), u* () > 0, (11)
and at the same time
Vi(x(t)) < bjj, Vi. (12)

However, Eq. 12 implies j*(x(¢)) = j; and Vi (x(?), u*(t')) < k(b vjg — Vi(x(t')) =0,
so we have a contradiction. O

Having investigated under what conditions the already satisfied objectives are
preserved, we now analyze when the rest of the objectives are achieved. Note
however that, as suggested above, Definition 1 is very general and that the ideal
setting below will not occur in most applications. Thus, the Proposition is primarily a
sanity check of the proposed controller.

Proposition 2 Suppose that for an isolated given i, the bounds V; < b;;, j=1...N;
are all achieved in finite time if the control u; is applied. Suppose further that,
throughout the execution no non-arbitrable states are encountered, i.e. we have j*(x) =
f(x), that there is a always unique next objective |I*| = 1, and u; € U* fori € I*, i.e.,
the corresponding control does not violate the previously achieved objectives.

Then, all the objectives listed in the b j-table, except the last column, will be met in
finite time, i.e. there exists a t > ty such that

Vix(@®) < by, Vi, j<N;

Proof From Eq. 3 and the fact that u; € U* we have that the implemented control
u* will be equal to the different u;, which in turn are known to satisfy their objectives
in finite time. Furthermore, since u* € U* we know from Proposition 1 that none of
the achieved objectives will be violated. Finally, since there are a finite number of
columns of the table, all objectives will be satisfied in finite time. O

Lemma 2 Suppose that the system with the state feedback control u = u; has been
shown to be asymptotically stable at the equilibrium point x* using the CLF V; with
Vi(x*) = a < b;. Then the finite time property of Proposition 1 holds.

Proof By the definition of asymptotic stability, we know that for each bound b; > a,
there is a finite time ¢ such that the solution x(#) for the closed loop system satisfies

Viix(@®) < b;fort>1t. O

Finally, we make a note on the use of the only design parameter present in
proposed approach, i.e., k.

Remark 6 The parameter k of Eq. 4 governs how fast each V; can approach a bound
bj;. Clearly, if we have equality in Eq. 4, V; would approach b;; exponentially, with
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the time constant 1/k. Note also that it would be perfectly reasonable to replace k
with a set of parameters k;, one for each V;, if such fine tuning is desired, perhaps to
avoid having to re-scale the V;:s. An example of the exponential convergence can be
seen in Fig. 11, and is discussed in Remark 8.

4.3 Relation to Previous Modular Control Approaches

In the next section we will see how the proposed controller performs when applied
to a multi objective UAYV surveillance problem. However, we will first comment on
how this control structure compares to some other arbitration alternatives, including
those that were reviewed in Section 2. The priority table clearly borrows a lot from
the arbitration methods Selection and Suppression, both addressing the question of
what to focus on "right now". Using the set U* is similar to the ideas behind Voting
and Spikes and Zones, in that options that are acceptable relative to many mission
objectives are favored. Furthermore, minimizing a sum of ||u — u;]|> resembles the
arbitration method Vector summation in that it is a sum, and it resembles Spikes
and Zones in that it tries to stay close to control signals preferred by individual
control modules. Finally, there is a typographical resemblance between the proposed
controller and the Dynamic Systems Approach [8], due to the fact that the latter is the
most mathematical of the previous modular approaches. In the Appendix we analyze
this resemblance in more detail.

Thus, the proposed controller is modular, but model based in the sense that it
does the arbitration in a model based way inspired by CLFs. The structure of this
arbitration is however, as described above, inspired by a set of different ideas from
modular robot control.

5 A Surveillance UAV Example

In [12], a standard ground robot navigation example was presented, but here
we apply the proposed approach to a more challenging example, taken from the
literature, [21]. Here, a small Unmanned Aerial Vehicle (UAV) is to track a target
on the ground using a fixed camera mounted in such a way that it is pointing down
the wing. To make the problem more interesting the strength of the wind is smaller
than, but on the same order of magnitude as the UAYV air speed.

