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Abstract We describe the QSAR Workbench, a system

for the building and analysis of QSAR models. The system

is built around the Pipeline Pilot workflow tool and pro-

vides access to a variety of model building algorithms for

both continuous and categorical data. Traditionally models

are built on a one by one basis and fully exploring the

model space of algorithms and descriptor subsets is a time

consuming basis. The QSAR Workbench provides a

framework to allow for multiple models to be built over a

number of modeling algorithms, descriptor combinations

and data splits (training and test sets). Methods to analyze

and compare models are provided, enabling the user to

select the most appropriate model. The Workbench pro-

vides a consistent set of routines for data preparation and

chemistry normalization that are also applied for predic-

tions. The Workbench provides a large degree of automa-

tion with the ability to publish preconfigured model

building workflows for a variety of problem domains,

whilst providing experienced users full access to the

underlying parameterization if required. Methods are pro-

vided to allow for publication of selected models as web

services, thus providing integration with the chemistry

desktop. We describe the design and implementation of the

QSAR Workbench and demonstrate its utility through

application to two public domain datasets.
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Introduction

The drug discovery process can be divided into four broad

categories: target identification, lead discovery, lead opti-

mization and drug development. The transition from lead

optimization to drug development involves the selection of

one compound from a series for further evaluation. Thus it

is in the lead optimization phase that the important com-

pound properties are defined. Lead optimization is a multi-

objective process involving many experimental parameters

(assays) relating to target activity, site of action, physico-

chemical properties, target selectivity, off-target activities,

DMPK and toxicity. Pharmaceutical companies have gen-

erated large amounts of data related to many of these end-

points and in silico models for QSARs (quantitative

structure activity relationships) and QSPRs (Quantitative

Structure Property Relationships), can be established to

relate the experimental data to computational parameters

and chemical (sub)structure descriptors [1, 2]. The models

are generated with two end-points in mind: (a) generating

an understanding of the properties or chemical features that

are correlated with the assay in question to aid in com-

pound design and (b) prediction of multiple assays allow-

ing ranking of compounds prior to synthesis. It should be

noted that these two end-points are themselves often in

competition—the most predictive model may not be the

most interpretable [3–5].
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The QSAR model building process can be divided into a

number of steps: data preparation, data normalization,

descriptor calculation, model building, model validation

and model publication. There are guidelines emerging

around how to perform each of these steps [6]. Methods for

alternative descriptor calculation [7] and model building

methods [8] are being sought. However, the over-riding

conclusion from these publications is that no descriptor set

or model building method will be optimal for all circum-

stances. This situation is compounded by the fact that many

of the modeling methods are available in different software

packages with a variety of data formats, front-ends and

model export capabilities. This leads to users tending

towards the systems they know best or which fit most

appropriately with downstream or upstream systems.

Within the context of the pharmaceutical industry, for a

model to be useful it must be built in a timely manner,

retrospective analysis is of only limited utility to a pro-

gram, and it must be possible to apply the model (or

models) within the standard workflow of the program team.

A request from a chemist to a QSAR expert to run a set of

predictions on a list of compounds is unlikely to be

forthcoming unless the modeler is deeply embedded in the

program and can turn around predictions quickly. Better

still, the chemist should work with the modeler to under-

stand which models are appropriate and be able to run them

as required. The number of available assays and related

models coupled with limited expert QSAR resource leads

to a continual conflict between the needs of individual

programs and the development of more widely applicable

global models. There is a need to evaluate any global

model in the context of the particular program and to

update global models as new data are generated.

Thus new approaches to QSAR modeling are required to

address these issues. The DiscoveryBus is one such system

developed to allow for a more automated approach to

model building through competitive workflow [9]. The

AutoQSAR approach can automatically regenerate models

as new data become available [10, 11]. AZOrange is an

Open Source machine learning platform developed at

AstraZeneca [12]. The Automated Modeling Environment

(AME) developed at GlaxoSmithKline is another such

system [13]. AME provided a slice through the whole

modeling workflow, from data gathering from corporate

databases through to model publication. However, the

system required significant resource to maintain and

development and expansion required expert technical skills

beyond most QSAR exponents.

