Skip to main content
Log in

Introducing time-lapse cameras in combination with dataloggers as a new method for the field study of caterpillars and microclimate

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

We used time-lapse cameras, in combination with dataloggers for microclimate (air humidity and temperature), in an insect field study to analyse behaviour of caterpillars over several larval stages and determine mortality reasons in relation to microclimate. We studied caterpillars of instar 1–3 of the Moorland Clouded Yellow (Colias palaeno, Linnaeus, 1761), that is from hatching from the egg until hibernation. The observation by time-lapse cameras enabled us to gather data on several caterpillars simultaneously over longer time periods. Especially, the combination with dataloggers collecting microclimatic data gives interesting insights in the life, mortality causes and behaviour of the observed caterpillars in relation to microclimatic conditions. To our knowledge, time-lapse or automatic cameras combined with dataloggers collecting microclimatic data have not been used in field studies on phytophagous insects, but only in defined experimental settings or to observe pollinators visiting flowers. Therefore, we summarize our experiences on opportunities and limitations in this communication. If the observed insect is not moving too far and is most of the time visible on the upper surface of the leaf this method can be used for several research questions under very different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aguayo DD, Mendoza Santoyo F, De la Torre I, Manuel H, Salas-Araiza MD, Caloca-Mendez C, Hernandez DAG (2010) Insect wing deformation measurements using high speed digital holographic interferometry. Optics Express 18(6):5661–5667

    Article  PubMed  Google Scholar 

  • Anwander H, Dolek M, Scherzinger C (2013) Hochmoor-Gelbling Colias palaeno (Linnaeus, 1761). In: Bräu M, Bolz R, Kolbeck H, Nunner A, Voith J, Wolf W (eds) Tagfalter in Bayern. Eugen Ulmer, Stuttgart, pp 164–167

    Google Scholar 

  • Čelik T, Bräu M, Bonelli S, Cerrato C, Vreš B, Balletto E, Stettmer C, Dolek M (2015) Winter-green host-plants, litter quantity and vegetation structure are key determinants of habitat quality for Coenonympha oedippus in Europe. J Insect Conserv 19(2):359–375

    Article  Google Scholar 

  • Dodge WE, Snyder DP (1960) An automatic camera device for recording wildlife activity. J Wildl Manag 24:340–342

    Article  Google Scholar 

  • Dolek M, Freese-Hager A (2011) Ursachenanalyse zum Rückgang des Hochmoorgelblings (Colias palaeno) in Bayern. Report, Bayerische Akademie für Naturschutz und Landschaftspflege, Laufen/Salzach

  • Dolek M, Freese-Hager A, Geyer A, Balletto E, Bonelli S (2013) Multiple oviposition and larval feeding strategies in Euphydryas maturna (Linné, 1758, Nymphalidae) at two disjoint European sites. J Insect Conserv 17(2):357–366

    Article  Google Scholar 

  • Ebert G, Rennwald E (1991) Die Schmetterlinge Baden-Württembergs. Band 1 & 2 Tagfalter I & II. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Edwards J, Smith GP, McEntee MHF (2015) Long-term time-lapse video provides near complete records of floral visitation. J Pollinat Ecol 16(13):91–100

    CAS  Google Scholar 

  • Eilers S, Pettersson LB, Öckinger E (2013) Micro-climate determines oviposition site selection and abundance in the butterfly Pyrgus armoricanus at its northern range margin. Ecol Entomol 38(2):183–192

    Article  Google Scholar 

  • Fartmann T, Hermann G (2006) Larvalökologie von Tagfaltern und Widderchen in Mitteleuropa: - von den Anfängen bis heute. Kettler, Münster

    Google Scholar 

  • Freese A, Benes J, Bolz R, Cizek O, Dolek M, Geyer A, Gros P, Konvicka M, Liegl A, Stettmer C (2006) Habitat use of the endangered butterfly Euphydryas maturna and forestry in Central Europe. Animal Conserv 9(4):388–397