Since target motion enters the equations in the same way as wind, we let the wind
term account for both effects. Following [21], the equations of motion of the UAV
are

2y = Vacosyr + Vy cos x (13)
Zy = Vgsinyg 4 Vy, sin x (14)
V= Véa tan ¢ (15)
¢ = g — ) (16)

where (zy, z,) is the position, ¥ is heading, x is wind direction, V, is airspeed, V,,
is wind speed, g is the gravitational constant, ¢ is roll, ¢, is the auto pilot time
constant and ¢¢ is the commanded roll. Note that airspeed, as well as wind direction
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and magnitude are taken to be constant. We now make the following simplification.
Assuming that the controlled roll angle dynamics is significantly faster than the
heading dynamics we think of  as the control u, and let

V=u ul <5 ang. (17)
Va
where ¢ is the maximal roll angle.

Using polar coordinates p, 1 to express the target position in the UAV frame, see
Fig. 4, we get

p = —Vysin(n) — Vi, sin(n — x + ¥) (18)
V, V.,
i = =~ cosn) — ~ costn — x + ). (19)

Note that throughout this example we use the mathematical convention of positive
angles being measured anti-clockwise, whereas the navigation convention of mea-
suring them clockwise is used in [21]. This accounts for differences in signs when
comparing the texts. As noted above, we shall also make the standing assumption
that V, > V,,.

From the expressions 18 and 19, it can be shown [21] (see also Appendix) that
as long as the wind speed V, is not zero, pointing the camera right at a target will
result in an elliptical orbit, while flying circular orbits will result in the target angle n
oscillating, as illustrated in Fig. 5.

To balance this tradeoff we state the following control objectives, that were also
used in [21], with py = 0.

1. If [n(0)| < 7, ensure that |n(¢)| < 5, for all ¢t > 0, where 7 is the horizontal field of
view of the camera.

2. Ensure that |¢ ()] < ¢, for allt > 0, where ¢ is the maximum allowable roll angle.

3. Keep the stand-off distance to the target p(f) close to some desired p, that
represents a tradeoff between resolution and roll angle constraints.

Fig. 4 Polar coordinates for V
expressing the target position w
in the UAV frame. V,, ¥ are
airspeed and heading, V., x
are wind magnitude and
direction, « is absolute target
direction, p is target distance
and 7 is target direction
relative to the wing mounted
camera
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Fig. 5 Illustration of the two different control objectives. The dashed curve is given by the controller
u = uy, driving the target view angle down to n = 0. The solid curve is given by the controller u = u»,
driving the target distance to p = pp = 150 m

Note that the objectives above correspond to the last two objectives in Fig. 1. The
first four were addressed a ground robot setting in [12].
In [21], an elegant solution to this problem was proposed in the form

v, Vi
us = ——cos(n) — —cos(n — x +¥)
P P

+ksn —v, (20)
V= argmin\v\gmin{M(r),kﬁﬁ)Wz’ (21)

where ug is the control proposed by Saunders and Beard and a number of parameters
are used, ks > 0, 6 € (0, 1), » > 0, k; > 0, together with the functions

W,

1 N
E(p—po+kp) ,

- VitV
L tang — kyn(0)| - e

M) v

As will be seen in Figs. 8-11, the controller in [21] achieves all objectives
above. However, it is somewhat conservative, which has a negative effect on the
performance relative to the p-objective. This might not be a problem when py = 0,
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as in [21], but when py # 0, slightly better performance can be achieved even with a
modular controller, as will be shown below.

To apply the scheme outlined in Section 4, we first need to formulate a Multi
Objective Control Problem, as stated in Problem 1.

Problem 2 UAV Multi Objective Control Problem Let the state vector x be given
by x = (p,q,n,¥) € M where

=(0,00) X [-V4 = Vi, Va+ V1 x S' x S, (22)
and S' is the unit circle in the plane. Let the state ¢ be defined by
q=5p (23)

which makes
=uV,cosn+ — (V cosn + Vycos(n — x + 1//)) (24)

The dynamical system X = f(x) + g(x)u is thus given by the Expressions 17-19 and
Eq. 24. Furthermore, let

1
Vi= 5772’ (25)
1 L
V, = EkZI()O — po)” + PR (26)
. g 7
Uadm = {u Dul < 7tan¢}, 27)

with ky; > 0, and let the bounds b;; be given by Table 2.

