Skip to main content

Advertisement

Log in

Clinical evaluation of a new technique to monitor return electrode skin temperature during radiofrequency ablation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

Return electrode burns occur occasionally in cardiac radiofrequency ablation and more frequently in tumor radiofrequency ablation. A return electrode incorporating a thermochromic liquid crystal (TLC) layer, which changes color with temperature, has been shown in sheep studies to accurately indicate underlying skin temperature. We aimed to validate the accuracy of TLC-coated return electrodes in indicating skin temperature in the clinical setting of cardiac radiofrequency ablation.

Methods and results

The top layer of a standard return electrode was replaced with TLC. Fluoro-optic thermometer (FOT) probes were laid on the skin side of the return electrode, which was then placed on the left lateral mid-thigh of 18 patients (mean age = 61 ± 12 years, 12 men) undergoing cardiac radiofrequency ablation. Return electrode photographs were taken when FOT temperature exceeded 35 °C. TLC color changes, observed in 11 patients, were converted to temperature and compared with FOT temperature. TLC temperature correlated well with FOT temperature (Pearson’s coefficient = 0.97 ± 0.03). Bland–Altman analysis showed good agreement (mean temperature difference = −0.04 ± 0.08 °C, upper limit of agreement = 0.11 ± 0.005 °C, lower limit of agreement = −0.19 ± 0.005 °C). The maximum FOT temperature recorded was 39.6 °C. There was no thermal injury at the return electrode site on any patients, when assessed immediately after and the day following the procedure.

Conclusion

TLC-coated return electrodes accurately indicate underlying skin temperature in cardiac radiofrequency ablation and may help prevent burns. This technology might be essential in high energy radiofrequency ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morady, F. (1999). Radio-frequency ablation as treatment for cardiac arrhythmias. The New England Journal of Medicine, 340, 534–544.

    Article  PubMed  CAS  Google Scholar 

  2. McGahan, J., & Dodd, G. (2001). Radiofrequency ablation of the liver: current status. American Journal of Roentgenology, 176, 3–16.

    Article  Google Scholar 

  3. Gervais, D., McGovern, F., Arellano, R., McDougal, W., & Mueller, P. (2005). Radiofrequency ablation of renal cell carcinoma: Part 1, indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. American Journal of Roentgenology, 185, 64–71.

    Article  PubMed  Google Scholar 

  4. Nguyen, C., Scott, W., & Goldberg, M. (2006). Radiofrequency ablation of lung malignancies. The Annals of Thoracic Surgery, 82, 365–371.

    Article  PubMed  Google Scholar 

  5. Kjar, R., Powell, G., Schilcht, S., Smith, P., Slavin, J., & Choong, P. (2006). Percutaneous radiofrequency ablation for osteoid osteoma: experience with a new treatment. The Medical Journal of Australia, 184, 563–565.

    PubMed  Google Scholar 

  6. van der Ploeg, I., van Esser, S., van den Bosch, M., Mali, W., van Diest, P., Borel Rinkes, I., et al. (2007). Radiofrequency ablation for breast cancer: a review of the literature. European Journal of Surgical Oncology, 33, 673–677.

    Article  PubMed  Google Scholar 

  7. Recaldini, C., Carrafiello, G., Lagana, D., Cuffari, S., Bergamini, V., Ghezzi, F., et al. (2007). Percutaneous sonographically guided radiofrequency ablation of medium-sized fibroids: feasibility study. American Journal of Roentgenology, 189, 1303–1306.

    Article  PubMed  Google Scholar 

  8. Dinerman, J., Berger, R., & Calkins, H. (1996). Temperature monitoring during radiofrequency ablation. Journal of Cardiovascular Electrophysiology, 7, 163–173.

    Article  PubMed  CAS  Google Scholar 

  9. Burton, C. (1976). RF lesion generation. Applied Neurophysiology, 39, 77–79.

    PubMed  Google Scholar 

  10. Steinke, K., Gananadha, S., King, J., Zhao, J., & Morris, D. (2003). Dispersive pad site burns with modern radiofrequency ablation equipment. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 13, 366–371.

    Article  Google Scholar 

  11. Machi, J., Uchida, S., Sumida, K., Limm, W., Hundahl, S., Oishi, A., et al. (2001). Ultrasound-guided radiofrequency thermal ablation of liver tumors: percutaneous, laparoscopic, and open surgical approaches. Journal of Gastrointestinal Surgery, 5, 477–489.

    Article  PubMed  CAS  Google Scholar 

  12. Mulier, S., Mulier, P., Ni, Y., Miao, Y., Dupas, B., Marchal, G., et al. (2002). Complications of radiofrequency coagulation of liver tumours. British Journal of Surgery, 89, 1206–1222.