In this paper we describe our experiences of QSAR

modeling within a pharmaceutical setting and illustrate

how these, along with our learning from AME, led us to the

development of the QSAR Workbench, a system for

automated QSAR data preparation, model building, model

validation and model publication. The core of the system is

built using a state-of-the-art workflow tool (Pipeline Pilot

[14]) and, as such, all important parameters are exposed

directly to the QSAR modeler. The system is highly cus-

tomizable as workflows can be modified or new ones cre-

ated. Experts can make available well designed model

building workflows as starting points for different model-

ing scenarios with categorical or continuous data and a

variety of descriptor sets. This is an important feature of

QSAR Workbench as it allows current best practice, as

defined by modeling experts, to be captured and then

redeployed by less experienced users on their own data

sets. The implementation guides the user through the model

building process in a straightforward and logical manner.

The final published models are themselves workflows and

can be published as web services, making them available to

end users through the corporate model prediction web-

service.

The paper proceeds as follows. In the next section we

describe the rationale for our approach, followed by a

summary of the implementation of QSAR Workbench with

more detail in the supporting information. Next we illus-

trate the utility of the system with reference to two public

domain datasets, toxicity endpoints [15–17] from the

CAESAR (Computer Assisted Evaluation of industrial

chemical Substances According to Regulations) project

[18]. Finally, we conclude with a discussion of our lear-

nings and future steps.

Rationale

The pharmaceutical industry, GSK included, has a long

history in the use of QSAR modeling to support the drug

discovery process. The models fall into two broad cate-

gories: (1) global models that are built on diverse datasets

of potentially tens of thousands of data points and are of

general applicability, (2) local models built specifically for

a series or project. Local models may be built on the same

end points as the global models, where for example the

global model is less performant or there is a significant

shift in either the gradient (for a linear model) or the

magnitude of prediction. For example, it is not uncommon

to find series of compounds where the global model pre-

serves the trend but the prediction is shifted. Local models

are also relevant to target and selectivity type modeling.

The individual models may themselves be combined

into other models to guide compound design. An example

is shown in Fig. 1, which illustrates the use of a model of

models to help focus a program into the appropriate regions

of chemical space. It is in such applications that QSAR

experts add real value to the program teams and hence

there is a need to make the building of individual models as
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straightforward as possible without sacrificing quality. This

allows the modeler to focus on the important tasks of

assessing and critiquing models and applying them to real

world problems.

The modeler is faced with a large number of decisions in

relation to model building, choice of descriptors and mod-

eling methods being just two. Figure 2 illustrates the scale

of the problem. Several years ago we undertook an exercise

to evaluate the performance of various modeling methods

and descriptors for modeling of Cytochrome P450 3A4

inhibition. The models showed a range of performance in

terms of specificity and sensitivity, the choice of which

would depend on the application domain. The PLSDA_3-

class model stands out as having a reasonable balance of

specificity and sensitivity, though other models could be

more appropriate in specific applications. Thus the ability to

generate a range of models with multiple modeling meth-

odologies would be advantageous. However, it took many

FTE months of work to generate and analyze these models.

Thus, whilst both these examples are great science they

do not scale. A third issue relates to an earlier point, for a

model to be useful it needs to be both timely and appli-

cable. At GSK we have a SOAP web-service system that

allows us to deploy models that chemists can access

through web-based tools and in applications such as

Helium [19]. There are currently over 50 global models

and a similar number of local models available to aid in

compound design at GSK. Maintaining, validating and

updating these models present significant issues and could

easily take the resource of several highly skilled FTEs. It is

these three factors that have led us to look at mechanisms

for bringing a greater degree of standardization and auto-

mation to the QSAR modeling process.