    Article  Google Scholar 

  • Fry SN, Bichsel M, Müller P, Robert D (2000) Tracking of flying insects using pan-tilt cameras. J Neurosci Methods 101(1):59–67. doi:10.1016/S0165-0270(00)00253-3

    Article  CAS  PubMed  Google Scholar 

  • Higgins LG, Riley ND (1978) Die Tagfalter Europas und Nordwestafrikas. Parey, Hamburg

    Google Scholar 

  • Holden J, Yanuar A & Martyr DJ (2003) The Asian Tapir in Kerinci Seblat National Park, Sumatra: evidence collected through photo-trapping. Oryx. doi:10.1017/S0030605303000097

    Google Scholar 

  • Höttinger H (2004) Grundlagen zum Schutz von Tagschmetterlingen in Städten. Oedippus 22:1–48

    Google Scholar 

  • Lowenstein DM, Gharehaghaji M, Wise DH (2017) Substantial mortality of Cabbage Looper (Lepidoptera: Noctuidae) from predators in urban agriculture is not Influenced by scale of production or variation in local and landscape-level factors. Environ Entomol 46(1):30–37

    PubMed  Google Scholar 

  • Maey H (1986) Der Hochmoorgelbling Colias palaeno Linnaeus 1761 und seine Unterarten. Löbbecke-Museum, Düsseldorf

    Google Scholar 

  • McGimpsey VJ, Lord JM (2015) In a world of white, flower colour matters: a white-purple transition signals lack of reward in an alpine Euphrasia. Austral Ecol 40(6):701–708

    Article  Google Scholar 

  • Merfield CN, Wratten SD, Navntoft S (2004) Video analysis of predation by polyphagous invertebrate predators in the laboratory and field. Biol Control 29(1):5–13

    Article  Google Scholar 

  • Meyhöfer R (2001) Intraguild predation by aphidophagous predators on parasitised aphids: the use of multiple video cameras. Entomologia Exp et Appl 100(1):77–87

    Article  Google Scholar 

  • Myers JH (1988) Can a general hypothesis explain population cycles of forest Lepidoptera? Adv Ecol Res 18:179–242

    Article  Google Scholar 

  • Noldus LP, Spink AJ & Tegelenbosch RAJ (2002) Computerised video tracking, movement analysis and behaviour recognition in insects. Comput Electron Agric 35(2):201–227

    Article  Google Scholar 

  • Radchuk V, Turlure C, Schtickzelle N (2013) Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J Anim Ecol 82(1):275–285

    Article  PubMed  Google Scholar 

  • Rovero F, Zimmermann F, Berzi D, Meek P (2013) “Which camera trap type and how many do I need?” A review of camera features and study designs for a range of wildlife research applications. Hystrix 24(2):148–156

    Google Scholar 

  • Schenk D, Bacher S (2002) Functional response of a generalist insect predator to one of its prey species in the field. J Anim Ecol 71(3):524–531

    Article  Google Scholar 

  • Schmitt C, Rack A, Betz O (2014) Analyses of the mouthpart kinematics in Periplaneta americana (Blattodea, Blattidae) using synchrotron-based X-ray cineradiography. J Exp Biol 217(17):3095–3107

    Article  PubMed  Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kühn I, van Swaay C, Verovnik R, Warren MS, Wiemers M, Hanspach J, Hickler T (2008) Climatic risk atlas of European butterflies. Pensoft, Sofia

    Google Scholar 

  • Siuda C (2002) Erstellung von Umsetzungskonzepten der Moorrenaturierung im Rahmen des Moorentwicklungskonzepts Bayern: Umsetzungskonzept Weihermoos, Landkreis Ostallgäu. Bayerisches Landesamt für Umwelt, Augsburg

    Google Scholar 

  • Steen R (2017) Diel activity, frequency and visit duration of pollinators in focal plants: in situ automatic camera monitoring and data processing. Methods Ecol Evol 8(2):203–213