As can be seen, the first control objective is addressed by V), keeping [n| <7
corresponds to V; < .. The second control objective is captured in Uygp. The third
control objective is addressed by V», since having p = py corresponds to V, = 0. We
have also added an objective of keeping within visibility range p.is of the target.
The bound p < pyis now holds if V, < ky, M. Letting the visibility be the first
priority, the camera view angle constraint be the second, and the ideal viewing
distance be the third, we get the entries listed in Table 2.

Having defined the problem, we must now design the individual controllers ;,
needed in Definition 1. Note that they are completely modular, and only geared
towards their corresponding objective function V;, without regard to either the
bounds b;; or the other objectives. The design choices are presented in the two
Lemmas below.

Table 2 The priority table containing the b;; values of the simulation examples in Section 5

bij 0 1 2 3 4
=2 =2
Vi < 00 00 r T —0
2 2 2 2
Vy < 00 ko (pvis ; 00) ko (pyis g £0) 0 —oo
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Lemma 3 The function V, is a CLF for the restricted control problem given by Eq. 19
and the control

Va Vw
= = cos(a) = R cos( — X + ) +han (28)

with ki > 0 makes the range p stay bounded and bounded away from zero, and the
target angle n converge to 0 as t — oo, provided p(0) is sufficiently large and |n(0)| is
sufficiently small.

Proof Precise conditions and a proof are given in the Appendix. The proof builds on
the observation that differentiating V; with respect to time yields

. Va Vi
Vi=n (—u — — cosln = == cos(n —x + w>) (29)
so that substituting the control u; in Eq. 28 we get
Vi=—kin* <0, (30)
i.e. V; has the stated CLF property. O

Lemma 4 The function V, is a CLF for the restricted control problem given by Eq. 18
and the control

__kalp—=po) +kng
Vacosn

1 (Vacosn+ Vi cosn — x + 1))’

31
P Vacosn (31)

with ks, kay > 0 makes the range p converge to py and the target angle n stay
confined to [—n, ] as t — oo, provided p(0) is sufficiently large and ky,|p(0) — pol
are sufficiently small.

Proof Also here, precise conditions and a proof are given in the Appendix. The
proof builds on the observation that differentiating with respect to time we get

Va = kai(p — po)q + qq (32)
so that
V= q(kai(p — po) + uV, cosn)

+%(Va cosn + Vycos(n — x + 1//))2, (33)

and substituting the control u; in Eq. 31 we get

Vs = —kng® <0,

i.e. V; has the stated CLF property. O
In all figures, unless explicitly stated otherwise, we have used the following

problern_parameters: g=09.82, x =45°, V, = 13m/s, V,, = Tm/s, py = 100m, pyis =
400m, ¢ =45°, 5 =35°. The design parameters for the proposed controller
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were: k =2, k; =1, ky; =1, kyp =1 and for the controller in [21] we used 6 =
0.99, ks =0.1, A =5 as we found no suggested values in the paper. Finally, the
parameters of the arbitration module are given in Table 2.

Remark 7 Note that in this example the control « is one dimensional and U*(x) is
an interval. Thus the optimal control u* of Eq. 3 is either equal to u; or u,, or an
endpoint of the interval U*(x).

Running the controllers, we get the results in Figs. 6 to 11. In Fig. 6, we illustrate
how the proposed controller works its way up through the columns of Table 2. Three
trajectories, corresponding to three different values for pyis are shown. All three
trajectories start out at f(x) = 0, aiming towards the target. Then, when V, < by,
implying p < pis, we get j(x) = 1 and the controller aims at bringing the target
into view. After a sharp left turn we have V| < b, implying |n| < n = 35°, and
j(x) = 2. The next objective is V, < b,3 = 0, implying p = po which is asymptotically
achieved when the trajectories approach the circular pattern. Note that throughout
the execution, the previously achieved objectives where given higher priority than
the ones not yet achieved, for example, the |n| < 7 bound constrained the progress
towards p = pp when f(x) = 2. Note that to avoid chattering in u,, when p >>
po, N~ 90°, a standard sliding mode solution had to be added [6].

