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Abstract
The structure of the Aβ(11–42) amyloid available in PDB makes possible the molecular analysis of the specificity of amyloid 
formation. This molecule (PDB ID 2MVX) is the object of analysis. This work presents the outcome of in silico experiments 
involving various alternative conformations of the Aβ(11–42) sequence, providing clues as to the amylodogenecity of its con-
stituent fragments. The reference structure (PDB) has been compared with folds generated using I-Tasser and Robetta—the 
strongest contenders in the CASP challenge. Additionally, a polypeptide which matches the Aβ(11–42) sequence has been 
subjected to folding simulations based on the fuzzy oil drop model, which favors the production of a monocentric hydrophobic 
core. Computer simulations yielded 15 distinct structural forma (five per software package), which, when compared to the 
experimentally determined structure, allow us to study the role of structural elements which cause an otherwise globular 
protein to transform into an amyloid. The unusual positions of hydrophilic residues disrupting the expected hydrophobic 
core and propagating linearly along the long axis of fibril is recognized as the seed for amyloidogenic transformation in this 
polypeptide. This paper discusses the structure of the Aβ(11–42) amyloid fibril, listed in PDB under ID 2MXU (fragment 
od Aβ(1–42) amyloid).
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Introduction

The volume of published papers which focus on amyloids is 
rapidly growing. Literature reviews [1] provide an up-to-date 
overview of current trends in protein misfolding research. 
This broad field encompasses various specific issues, such as 
the genetic underpinnings of amyloidogenesis and molecular 
studies [2], including protein folding simulations. Analysis 
of amyloid structures has to deal with the dynamics and 
flexibility of proteins, which must be capable of specific 
interactions with their intended ligands and substrates [3, 4]. 
The emergence of amyloids is linked to the peculiarities of 
the folding process, which still awaits a comprehensive theo-
retical description—despite many decades of research [5].

In order to study such phenomena, we require tech-
niques which would enable us to track the intermediate 
phases of folding. While traditional NMR is a useful 
tool, it requires soluble molecules [6], and that presents 
a problem when studying the pathogenicity of amyloids 
[7–9]. Much progress has recently been made owing to 
introduction of solid-state NMR [10]. One example is the 
elucidation of the structure of Aβ(1–42), and particularly 
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of its Aβ(11–42) fragment, which is now listed in PDB 
[11]. This amyloid is the focus of the presented work. We 
subjected it to analysis from the point of view of hydro-
phobicity distribution. The presented work follows upon 
the results presented in [12], where we single out frag-
ments exhibiting specific deviations from the theoretical 
(“idealized”) distribution of hydrophobicity expected in 
a globular protein and mathematically defined by a 3D 
Gaussian [13–15].

The Gaussian distribution peaks at the center of an ellip-
soid capsule. Its values decrease along with distance from 
the center, reaching nearly 0 on the surface. When the size 
of the capsule is adjusted to encapsulate the molecule in 
question, the corresponding Gaussian yields the theoretical 
(expected) values of hydrophobicity at any point within the 
protein body. This theoretical distribution is subsequently 
compared with the observed distribution of hydrophobicity, 
which depends on inter-residual interactions (themselves 
dependent on the mutual separation and intrinsic hydropho-
bicity of interacting residues). Differences between both dis-
tributions manifest themselves as either excess hydrophobic-
ity or hydrophobicity deficiencies in specific areas of the 
protein body. The former—if present on the surface—mark 
protein complexation interfaces [16], while the latter are 
typically associated with ligand binding cavities [17] which 
enable the protein to perform its biological function [18].

To-date studies of amyloids point to a specific disagree-
ment between the observed distribution of hydrophobicity 
and the theoretical (monocentric) Gaussian. In place of a 
central core, we are faced with linear propagation of repeti-
tive patterns stretching along the fibril’s main axis. Several 
fragments of the Aβ(1–42) polypeptide have been identi-
fied as amyloid seeds—this includes the fragments at 11–16, 
16–22 and 22–28 [12]. Consequently, our analysis will focus 
on these fragments in particular.