    Article  PubMed  CAS  Google Scholar 

  13. Wood, T., Rose, D., Chung, M., Allegra, D., Foshag, L., & Bilchik, A. (2000). Radiofrequency ablation of 231 unresectable hepatic tumors: indications, limitations, and complications. Annals of Surgical Oncology, 7, 593–600.

    PubMed  CAS  Google Scholar 

  14. de Baere, T., Bessoud, B., Dromain, C., Ducreux, M., Boige, V., Lassau, N., et al. (2002). Percutaneous radiofrequency ablation of hepatic tumors during temporary venous occlusion. American Journal of Roentgenology, 178, 53–59.

    Article  PubMed  Google Scholar 

  15. Yamagami, T., Nakamura, T., Kato, T., Matsushima, S., Iida, S., & Nishimura, T. (2002). Skin injury after radiofrequency ablation for hepatic cancer. American Journal of Roentgenology, 178, 905–907.

    Article  PubMed  Google Scholar 

  16. Bowles, B., Machi, J., Limm, W., Severino, R., Oishi, A., Furumoto, N., et al. (2001). Safety and efficacy of radiofrequency thermal ablation in advanced liver tumors. Archives of Surgery, 136, 864–869.

    Article  PubMed  CAS  Google Scholar 

  17. Bleicher, R., Allegra, D., Nora, D., Wood, T., Foshag, L., & Bilchik, A. (2003). Radiofrequency ablation in 447 complex unresectable liver tumors: lessons learned. Annals of Surgical Oncology, 10, 52–58.

    Article  PubMed  Google Scholar 

  18. Livraghi, T., Solbiati, L., Meloni, M., Gazelle, G., Halpern, E., & Goldberg, S. (2003). Treatment of focal liver tumors with percutaneous radio-frequency ablation: complications encountered in a multicenter study. Radiology, 226, 441–451.

    Article  PubMed  Google Scholar 

  19. Goette, A., Reek, S., Klein, H., & Geller, J. (2001). Case report: severe skin burn at the site of the indifferent electrode after radiofrequency catheter ablation of typical atrial flutter. Journal of Interventional Cardiac Electrophysiology, 5, 337–340.

    Article  PubMed  CAS  Google Scholar 

  20. Thiagalingam, A., Pouliopoulos, J., Barry, M., Salisbury, E., Pathmanathan, N., Boyd, A., et al. (2005). A thermochromic dispersive electrode can measure the underlying skin temperature and prevent burns during radiofrequency ablation. Journal of Cardiovascular Electrophysiology, 16, 781–788.

    Article  PubMed  Google Scholar 

  21. Cengel, Y., & Bowles, N. (1994). Thermodynamics and engineering approach. New York: McGraw-Hill.

    Google Scholar 

  22. Pearce, J., Geddes, L., Van Vleet, J., Foster, K., & Allen, J. (1983). Skin burns from electrosurgical current. Medical Instrumentation, 17, 225–231.

    PubMed  CAS  Google Scholar 

  23. Bland, J., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1, 307–310.

    Article  PubMed  CAS  Google Scholar 

  24. Haemmerich, D., & Schutt, D. (2007). Sequential activation of multiple grounding pads reduces skin heating during radiofrequency tumor ablation. International Journal of Hyperthermia, 23, 555–566.

    Article  PubMed  Google Scholar 

  25. Brace, C., Laeseke, P., Sampson, L., Frey, T., Mukherjee, R., & Lee, F. (2007). Radiofrequency ablation with a high-power generator: device efficacy in an in vivo porcine liver model. International Journal of Hyperthermia, 23, 387–394.

    Google Scholar 

  26. Solazzo, S., Ahmed, M., Liu, Z., Hines-Peralta, A., & Goldberg, S. (2007). High-power generator for radiofrequency ablation: larger electrodes and pulsing algorithms in bovine ex vivo and porcine in vivo settings. Radiology, 242, 743–750.

  27. Farina, D., Hacker, J., Moffat, R., & Eaton, J. (1993). Illuminant invariant calibration of thermochromic liquid crystals. Experimental Thermal and Fluid Science, 9, 1–12.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all the patients that participated in the study and the catheter laboratory and nursing staff for their assistance throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramesh Kovoor.

Additional information

The Sydney West Area Health Service (SWAHS) has patented this technology. Dr. Thiagalingam, Mr. Barry, Dr. Ross, and Dr. Kovoor are listed as co-inventors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trivedi, S.J., Lim, T.W., Barry, M.A. et al. Clinical evaluation of a new technique to monitor return electrode skin temperature during radiofrequency ablation. J Interv Card Electrophysiol 36, 307–314 (2013). https://doi.org/10.1007/s10840-012-9750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-012-9750-x

Keywords

Navigation