To illustrate the effect of different bounds 7, we start the system in a favorable
position, with j(x) =2, and get the limit cycles of Fig. 7. The Figure shows four
different executions corresponding to the bound 7 = 20°, 25°, 30°, 35°. Note how the
different bounds are kept in a predictable way, leading to different tradeoffs between
target angle n and target distance p.

In order to compare the proposed controller Eq. 3, hereafter denoted the 2010
controller, with the previous one Eq. 20, hereafter denoted the 2008 controller,
we run simulations with the bounds 7 = 10, 20, 30, 40 degrees. Figure 8 shows that
[n] < 40 degrees is enough for the 2010 controller to fly a nearly perfect circle in the

Fig. 6 The proposed UAV Position (x(t),y(t))
controller for the parameter T
pvis = 600 m (solid), 400 m
(dashed) and 200 m
(dot-dashed). Note how j(x)
increases from 0 at the start, to
1 at the end of the first
segments, to 2 at the end of the
sharp left turn, and
asymptotically approaches the
circle where f(x) =3 S 100

y [m]
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Fig. 7 The proposed UAV Position (x(t),y(t))
controller for the bounds

1 = 20° (dash-dotted green),
25° (solid), 30° (dashed), 35°
(dash-dotted blue). The first
and the last can be separated
by context, or by comparison
with Fig. 6 E

0 50 100 150 200

given wind while keeping the target in view, whereas the 2008 controller shows some
difficulties in the downwind part of the loop.

In Fig. 9 we see that the || < 30° constraint does not permit a perfect circle for
any of the controllers, but the 2010 controller manages to keep the deviations from
po small.

The trajectories in Fig. 10, with the bound |n| < 20° start to show resemblance to
the n = 0 ellipse in Fig. 5, but the 2010 controller still manages to keep p = py =
100 m on a short circular arc when passing north and south of the target. The 2008
controller does a good job, but produces slightly larger deviations from py, as can be
seen from the bottom plot.

Finally, setting the bound to |n| < 10° we get the plots of Fig. 11. Both controller
produce similar ellipse-like trajectories with target distances oscillating around

P = Po-

Fig. 8 Comparison between UAV Position (x(t),y(t))
the 2010 controller (solid) and —= — ‘
the 2008 controller (dashed) 100} .7 - i
[21], for 77 = 40°
— 501 1
£
>~ of j
-50[ 1
~100 i i i i i i
-300 -200 -100 0 x[m] 100 200

400, ;

0 i i i i
0 50 100 150 t[s] 200 250 300
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Fig. 9 Comparison between
the 2010 controller (solid) and
the 2008 controller (dashed)
[21], for 7 = 30°

Fig. 10 Comparison between
the 2010 controller (solid) and
the 2008 controller (dashed)
[21], for §j = 20°

Fig. 11 Comparison between
the 2010 controller (solid) and
the 2008 controller (dashed)
[21], for 7 = 10°
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Remark 8 In the n-part of Fig. 11, we can see how the 2010 controller produces a
bang-bang like behavior relative to the tight output constraints on 7. This is probably
performance effective, as it resembles the well known bang-bang phenomenon
in input bounded optimal control [16]. Looking closer at the n-plot we see that
the output is only approximately bang-bang, in fact, the bounds are approached
exponentially. The parameter k, of Eq. 4 governs the speed of this exponential
convergence, as discussed in Remark 6 above.

We conclude the simulation section with noting that in all the Figs. 8-11 the 2010
controller is very non-conservative. For example, in all simulations it immediately
turns towards the target as tightly as the constraints allow, and thus gets a head
start compared to the 2008 controller. We believe that this feature is advantageous
in many Multi Objective Control Problems, not only the UAV example presented
here.

6 Conclusions

Architectures affording modular design are attractive due to their flexibility and
reusability, but can sometimes result in somewhat unpredictable system behavior.
Model based designs on the other hand are less flexible, but might produce more
predictable performance.

In this paper we have proposed an arbitration scheme that brings some of the
predictability from the model based approaches into a modular architecture. This is
done by keeping track of the time derivatives of a set of scalar functions representing
the control objectives, in a way that is inspired by Control Lyapunov Functions
(CLFs).