The Aβ(11–42) sequence has been used as input for pro-
tein folding simulation toolkits, including I-Tasser [19–22] 
and Robetta [23, 24]—both highly ranked in the CASP 
competition [25, 26]. Structures produced by both packages 
were assessed from the point of view of hydrophobicity dis-
tribution. In this respect, they proved to be highly diverse, 
ranging from near-globular to amyloid-like. In addition, we 
also generated several reference structures using software 
based on the fuzzy oil drop model (FOD), augmenting opti-
mization of nonbonding interactions with alignment with an 
external (Gaussian) hydrophobic force field.

Each of the presented toolkits produced five structures, 
enabling us to compile a ranking list sorted by increas-
ing differences between the observed structure and the 
theoretical Gaussian. This, in turn, shows how progres-
sive deviations from the monocentric hydrophobic core 
model eventually cause the polypeptide chain to trans-
form into a fibril, marked by alternating bands of high 

and low hydrophobicity. This analysis can be related to the 
reported polymorphism of amyloid structures [27].

This is why this paper can be treated as in silico 
experiment.

Materials and methods

Protein under consideration

Our analysis focused on the Aβ(11–42) amyloid listed in 
PDB under ID 2MXU [11]. It represents the Aβ(1–42) 
protein devoid of its N-terminal fragment. The PDB struc-
ture comprises 12 separate polypeptides arranged into a 
fibril. This structural form is treated as reference one for 
all models delivered by mentioned programs. The status of 
complete fibrils, status of the chain as part of the fibril and 
one selected chain treated as individual structural unit are 
taken as the reference objects for those generated in silico.

Folding of Aβ(11–42)

The Aβ(11–42) polypeptide was subjected to in silico 
folding simulations using two state-of-the-art protein fold-
ing toolkits: I-Tasser [19–22] and Robetta [23, 24]. Both 
packages consistently obtain high marks in the CASP [25] 
challenge and have been singled out as the most reliable 
computational tools currently available for this purpose 
[22, 23]. The diversity of the resulting structures has its 
roots in the reported polymorphism of amyloid forms [27].

In addition to the above, our study set was extended 
with five structures generated by a custom toolkit based on 
the fuzzy oil drop model, which acknowledges the influ-
ence of the aqueous solvent upon the chain in question. 
This influence is modeled as an external force field with a 
Gaussian distribution, promoting internalization of hydro-
phobic residues along with exposure of hydrophilic resi-
dues on the surface [13–15]. As the application requires a 
starting structure (referred to as the Early Stage intermedi-
ate) we used the 2MXU structure as its input.

All resulting folds (15 in total; five per application—
pursuant to CASP criteria), along with the structure avail-
able in PDB, were subject to analysis of the shape of their 
hydrophobic cores in two separate contexts: as a composite 
fibril and as an individual chain from the 2MXU file.

FOD model was applied for protein folding for selected 
targets available in CASP6 (2004) [24]. We submitted 
models for 23 targets with the highest DTT_TS value equal 
to 41.98.
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Fuzzy oil drop model (FOD)

The status of the hydrophobic core is expressed using the 
RD value which bases on the fuzzy oil drop model. This 
coefficient is calculated separately for two distinct variants: 
RD(T-O-R), which compares the observed distribution (O) 
with two reference distributions: theoretical (T) and uni-
form (R), and RD(T-O-H), where the uniform distribution 
is replaced by a distribution which reflects the distribution 
expressed by intrinsic hydrophobicity of each residue. The 
definition of these parameters will be given below in the next 
part of Materials and Methods. In addition, three correlation 
coefficients of the above hydrophobicity distributions are 
computed: H versus T, T versus O and H versus O called as 
HvT, TvO and HvO in this paper.

Since a detailed presentation of the fuzzy oil drop model 
can be found in [13–15] we will limit ourselves to a brief 
recapitulation of its core concepts.