    Article  Google Scholar 

  • Suetsugu K, Hayamizu M (2014) Moth floral visitors of the three rewarding Platanthera orchids revealed by interval photography with a digital camera. J Nat Hist 48(17–18):1103–1109

    Article  Google Scholar 

  • Tolman T, Lewington R (2008) Collins butterfly guide: the most complete field guide to the butterflies of Britain and Europe. HarperCollins, Glasgow

    Google Scholar 

  • Turlure C, Choutt J, Baguette M & van Dyck H (2010) Microclimatic buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Global Change Biol 16(6):1883–1893

    Article  Google Scholar 

  • van Swaay C, Collins S, Dušej G, Maes D, Munguira ML, Rakosy L, Ryrholm N, Šašić M, Settele J, Thomas J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhoff I (2012) Dos and Don’ts for butterflies of the Habitats Directive of the European Union. Nature Conserv 1:73–153

    Article  Google Scholar 

  • Voith J, Bräu M, Dolek M, Nunner A & Wolf W (2016) Rote Liste und Gesamtartenliste der Tagfalter (Lepidoptera: Rhopalocera) Bayerns. Bayerisches Landesamt für Umwelt (LfU), Augsburg. https://www.lfu.bayern.de/natur/rote_liste_tiere/2016/doc/tagfalter_infoblatt.pdf. Accessed 14 May 2017

  • Vrba P, Dolek M, Nedvěd O, Zahradníčková H, Cerrato C, Konvička M (2014) Overwintering of the boreal butterfly Colias palaeno in Central Europe. CryoLetters 35(3):247–254

    CAS  PubMed  Google Scholar 

  • Weidemann H-J (1989) Anmerkungen zur aktuellen Situation von Hochmoor-Gelbling (Colias palaeno L. 1758) und Regensburger Gelbling (Colias myrmidone Esper 1781) in Bayern mit Hinweisen zur Biotop-Pflege. Schriftenreihe des Bayerischen Landesamtes für Umweltschutz 95:103–115

    Google Scholar 

  • Wellington WG (1957) Individual differences as a factor in population dynamics: the development of a problem. Can J Zool 35(3):293–323

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Bavarian Academy of Nature Conservation and Landscape management (ANL) and it is part of the ANL research project “Development of management strategies for habitats and species of the annexes of the Habitats Directive: Analysis of the reasons for the large-scale decline of C. palaeno”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Dolek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10841_2017_9996_MOESM1_ESM.jpg

MOESM1: For each of the three behavioural categories we present one detail out of one picture of the original time-lapse pictures. Therefore, picture quality and file size are low. 1a: Feeding: Fresh green leaf parts appear, where the caterpillar removed the upper layer of the leaf. Supplementary material 1 (JPG 32 kb)

10841_2017_9996_MOESM2_ESM.jpg

MOESM2: 1b: Moving: The caterpillar is turning around and moving back from feeding to resting position. Supplementary material 1 (JPG 22 kb)

10841_2017_9996_MOESM3_ESM.jpg

MOESM3: 1c: Resting: The cat-erpillar is sitting in its typical resting position at the base of the leaf, head downwards. Supplementary material 1 (JPG 20 kb)

MOESM4: Video example, cut from a longer sequence: The caterpillar (No. 88) on a sunny day moving, resting, and feeding (17.08.2014). After the night, the camera lens is fogged (no observation possible), later, dew-fall is visible on the leaves. The caterpillar is resting a long time and then starts to move and feed. In the evening, it starts to rain. (Note: camera time is 2 hours and 33 minutes ahead of CEST). Supplementary material 1 (MP4 0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolek, M., Georgi, M. Introducing time-lapse cameras in combination with dataloggers as a new method for the field study of caterpillars and microclimate. J Insect Conserv 21, 573–579 (2017). https://doi.org/10.1007/s10841-017-9996-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-017-9996-9

Keywords

Navigation