We were able to formally verify two properties of the proposed arbitration
scheme. First, that objective violations only occur when they are necessary due to
contradicting objectives. Second, that the system does indeed satisfy all objectives
when no objective tradeoffs have to be made. These results are quite strong,
considering the fact that the modular structure gives us no influence over what
objectives and corresponding control modules are included in the framework, and
insolvable problems are straightforward to design.

Finally, the approach was illustrated with a UAV surveillance example taken from
the literature. Applying the framework we got a controller that performed equally,
or better, than a model based approach tailored to the problem.

Appendix

Here we compare the proposed approach to the Dynamic Systems approach, as well
as give proofs for Lemmas 3 and 4.

Relations to the Dynamic Systems Approach

The approach described in this paper is model based, and thus somewhat mathemati-
cal. A comparison to the most mathematical of the existing modular approaches, the
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Dynamical Systems Approach [8] might therefore be appropriate, even though the
latter is not, as we will see, model based.

In [8], a setting very similar to the one treated in [12] is investigated in terms
of a navigation problem where a group of robots is to reach a goal location, avoid
obstacles and stay within a prescribed distance of each other. In both papers, the
outputs of the controller are desired heading and velocity. However, Large et al.
focus on heading alone and let velocity be given by a function of the distance to
nearest obstacle.

In [8], the controller producing the desired heading ¢ is defined by a dynamic
system

(@, Wiar, Wobs, Woth) = f(¢, Wear, Wobs, Woth, ), (34)

where wiar, Wobs, Woth are weights and the ‘system input’ u is given by sensor data

u = (Yi, Ay, Yo, Fotn, NOISE),

where 1; is direction to obstacles, Ay; is the angle occupied by the obstacle (an
implicit distance measure), Yo, is the direction to the other robot, roy is distance
to the other robot and noise is a noise term. The function f also includes a set
of tuning parameters: (R;, Ragent, 0, do, @, vji, b1, b2, b3, dy), where R; is obstacle
radius, Ragen 18 agent radius, o is a safety distance, dj is a ‘radius where the agent
begins to take obstacles into account’, «; describes ‘the degree to which constraint
i is appropriate to the agents’s current situation’, y;; describes ‘the extent to which
constraint j is consistent with constraint i in the given current situation’, d; is the
desired inter robot distance and b, b,, b are related to keeping this distance.

After giving a brief overview of the approach in [8], we now compare it to the
approach proposed here. As can be seen, in [8] the user can specify safety distances
o and desired inter robot spacing d; but there is no way of analyzing how well these
objectives are being met. In fact, the system Eq. 34 is evolving on a four-dimensional
manifold (desired heading and 3 weights) that does not contain enough information
to decide if the objectives (o, d;) are met or not. Furthermore, the approach is not
model based, there is no model of what actually happens when the desired heading
¢ and velocity are set.

In comparison, the V; of Problem 1 in the proposed approach are each an exact
representation of the corresponding objective and give an instant measure of how
well that objective is met. They furthermore give a notion of how those objectives
are going to be affected by a given control signal, and the choice of control is based
on this very notion. We refer to [12] for a detailed example of how a robot navigation
problem would be addressed using the proposed approach.

To conclude, the similarities between [8] and the proposed approach are merely
typographical, in that differential equations are used in both approaches. The
underlying concepts are completely different.

Proof of Lemma 3
To prove the asymptotic stability of n = 0 we will use a standard result [20, Prop.

5.20], stating that a bounded trajectory has a compact w-limit set and approaches
that set as t — oo. Thus, if we show that the solution to the system is well defined,
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bounded and that the controller never saturates, then we can use Eq. 30 to conclude

that n = 0 holds for the w-limit set that the trajectory converges to.