The input molecule is encapsulated in an ellipsoid used 
to calibrate the 3D Gaussian function, which, in turn, yields 
theoretical values of hydrophobicity at arbitrary points in the 
protein body. In contrast, the observed distribution depends 
on inter-residual interactions (as described in [28]). Both 
distributions (T and O) are measured at specific points which 
correspond to the so-called effective atoms (averaged-out 
positions of all atoms comprising each residue). In addition, 
each residue is assumed to represent certain intrinsic hydro-
phobicity as listed in [19], which is also used in observed 
hydrophobicity calculations.

In order to meaningfully compare alternative distribu-
tions, we apply the so-called Kullback–Leibler divergence 
entropy formula [29]. Since the result produced by this for-
mula is a measure of entropy, it cannot be interpreted on its 
own—instead, it requires a reference value. This is why, in 
addition to T, we introduce another reference distribution 
denoted R, which stands from random. It is a uniform dis-
tribution which assigns every residue under consideration 
a hydrophobicity of 1/N where is N the number of these 
residues. Under these assumptions the RD value expresses 
the “closeness” of O to either T or R. Since—as discussed 
in [12]—in amyloid structures the observed distribution is 
dominated by the intrinsic properties of each participating 
residue, we also define another type of reference, denoted 
H, which reflects the intrinsic hydrophobicity of each amino 
acid in the input chain. This results in two distinct values of 
RD: one for the T-O-R variant and one for the T-O-H vari-
ant. In the first case, a RD value greater or equal than 0.5 is 
taken as indication that protein’s observed hydrophobicity 
profile does not follow the 3D Gaussian distribution, while 
in the other—that it explicitly follows the intrinsic model 
(H).

As already mentioned, our comparative analysis also 
relies on three distinct correlation coefficients, providing a 

pairwise comparison of all distributions: HvT, TvO and HvO 
(v stands from “versus”). Together, these coefficients express 
the influence of intrinsic hydrophobicity upon the structure 
of the hydrophobic core.

Globular proteins are usually closely aligned with T (this 
is particularly true for domains [30]), which means that 
hydrophobic residues are internalized while hydrophilic 
residues appear on the surface. Such conditions emerge as 
a result of “cooperation” between residues in an attempt to 
produce a common core. On the other hand, when residues 
act in a “selfish” manner, without cooperative tendencies, 
the result is a high value of HvO coupled with low (or even 
negative) values of both TvO and HvT. This suggests that the 
structure does not contain a monocentric core, and instead 
may exhibit other—in case of amyloid: linear propagation of 
repetitive patterns of hydrophobicity. Consequently, analysis 
of RD (together with the aforementioned correlation coef-
ficients) may reveal progressive dilution of the hydrophobic 
core in favor of an entirely different structural pattern.

In order to further identify strongly amyloidogenic frag-
ments, the above coefficients were also calculated for spe-
cific fragments of the input polypeptide.

Folding simulations were performed using computational 
resources provided by the Cyfronet AGH—Academic Com-
puting Center within the PL-Grid infrastructure. In fuzzy oil 
drop simulations the optimization of nonbonding interac-
tions was carried out using the GROMACS package (also 
provided by Cyfronet) [31, 32].

Results

Structure of the Aβ(11–42) fibril

The structure of the Aβ(11–42) fibril may be assessed on the 
basis of T and O hydrophobicity distributions, as illustrated 
in Fig. 1. The figure reveals typical discordance between 
both distributions, with the observed hydrophobicity remain-
ing high on the surface of the complex (contrary to expec-
tations). In addition, a characteristic sinusoidal pattern is 
observed—the hallmark of a complex comprising multiple 
identical subunits arranged in a linear fashion, with alternat-
ing bands of high and low hydrophobicity exposed on the 
surface.

RD and correlation coefficients characterizing the fibril-
lary form will be discussed further on, in conjunction with 
the analysis of structures generated by in silico folding 
models.

