Skip to main content
Log in

A network of spiking neurons that can represent interval timing: mean field analysis

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Despite the vital importance of our ability to accurately process and encode temporal information, the underlying neural mechanisms are largely unknown. We have previously described a theoretical framework that explains how temporal representations, similar to those reported in the visual cortex, can form in locally recurrent cortical networks as a function of reward modulated synaptic plasticity. This framework allows networks of both linear and spiking neurons to learn the temporal interval between a stimulus and paired reward signal presented during training. Here we use a mean field approach to analyze the dynamics of non-linear stochastic spiking neurons in a network trained to encode specific time intervals. This analysis explains how recurrent excitatory feedback allows a network structure to encode temporal representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amit, D. J. (1989). Modeling brain function: The world of attractor neural networks. Cambridge [England], New York: Cambridge University Press. 89015741 Daniel J. Amit. ill.; 24 cm. Includes bibliographies and index.

  • Amit, D. J., & Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex, 7(3), 237–252.

    Article  PubMed  CAS  Google Scholar 

  • Amit, D. J., Gutfreund, H., & Sompolinsky, H. (1985). Spin-glass models of neural networks. Physical Review A, 32(2), 1007–1018.

    Article  PubMed  Google Scholar 

  • Barbieri, F., & Brunel, N. (2008). Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex? Front Neuroscience, 2(1), 114–122.

    Article  Google Scholar 

  • Brody, C. D., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: Discrete attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology, 13(2), 204–211.

    Article  PubMed  CAS  Google Scholar 

  • Brunel, N., & Wang, X. J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of Computational Neuroscience, 11(1), 63–85.

    Article  PubMed  CAS  Google Scholar 

  • Budd, J. M. (1998). Extrastriate feedback to primary visual cortex in primates: A quantitative analysis of connectivity. Proceedings of the Royal Society B: Biological Sciences, 265(1400), 1037–1044.

    Article  PubMed  CAS  Google Scholar 

  • Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, G. S., et al. (2009). Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378.

    Article  Google Scholar 

  • Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X. J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9), 910–923.

    Article  PubMed  CAS  Google Scholar 

  • Eliasmith, C. (2005). A unified approach to building and controlling spiking attractor networks. Neural Computation, 17(6), 1276–1314.

    Article  PubMed  Google Scholar 

  • Gavornik, J. P. (2009). Learning temporal representations in cortical networks through reward dependent expression of synaptic plasticity. Ph.D. dissertation, The University of Texas at Austin.

  • Gavornik, J. P., Shuler, M. G., Loewenstein, Y., Bear, M. F., & Shouval, H. Z. (2009). Learning reward timing in cortex through reward dependent expression of synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6826–6831.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. R., & Burkhalter, A. (1996). Microcircuitry of forward and feedback connections within rat visual cortex. Journal of Comparative Neurology, 368(3), 383–398.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, P. A., & Miall, R. C. (2006). A right hemispheric prefrontal system for cognitive time measurement. Behavioural Processes, 71(2–3), 226–234.

    Article  PubMed  CAS  Google Scholar 

  • Lisman, J. E., Fellous, J. M., & Wang, X. J. (1998). A role for NMDA-receptor channels in working memory. Nature Neuroscience, 1(4), 273–275.

    Article  PubMed  CAS  Google Scholar 

  • Machens, C. K., Romo, R., & Brody, C. D. (2005). Flexible control of mutual inhibition: A neural model of two-interval discrimination. Science, 307(5712), 1121–1124.

    Article  PubMed  CAS  Google Scholar 

  • Mastronarde, D. N. (1987). Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. Journal of Neurophysiology, 57(2), 381–413.

    PubMed  CAS  Google Scholar 

  • Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307–340.

    Article  PubMed  CAS  Google Scholar 

  • Miller, P., Brody, C. D., Romo, R., & Wang, X. J. (2003). A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. Cerebral Cortex, 13(11), 1208–1218.

    Article  PubMed  Google Scholar 

  • Moshitch, D., Las, L., Ulanovsky, N., Bar-Yosef, O., & Nelken, I. (2006). Responses of neurons in primary auditory cortex (A1) to pure tones in the halothane-anesthetized cat. Journal of Neurophysiology, 95(6), 3756–3769.

    Article  PubMed  Google Scholar 

  • Renart, A., Brunel, N., & Wang, X. (2003). Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks. In J. Feng (Ed.), Computational neuroscience: A comprehensive approach (pp. 431–490). Boca Raton: CRC Press.

    Google Scholar 

  • Renart, A., Moreno-Bote, R., Wang, X. J., & Parga, N. (2007). Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural Computation, 19(1), 1–46.

    Article  PubMed  Google Scholar 

  • Roudi, Y., & Latham, P. E. (2007). A balanced memory network. PLoS Computational Biology, 3(9), 1679–1700.

    Article  PubMed  CAS  Google Scholar 

  • Seung, H. S. (1996). How the brain keeps the eyes still. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 13339–13344.

    Article  PubMed  CAS  Google Scholar 

  • Seung, H. S., Lee, D. D., Reis, B. Y., & Tank, D. W. (2000). Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron, 26(1), 259–271.

    Article  PubMed  CAS  Google Scholar 

  • Shouval, H. Z., & Gavornik, J. P. (2010). A single cell with active conductances can learn timing and multi-stability. Journal of Computational Neuroscience. doi:10.1007/s10827-010-0273-0.

    Google Scholar 

  • Shuler, M. G., & Bear, M. F. (2006). Reward timing in the primary visual cortex. Science, 311(5767), 1606–1609.

    Article  PubMed  CAS  Google Scholar 

  • Staddon, J. E. (2005). Interval timing: Memory, not a clock. Trends in Cognitive Sciences, 9(7), 312–314.

    Article  PubMed  CAS  Google Scholar 

  • Super, H., Spekreijse, H., & Lamme, V. A. (2001). A neural correlate of working memory in the monkey primary visual cortex. Science, 293(5527), 120–124.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. J. (2001). Synaptic reverberation underlying mnemonic persistentactivity. Trends in Neurosciences, 24(8), 455–463.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harel Z. Shouval.

Additional information

Action Editor: Nicolas Brunel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavornik, J.P., Shouval, H.Z. A network of spiking neurons that can represent interval timing: mean field analysis. J Comput Neurosci 30, 501–513 (2011). https://doi.org/10.1007/s10827-010-0275-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0275-y

Keywords

Navigation