An interesting perspective on QSAR can be gained by

casting the problem in the light of the CRISP-DM paradigm

[20]. We have used this approach previously when consid-

ering HTS data mining [21]. Within the CRISP-DM model

the process can be broken down into six steps: (1) business

understanding, (2) data understanding, (3) data preparation,

(4) modeling, (5) evaluation, (6) deployment. Clearly steps

(1) and (2) rely on the modeler being closely integrated with

the program team and having a good understanding of which

models are required and how they are being applied. It is our

belief that within a mature field such as QSAR modeling it

should be possible to design systems that can make steps 3, 4

and 6 as straightforward as possible and provide all the

necessary tools and statistics to enable 5. Furthermore, we

would suggest that such a system not only enables good

science but can actually promote better science as the expert

is freed up to focus on the key aspects of the problem and

applying models in real world situations.

AME [13] represented our first approach to building

such a system. This was a fully functional system that took

data from the corporate repository, built models and had

the ability to publish models to the internal web-service.

Using this system we were able to build 11,000 models

across 326 endpoints in a period of weeks. The utility goes

far beyond the individual models, allowing many strategic

questions to be addressed: are there subsets of descriptors

that work best, do some statistical methods work better

than others, are there combinations of descriptors and

methods, do larger data sets lead to better models and so

on? The main problem with AME was one of support-

ability. It required full time IT support to maintain and

implement new methods with the result that the modeler

had the impression of using a black box.

Fig. 1 Example application of

QSAR modeling to direct a

program team to appropriate

regions of chemical space.

A PLS model was built on

models for target activity and

liability end-points (P450s,

hERG). The shaded area was

identified as the most relevant

and the chemistry team was able

to focus its efforts on

synthesizing compounds in this

region
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QSAR Workbench represents our progression to the

next generation of automated QSAR model building that

addresses many of the issues described above. In the

next section we describe the system in more detail, with

a fuller technical implementation in the supporting

information.

QSAR Workbench implementation

Overview

A fuller description of the system, with example screen-

shots, is provided in the supporting information. Here we

shall outline the main design objectives and features of the

system. The subsequent example applications provide

some more detail on points of particular relevance.

Our goals in designing the QSAR Workbench were:

(a) to decouple the scientific workflows from the User

Interface so that the QSAR expert could maintain con-

trol over the important features and avoid the black-box;

(b) to provide a rich environment for evaluating and

triaging models; (c) to build individual models rather

than employ competitive modeling workflows or in any

other way automatically select models, the user sees all

models and uses their own judgment, guided by the

plots and statistics, on the most appropriate model for

the intended use; (d) to have the ability to publish

models for general use; (e) to publish validated model

building workflows, or subsets thereof, so that users can

quickly assess the model landscape and gain insight into

what sorts of models and descriptor sets are likely to be

most applicable (if any) to the problem at hand; (f) to

capture the output from the modeling process in a

manner that permits easy communication of how the

model is built, model performance and potentially

important descriptors.

Pipeline Pilot seemed an ideal candidate as an envi-

ronment in which to build the application because of

existing web-service integration, the availability of a

number of QSAR modeling methods, links to third-party

software such as R and a set of rich reporting tools.

Calculations presented in this paper were performed on

a single node of a 64-bit Quad-core Windows laptop with

Intel i7 processors running at 1.73 GHz, with 16 GB

RAM.

Application design

QSAR Workbench is a lightweight Pipeline Pilot web

application that provides an intuitive, user centric, sandbox

environment for building, validating and publishing QSAR

models. Although aimed at workgroup sized teams of

users, the application also provides enterprise scale capa-

bilities such as integration points via Web Services for

existing corporate modeling applications and workflow

capture and replay.