The distribution of T shown in Fig. 1 reveals the charac-
teristic concentration of hydrophobicity in the central part 
of fibril which is not followed by O distribution which rep-
resents sinusoid-like distribution along the whole fibril. The 
red lines do not represent the different O distributions. Only 



668	 Journal of Computer-Aided Molecular Design (2019) 33:665–675

1 3

two O profiles can bees in Fig. 1a. This is due to overlap-
ping of almost identical profiles for central polypeptides. 
Elimination of border polypeptide chains (chains A and L) 
visualizes it very clear (Fig. 2b). The T distributions for 
these polypeptides still represent different form depending 
of the position of polypeptide chain under consideration.

Since our analysis involves a complex which consists of 
a finite number of peptides, it does not accurately reflect 
the theoretical capability for unrestricted propagation. For 
this reason, we have singled out chain F (the central one) 
as representative of the fibril’s structure. This chain was 
subsequently analyzed from two perspectives: as a part of 
the fibril (with 3D Gaussian fitted to the whole complex) 
and as an individual molecule (with 3D Gaussian fitted 
only to this chain and with disregard of other chains dur-
ing O profile calculations). Figures 3a and 4a illustrate the 
theoretical, observed and intrinsic distributions for chain F. 

Besides sections where T is somewhat aligned with O (as 
well as with H), there are areas where both distributions 
diverge notably. In order to identify these discordant sec-
tions, we calculated HvT, TvO and HvO correlation coef-
ficients for individual 5 aa fragments using a moving frame 
approach, as shown in Fig. 3b and in Fig. 4b. These charts 
reveal fragments where all three coefficients adopt relatively 
high values. These fragments (residues 5 through 11) may 
be regarded as accordant with the 3D Gaussian model—they 
evidence the sort of cooperation which is required through-
out the whole protein for a monocentric hydrophobic core 
to emerge.

The remaining fragments exhibit discordance which, 
in extreme cases, may produce a conformation which is a 
polar opposite of theoretical predictions (negative values 
of TvO and HvT). In these cases, the observed distribution 
is driven by the “selfish” tendencies of each residue rather 

Fig. 1   Theoretical (T: blue) 
and observed (O: red) hydro-
phobicity distributions in the 
Aβ(11–42) fibril

Fig. 2   Theoretical (T: blue) 
and observed (O: red) hydro-
phobicity distributions in the 
Aβ(11–42) fibril presented in 
an overlapped mode (with all 
chains sharing the X axis): A 
all chains present in the fibril; B 
without one outlying chain from 
each end of the structure
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than by any tendency to produce a common hydrophobic 
core. Accordingly, we singled out fragments 11–16 and 
24–28 as dominated by intrinsic hydrophobicity, while 
the 18–23 fragment may be described as locally accord-
ant. Other fragments, while not exhibiting a clear prefer-
ence for either T or H, are included in our analysis to 
enable comparisons with structures produced by in silico 
tools. Their variable status (from globular to amyloid-like) 

will be discussed on the basis of RD and correlation 
coefficients.

Profiles observed for both views of chain F similarly 
reveal the presence of unexpected local maximum in the 
localization of expected local minimum in fragment 22–28. 
The discordant position of Lys16 and particularly Lys28 
destroy the expected maximum introducing local minimum. 
Taking into account that this characteristics is continued 

Fig. 3   Chain F analyzed as a 
component of the fibril: A T 
(blue), O (red) and H (green) 
hydrophobicity distributions; B 
correlation coefficients (HvO: 
blue, HvT: red, TvO: green) 
calculated for a 5 aa moving 
frame (in overlapped system). 
The indicated position on X 
axis represents the central 
residue in a given frame (i. e. 20 
corresponds to residue 20 in the 
18–19–20–21–22 frame)

Fig. 4   Chain F analyzed as 
an individual molecule: A T 
(blue), O (red) and H (green) 
hydrophobicity distributions; B 
correlation coefficients (HvO: 
blue, HvT: red, TvO: green) 
calculated for a 5 aa moving 
frame (in overlapped system). 
The indicated position on X 
axis represents the central 
residue in a given frame (i. e. 20 
corresponds to residue 20 in the 
18–19–20–21–22 frame)
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along the whole fibril. This is why the positions of lysines 
play the contradictory role in respect to centralization of 
hydrophobicity. Calculation for both forms reveals the unu-
sual distribution which can be even treated as contradictory 
status in respect to usual characteristics observed in globular 
proteins.