First, we will show that the trajectory is bounded and well defined. Note that by the
definition of state manifold M in Eq. 22, all components except p are bounded so we
only need to show that the p-part is bounded. To that end, consider the transformed

range r > 0 as

If

then

n < arccos(Vy,/V,)

Vi
cosn+7cos(n—x+1/f) >

V Vv
cosn — — >cosij — — > 0,

a

Va Va

and it is straightforward to see that

; % )
0<<cosﬁ—7>p§r§(l+7w>,0, nl <7,
a a

and

P= % ,
cosn + - cos(n — x + )

%

rsin(n)u

Vi
r=p<cosn+7cos(ﬂ—x+’ﬁ)>-

Inl <7,

(35)

(36)

(37)

(38)

(39)

Thus, when Eq. 36 holds, then r is bounded and bounded away from zero if and only
if p is. In terms of r, the control u; in Eq. 28 reads

V, Vy :
up=——|cosn+ —-cos(m—x +v)| +kin
r V,

and the (r, n, ¥)-part of the closed loop system becomes

F = —V,sin(n) (

f]:

'l/‘f:

a

rky sin(n)n

cosn—f—‘{,—“[‘”cos(n—x + )

—kﬂ].

a

+kin.

al

Vu
cosn + 7008(77 - X+¥)

a

Vu
cosn + 7cos(n —-x+v)

;

)

(40)

(41)

(42)

(43)

@ Springer



278 J Intell Robot Syst (2011) 63:257-282

To show that u; and the solution to Eqs. 41-43 are well defined at all times we need
to show that r stays away from zero. Let ¢, > 0 be a time such that the solution to
Eqgs. 41-43 is well defined over [0, #] (such an interval exists by the continuity of the
solution). During this interval, Eq. 42 has the solution 7(t) = n(0)e~*. When Eq. 36
holds then Eq. 37 holds and the last term on the right in Eq. 41 is positive so that if

O] <7 (44)

we obtain the following estimate

r(t) —r(0) = /ti’(s) ds
0

t vw
> —/0 V. sin(n(s)) <005(n(S)) + v cos(n(s) — x + W(S))> ds
t Vw
> —/0 V. sin(n(s)) (COS(n(S)) + A cos(n(s) — x + W(S)))‘ ds
t
> —(Vo+ Vw)/ [n(s)| ds
0
. [n(0)]

_(Va"_vw)ia te [0’ tl]7
ki

using n(t) = n(0)e*1 from above. Thus, if we define

I'min = r(O) - (Va + Vw)mliﬂ
1

then when Eq. 44 holds and
Fmin > 0 (45)

we have r(f) > ryin > 0 for all ¢ € [0, ¢,]. However, rp;, is independent of ¢, and thus
when Egs. 36, 44 and 45 hold r cannot come arbitrarily close to zero. It follows that in
this case 7 is bounded away from zero and the solution to Eqgs. 41-43 is well defined at
all times. The condition 45 will hold if p(0) is sufficiently large and 7 (0) is sufficiently
small, respectively.

To establish an upper bound for r, we first note that we have p <V, +V,,
implying that p(f) < p(0) + (V, + V)¢, which with Eq. 38 gives r(¢) < 2(p(0) +
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(Va4 + Vy)t). Then we assume that Eqs. 36, 44 and 45 hold, and since n(¢) = n(0)e k1
for all ¢ the inequalities in Eq. 37 hold for all ¢ and Eqs. 38 and 41 give the estimate

In(®)Ir()k
cos 7 + = cos(n — x + V)

t t
r(t) —r(0) E/ nHI(Va + Vw)ds+/
0 0

t
ff (e °|(Vy + V) ds
0

ds < K < o0,

cosr_]—%
f

+ / (0 12k (p(0) + (Vi + Vi)s)
0
for some constant K. Hence, r(¢) is also bounded for ¢ > 0 in this case. It follows that
when the control u; in Eq. 28 is applied and Eqgs. 36, 44 and 45 hold the solution
to the system (Egs. 41-43) is well defined at all times and confined to a closed and
bounded subset of the state manifold M. Moreover, the w-limit set of the system is
then contained in the set

{(loqunvllf)EMn:O}

and any trajectory approaches this set as t — co. The only remaining issue is to
ascertain that the control u; never saturates, i.e. that the conditions in Eq. 27 of the
restricted control are satisfied at all times. This is easy, however, for Eq. 40 shows that
when Eqgs. 36, 44 and 45 hold then the maximal control requirements are bounded by

V, Vi)
] < <1+—> + kin(0)],

T'min Va

so by making i, sufficiently large and |7 (0)| small the bounds in Eq. 27 can always
be satisfied. O

We note in passing that Eq. 39 shows that when n = 0 then r is constant so from
Eq. 35 we see that p describes an ellipse.