QSAR Workbench is a JavaScript based Rich Internet

Application (RIA) [22, 23] where the majority of the

application’s code resides in the client tier whilst the

server side layer of the application is simply responsible

for providing data (usually formatted as XML, [24] JSON

[25] or HTML [26]) to the client layer, this application

design is commonly referred to as AJAX [27]. QSAR

Workbench makes extensive use of the Pipeline Pilot

Enterprise Server as an application server; for example to

provide JSON formatted data to the client application, as a

scientific modeling platform; to provide services to build

and validate models using several learner algorithms and

also as a reporting server to return HTML formatted data

Fig. 2 Many person months of

effort were required to produce

a diverse set of models for

Cytochrome P450 3A4

inhibition, covering different

descriptor and modeling

methodologies
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to the client. The implementation uses the Pipeline Pilot

Client SDK (Software Development Kit) which allows

communication between the client and Pipeline Pilot via

SOAP [28] Web Services [29] and also several extensions

to the SDK to provide tight integration with a third party

JavaScript library. The workbench utilizes a custom

extension to the Pipeline Pilot reporting collection which

allows for flexible client side validation of HTML forms.

The web application is decoupled from the underlying

modeling workflows. The web forms and computational

processes are created and run by standard Pipeline Pilot

protocols making it straightforward for anyone familiar

with Pipeline Pilot to update and maintain the core science

protocols e.g. to add new descriptors or modeling meth-

ods. The web application locates these protocols from

specific folders on the server, making it possible to add

new processes without modifying the user interface

directly.

QSAR Workbench is organized as a user-based system,

with each user managing a set of projects. On loading a

dataset of structures and endpoint to be modeled the user

has two options. The user can run one of a number of

preconfigured validated protocols that can encapsulate part

or all of the modeling process as described below. Thus

with a single button click the system can build models and

present the results, giving the user feedback on the sys-

tem’s ability to model the endpoint. Alternatively the user

can follow a guided workflow that takes them through each

stage of the process in a more manual and customizable

fashion. The modeling workflow consists of the following

steps: (1) Prepare data, (2) Split data, (3) Descriptors, (4)

Build Model, (5) Validate Model, (6) Publish. We describe

each of these briefly.

Prepare data

This allows the user to apply appropriate desalting,

chemistry normalization and standardization to business

rules compatible with the descriptor definitions. The

response property can be normalized in a number of ways

including scaling to unit variance or log transformation.

Continuous data can be converted to categorical and binary

categories created.

Split data

Several algorithms are provided for splitting the data into

test and validation sets: clustering on chemical fingerprints

or properties, stratification according to activity or random

splits can be generated. Several different methods can be

applied within the scope of the project and models will be

built over all of them. Tools are also provided to visualize

the splits in a user-defined property space and these also

allow the user to generate a manual split if desired.

Descriptors

A full range of standard 1D, 2D and 3D descriptors are

available as listed in the supporting information. These

include physicochemical property calculators, e-State val-

ues, topological indices as provided by standard Pipeline

Pilot components. The system has a user extension allow-

ing the inclusion of additional descriptors and it is

straightforward to replace the standard descriptors, e.g. for

calculated logP, with a preferred version. Once descriptors

are calculated, sets of descriptor subsets can be created and

models can be built over each subset.

Build model

The system provides access to a set of modeling techniques

as shown in Table 1.

These provide access to a range of linear and non-linear

methods. The user can select one or more methods and

models are built over the combination of data splits,

descriptors and modeling methods to provide a matrix of

models. Note that we have taken the decision not to employ

competitive workflows in building these models. The

choice of the appropriate model is left to the user. The

model’s own internal cross-validation or train/test split (if

any) is applied to the QSAR Workbench Training Split

when building the model.

Validate model

This is the most critical part of the process, providing tools

for validating models and evaluating a potentially large

model landscape. The models are applied to the QSAR

Workbench Test Split and a number of statistics and plots

are automatically generated to allow the user to compare

the models. The results view contains summary plots

appropriate to the modeling endpoint (categorical or con-

tinuous). These include a ROC [30] or REC [31] curve and

other plots allowing a quick visualization and assessment

of model performance.

The intention is to provide the user with an overview of

the overall performance of the various model combina-

tions, as well as highlighting potential informative features

such as a particular learner that always models well, or one

model that performs particularly better than the others,

indicating potential over-fitting or other issues. The issue of

finding chance correlations when running such a process

should not be overlooked and these summary plots provide
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some reassurance that you do not end up focusing on one

outlier model that happens to have good statistics by

chance. Below the summary plots is a spreadsheet view

containing more detailed statistics. This is sortable and

allows the user to select models for more detailed analysis.