Comparative analysis of protein structures 
generated by in silico folding models

Structures generated by I-Tasser are labeled “I”, those gener-
ated by Robetta are labeled “R”, while those produced by 
the fuzzy oil drop software are labeled “F”. All structures 
are numbered, with their respective numbers affixed to the 
source label. Results are listed in order of increasing values 
of RD(T-O-R) for the whole molecule, meaning that F1 is 
the FOD output with lowest value, R1—Robetta’s, and so 
on.

Table 1 shows the full range of RD and correlation coef-
ficients calculated for the entire molecule and for selected 
fragments. The list also includes chain F seen as a part of the 
fibril (labeled Af—amyloid/fibril, to avoid confusion with 
FOD results) and as an individual molecule (Ai—amyloid/
individual). Table 1 also shows the status of the 29–42 frag-
ment, even though—while somewhat disordered—it does 
not resemble an amyloid seed [12].

According to Fig. 5, in models F1–R2, status of the 11–16 
fragment is consistent with the 3D Gaussian distribution. 
This property, typical for globular proteins, fails to hold for 
model I1. In contrast, models R5 and I5 exhibit clear amy-
loid-like characteristics. Their HvO coefficients reach very 
high values, while the remaining coefficients are negative, 
indicating strong influence of intrinsic hydrophobicity. The 
set includes chain F analyzed as part of the complex (Af). 
Notably, under FOD classification criteria, model I4 exhibits 
the strongest amyloid affinity of the 11–16 fragment from 
among all analyzed structures. Its hydrophobicity profiles 
and 3D representation are shown on Fig. 6. 

The summary shown in Fig. 7 shows that the 16–22 frag-
ment in structure I3 exhibits amyloid-like characteristics, 
while structures F1–R4 are generally consistent with the 
theoretical distribution.

Structures shown in Fig. 8 visualize the hypothesis that 
the folding following intrinsical hydrophobicity directs the 
process toward the amlyoid-like structural forms. Two struc-
tural forms compared in Fig. 8 show that the 16–22 frag-
ment may adopt a helical conformation, yet in an amyloid 
it becomes beta-like. In addition to that, these two models 
prove that the Aβ(11–42) sequence may, in fact, produce a 
globule which can be seen to break apart as it transforma-
tion into an uncoiled loop (Fig. 8b) on its way to the amyloid 
form.

As illustrated in Fig. 9, the fragment at 24–28 becomes 
amyloid-like in structures Af (chain F in fibril) and I4. Anal-
ysis of distribution charts in this figure shows that in models 
F1, R1, R2 and R3 the fragment retains globular characteris-
tics, while in model R4 it also resembles an amyloid. Sample 
3D structures are visualized in Fig. 10.

From among the analyzed structures, F1’s chain exhibits 
a particularly low RD(T-O-R) value, as shown in Fig. 11, 
where globular form was received with very little discord-
ance between T and O profiles. In contrast, the highest 
RD(T-O-R) value was recorded for model I5’s chain, with 
its T and O profiles illustrated in Fig. 12. To allow further 
analysis and comparison with other models, a selection of 
them is shown in Figs. 13 and 14. They visualize what kind 
of wide variety of structures can be produced by highly spe-
cialized programs.

In summary, we can single out structure I5 as potentially 
susceptible to linear propagation via complexation of identi-
cally folded polypeptides. Structure I5 (random coil struc-
tural form) also exhibits a propensity for complexation, how-
ever its distribution of hydrophobicity does not reveal the 
characteristic sinusoidal pattern observed in amyloids [12].