Proof of Lemma 4

The closed loop system resulting from the control u, in Eq. 31 is

bh=q (46)
q = —ka(p — po) — kngq (47)
_ kai(p — po) + kg
N V., cos(n)
—i—ﬁcos(n — X+ ) <1 + ﬁw)
g V. cosn
(48)
b= _kai(p = po) + kaagq
B V,cos(n)
2
1 (Vacos(n) + Vi cos(n — x + ) “9)

p Vacos(n)
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The (p, g)-subsystem in Eqs. 46 and 47 is a linear second order system which is stable
if k21, k2 > 0. For any solution to Egs. 46 and 47 we define ppin and dpyax by

Pmin = l’tIl>l(I)1{,O(l) : f](o) € [_Va - Vw» va + Vw]}s

dmax = n;1>aox{|p(t) - p0| . 61(0) S [_Va - va th + Vw]}a

and assume that
Pmin > 0. (50)

(This way, pmin, dmax are functions of p(0) and py only, parameterized by ks, k»;.)
Next, using Eqgs. 18, 23 and some trigonometric manipulations we can write the 7-
dynamics in Eq. 48 as

n=A(p,n. ¥, x)tan(n) + B(p, n, ¥, x), (51)

where

Vi, . 2 . Vw
Ao, n. ¥, x) = sin(y — x)“sin(n) — kxn (1 + v cos(yr — x)) )

Vap a
ka1(p — po) Vi .
B = 2P TR T _
(o0 ¥, %) V. cos(n) 2y sin(y — x)

W (1 +2 Vi cos(y — X)) sin(y — x) sin(#)
P Va

VU} Vll)

+ (1 + ——cos(y — X)) cos(y — x) cos(n).
P Va

Now, if 7 < /2 and we can show that 7 > 0 at n = —7 and 5 < 0 at n = ;; for all

t > 0 then 5 can never escape the interval [—7, 7] and the solution to Eqgs. 4649 will

be well defined for all ¢ > 0. To this end we note that if

Ve V2
knll—— v 52
» ( Va ) ~ VaPmin ( )

then we always have

V2 Vo
A(p,n, ¥, x) < Vw —ky» (1— )
0

V? Vi
< v —k22<1—7><0.

Further, if Eq. 52 is satisfied and moreover

V2 V.
(e g (1= 22 andi
(Vapmm 2 ( V. )) | tan(7)|

1 dmax Vw Vw
— | kyy——— + knV, 2 1+2 53
>va<21cos<r‘;)+ = )+ pmm< * va> (53)
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then for || < i we have

1 - Vw Vw
B(pv 7], Wa X) S — <k2 |p p0| + kzsz) + 27 (1 +27>

Ve U cos(@) .
1 dmax Vw Vw
— | kyy——— + knV, 2 1+2—
= Va<2‘cos(ﬁ>+ 2 >+ pmm( + va>

Vlzu VlU = =
<- —kn (1= —=))Itan(m)] = [A(p, n, ¥, x)|| tan()],
aPmin Va

so the term involving tan(n) on the right in Eq. 51 (strictly) dominates the other
term. Summing up, when |(0)| < i < 7/2 and the conditions Eqgs. 50, 52 and 53 are
satisfied then the solution to Egs. 4649 is well defined at all times and confined to a
closed and bounded subset of the state manifold M. Moreover, the w-limit set of the
system is then contained in the set

{(pvQ7n7¢) GM:p:POJle [_ﬁv ﬁ]}

and any trajectory approaches this set as t — co. As for the additional conditions
imposed by the bounds in Eq. 27 on the control u, in Eq. 31 we note that the control
requirements can be bounded as

k21dmax + kZZ(Va + Vw) + p‘lim(va + Vw)2
Vi cos(i))

[us] <

so by making dp.ax, ko> sufficiently small and pp, sufficiently large the bounds in
Eq. 27 can always be satisfied. O
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