One can conclude that the main candidate for amyloid 
transformation in the Aβ(11–42) are two fragments: 11–16 
and 24–28. It can be seen in Table 1: the underlined sets of 
parameters denote models close to amyloid form: I4 and R4. 
These positions do not satisfy the condition of high value of 
RD(T-O-H). High value of this parameter requires a multi-
chain complex as it is rather unusual for an isolated chain. 
This conclusion is correct on the condition of fuzzy oil drop 
acceptance as the method to trace the hydrophobic core iden-
tification and its transformation. This is why conclusion can 
be limited just to such a case.

Discussion

Summing up the presented results, we can state that the 
Aβ(11–42) polypeptide may theoretically adopt various 
structural forms, including tightly packed globules charac-
terized by high solubility (good agreement between O and 
T distributions). The set of candidate structures produced 
by I-Tasser and Robetta is highly diverse—from coherent 
globules all the way to disordered folds. Of particular note 
are the structured generated using the FOD model, where the 
presence of an external force field (aqueous solvent) drives 
the folding process towards the generation of a monocen-
tric hydrophobic core—even though, under certain (so far 
unknown) conditions, this model may also produce strongly 
discordant structures.

Some of the obtained structures, e.g. I5 with RD(T-O-
R) = 0.768, appears capable of forming complexes with other 
identically folded chains. The structure in question includes 
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Table 1   Hydrophobicity-based parameters characterizing the struc-
ture of chain F from 2MXU in following forms: Af—when analyzed 
as a part of the fibril, Ai—when analyzed as an individual molecule, 

I#—as a result of simulation with I-Tasser, R#—as a result of simula-
tion with Robetta, F#—as a result of simulation with FOD model

Sequential numbers (1–5) after I, R and F sort models obtained with given program in order of increasing value of RD(T-O-R) calculated for the 
whole chain (residues 11–42). Parameters are given as as follows: RD for T-O-R and T-O-H variants, correlation coefficients (CC) for relations 
H versus T (HvT), T versus O (TvO) and H versus O (HvO). Id of structures given in bold distinguish fragment classified as amyloid; values 
italic are examples of forms close to amyloid form, understood as those expressing negative CC value of HvT and/or TvO with high CC value of 
HvO and with high RD values (in both variants)

FORM RD
11–42

CC
11–42

RD
11–16

CC
11–16

RD
17–23

T-O-R T-O-H HvT TvO HvO T-O-R T-O-H HvT TvO HvO T-O-R T-O-H

F1 0.234 0.175 0.440 0.850 0.531 0.335 0.059 0.188 0.653 0.807 0.138 0.119
F2 0.240 0.181 0.252 0.866 0.370 0.184 0.081 0.309 0.961 0.486 0.194 0.155
F3 0.242 0.156 0.139 0.854 0.415 0.249 0.050 0.380 0.835 0.773 0.169 0.083
R1 0.256 0.260 0.589 0.776 0.626 0.275 0.115 0.807 0.828 0.977 0.330 0.326
R2 0.283 0.260 0.659 0.777 0.676 0.182 0.137 0.751 0.941 0.810 0.354 0.329
R3 0.320 0.280 0.447 0.746 0.716 0.417 0.123 0.376 0.485 0.953 0.387 0.384
I1 0.376 0.240 0.258 0.696 0.687 0.346 0.035 − 0.208 0.717 0.257 0.304 0.248
I2 0.428 0.287 0.272 0.612 0.709 0.757 0.172 − 0.512 − 0.111 − 0.597 0.473 0.348
R4 0.457 0.371 0.166 0.477 0.651 0.385 0.167 0.226 0.628 0.871 0.187 0.191
I3 0.487 0.341 0.167 0.468 0.640 0.707 0.189 − 0.481 0.015 0.531 0.757 0.509
Ai 0.536 0.519 0.408 0.567 0.698 0.488 0.220 0.494 0.500 0.831 0.121 0.230
F4 0.555 0.285 − 0.073 0.412 0.329 0.534 0.064 − 0.533 0.566 0.084 0.447 0.197
F5 0.559 0.226 0.154 0.391 0.260 0.533 0.054 − 0.005 0.190 0.606 0.874 0.275
R5 0.660 0.521 0.172 0.254 0.641 0.655 0.201 − 0.474 − 0.075 0.739 0.675 0.458
Af 0.680 0.756 0.246 0.363 0.821 0.506 0.562 0.121 0.257 0.966 0.133 0.473
I4 0.715 0.392 − 0.262 0.415 0.311 0.903 0.176 − 0.469 − 0.452 0.788 0.464 0.166
I5 0.768 0.610 − 0.138 0.014 0.558 0.822 0.170 0.259 − 0.118 0.680 0.826 0.720

FORM CC
17–23

RD
24–28

CC
24–28

RD
29–42

CC
29–42

HvT TvO HvO T-O-R T-O-H HvT TvO HvO T-O-R T-O-H HvT TvO HvO

F1 0.632 0.939 0.716 0.269 0.251 0.845 0.866 0.965 0.264 0.189 − 0.030 0.824 − 0.307
F2 0.489 0.897 0.579 0.429 0.251 − 0.159 0.562 0.559 0.260 0.174 − 0.243 0.880 − 0.526
F3 0.092 0.908 0.440 0.353 0.179 0.521 0.717 0.912 0.168 0.123 − 0.386 0.910 − 0.306
R1 0.706 0.731 0.739 0.116 0.074 0.910 0.974 0.972 0.537 0.360 − 0.248 0.600 − 0.057
R2 0.608 0.653 0.863 0.367 0.091 0.566 0.718 0.937 0.433 0.431 0.675 0.650 0.373
R3 0.303 0.637 0.846 0.129 0.057 0.906 0.957 0.978 0.322 0.264 0.213 0.872 0.136
I1 0.416 0.808 0.826 0.530 0.092 − 0.167 0.243 0.854 0.618 0.675 0.259 0.674 0.514
I2 0.284 0.433 0.741 0.217 0.047 0.525 0.828 0.867 0.622 0.648 0.313 0.688 0.506
R4 0.766 0.959 0.632 0.705 0.192 − 0.641 − 0.633 0.978 0.575 0.486 − 0.199 0.536 0.085
I3 − 0.282 − 0.314 0.847 0.336 0.121 0.187 0.829 0.526 0.576 0.528 0.544 0.703 0.317
Ai 0.907 0.925 0.888 0.669 0.382 − 0.509 − 0.706 0.954 0.864 0.789 0.100 0.504 0.110
F4 0.388 0.453 0.288 0.435 0.237 − 0.499 0.464 0.435 0.711 0.582 − 0.062 0.433 − 0.260
F5 0.155 − 0.762 − 0.047 0.606 0.135 − 0.633 0.019 0.628 0.536 0.322 − 0.337 0.566 − 0.739
R5 0.065 − 0.089 0.665 0.226 0.037 0.726 0.872 0.952 0.810 0.784 0.266 0.410 0.322
Af 0.969 0.913 0.968 0.731 0.557 − 0.803 − 0.898 0.982 0.845 0.776 0.141 0.384 0.404
I4 − 0.879 0.444 − 0.194 0.702 0.133 − 0.787 − 0.840 0.949 0.765 0.660 − 0.045 0.705 − 0.104
I5 − 0.750 − 0.454 0.662 0.330 0.045 0.175 0.781 0.719 0.871 0.800 0.013 − 0.022 − 0.093
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fragments which may be regarded as seeds of a conforma-
tional pattern guided by the intrinsic hydrophobicity of 
individual residues (negative correlation coefficients—see 
Table 1).

The interpretation provided in [33, 34] suggests that 
external conditions may support the misfolding not 

supporting the formation of centric hydrophobic core. The 
form of all hydrophobicity profiles as observed in amyloid 
forms analyzed here mark the positions of lysines as highly 
discordant in respect to what is expected by T distribution. 
The position of lysines introduces sharp local minimum 
in O in location where the local maximum is expected 

Fig. 5   HvO (blue), HvT (red), 
TvO (green) calculated for 
residues 11–16 in successive 
structures as listed in Table 1

Fig. 6   Presentation of structure 
I4: A theoretical (T: blue) and 
observed (O: red) hydrophobic-
ity profiles; B 3D view. Red 
highlight in A and red fragment 
in B correspond to 11–16 resi-
due range

Fig. 7   HvO (blue), HvT (red), 
TvO (green) calculated for 
residues 16–22 in successive 
structures as listed in Table 1

Fig. 8   3D view of structures 
R3 (A), I3 (B) and chain F (C) 
with 16–22 fragment colored 
red. Yellow fragments mark the 
locations of beta sheets (par-
tially covered with red in C)
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(due to the lowest intrinsic hydrophobicity in the scale). 
Especially position Lys28 introduces significant discord-
ance. In this context, it is surprising to note the emer-
gence of hydrophilic bands formed by linearly arranged 
lysine residues, as such conformations should be deterred 

through optimization of electrostatic interactions—and 
yet they can be observed under experimental conditions. 
In fragments characterized by negative correlation coeffi-
cients the central position is frequently occupied by lysine. 
When multiple fragments aggregate in a linear manner, 

Fig. 9   HvO (blue), HvT (red), 
TvO (green) calculated for 
residues 24–28 in successive 
structures as listed in Table 1

Fig. 10   3D view of structures 
R4 (A), I4 (B) and chain F (C) 
with 24–28 fragment colored 
red. Yellow fragments mark the 
locations of beta sheets

Fig. 11   Presentation of 
structure F1: A theoretical (T: 
blue) and observed (O: red) 
hydrophobicity profiles; B 3D 
view. Red highlights in A and 
red fragments in B correspond 
to 11–16, 16–22 and 24–28 
residue ranges

Fig. 12   Presentation of 
structure I5: A theoretical (T: 
blue) and observed (O: red) 
hydrophobicity profiles; B 3D 
view. Red highlights in A and 
red fragments in B correspond 
to 11–16, 16–22 and 24–28 
residue ranges
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these lysines come into close contact with one another, 
forming a hydrophilic band. This shows that hydrophobic 
forces override electrostatic interactions, and that disrup-
tions in the external force field may produce a confor-
mation which depends on the intrinsic hydrophobicity of 
participating residues. The above interpretation provides 
indirect confirmation of the correctness of the fuzzy oil 
drop model, which, under ordinary circumstances, leads 
to the emergence of a monocentric hydrophobic core 
encapsulated by a hydrophilic “shell”. The importance of 
hydrophobic interactions for seeding amyloid transforma-
tion has already been noted in [35, 36]. In [36] the authors 
suggest that amyloid transformation may result from insuf-
ficient influence of the external force field (water) upon 
the folding process. This conclusion is consistent with the 
interpretation of results obtained using the fuzzy oil drop 
model, as presented in this paper.

In conclusion based on the presented model the weak-
ening of standard external force field (water environment) 
prevents it from driving the forlding process toward cen-
tralization of hydrophobic residues and allows the intrinsic 
hydrophobicity to dominate.

The effect in this case is the micellarization. In particu-
lar, a ribbon-like micelle is preferred despite non-favorable 
interaction of charged residues arranged in electrostati-
cally suboptimal form. The arguments for this conclusion 
are coming from in vitro experiments—especially shaking, 
which introduces air to water and—in consequence—much 
higher presence of inter-phase-related order of water mol-
ecules. This is why the structure of water in its standard form 
as well as under influence of external factors (not necessar-
ily of chemical character) should be in focus of research 
oriented on amyloid transformation.
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