The detailed view provides a mechanism for comparing a

small number of models and making a choice as to which,

if any, to publish. Validate model also provides methods

for running predictions against additional external valida-

tion sets such as temporal datasets.

Publish

If a model of sufficient quality is obtained, the user can

choose to publish it. This makes the model available to all

users in Pipeline Pilot. More importantly the publishing

process provides access to the model by external web-

services. This uses the fact that Pipeline Pilot protocols are

themselves web-services and protocols are provided to list

published models and apply them to user-supplied datasets.

One of the key features of the QSAR Workbench is the

ability to remember and document the steps taken in

building the model. These steps are applied when pub-

lishing the model so that the same data preparation steps

are automatically applied when making predictions. In

addition, a model report is automatically generated as a

PDF document and also included in the model component

help text. The model report contains full details on the

model building process and performance, thus providing

appropriate documentation for inclusion in electronic Lab

Notebooks and to link from prediction tools to allow users

to see the model details.

In addition to models, users can publish the model

building protocol, consisting of one or more of the sub-

steps involved in creating a model (or models). Thus the

user can publish a protocol that automates just the chem-

istry preparation stage or can build all available models

against a categorical endpoint. These are available to other

users and can be accessed via the front page on loading a

dataset.

Use cases

As an example of the use of the QSAR Workbench we

have chosen to revisit two of the five environmental toxi-

cology endpoints previously modeled as part of the CAE-

SAR initiative [15–18]. We will show how use of the

QSAR Workbench framework can enable practical explo-

ration of a large model space, identifying potential outlier

models, and trends and biases caused by specific descrip-

tors, statistical methods or, more commonly, training/test

set splits. The rich reporting available in the model triage

allows identification of the pros and cons of individual

models beyond standard statistical metrics.

Exploring model space

For the purpose of consistency we have chosen to explore

identical descriptor and training/test set splits for all

models. Each dataset was split into a training set and a test

set at two different percentages for three of the available

algorithms described in the supplementary material. The

algorithms chosen were Random, Individual Clusters

(Optimized) and Random Per Cluster. This results in six

different splits for each endpoint. In addition we have

utilized the training/test set split as defined in the QSAR

Model Report Format (QMRF) submissions for the two

endpoints studied, available from the CAESAR web-site

[32]. Table 2 provides a summary of all splits used, and the

labels used to reference them in subsequent discussion.

To explore descriptor space we have selected a total of

194 2-dimensional descriptors. Full details of the descrip-

tors are provided as supporting information. The total

descriptor set was partitioned into ten descriptor subsets.

Table 3 gives a summary of the descriptor subsets, and the

labels used to reference them in subsequent discussion.

We have employed all relevant statistical model learner

methods for each endpoint as defined in Table 1. For cat-

egorical endpoints there are five methods, for continuous

endpoints four methods.

For each endpoint we have explored the full combina-

torial model space available from the combination of splits,

Table 1 Statistical learners available in QSAR Workbench

Statistical method Categorical Continuous Details

PP Bayes Yes No Naı̈ve Bayes as implemented in Pipeline Pilot [41]

PP RP forest Yes No Recursive partitioning forest model [42] as implemented in Pipeline Pilot

PP RP tree Yes No Recursive partitioning tree model [42] as implemented in Pipeline Pilot

R NN Yes Yes Neural network model as implemented in R package nnet [43]

R SVM Yes Yes Support vector machine model as implemented in R package e1071 [44]

PP PLS No Yes Partial least squares model as implemented in Pipeline Pilot

R PLS No Yes Partial least squares model as implemented in R package pls [45]
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descriptor subsets and learner methods detailed above. For

categorical endpoints this gives rise to a potential model

space of 350 models, for continuous endpoints 280 models.

The QSAR Workbench also allows a fourth dimension of

model space to be explored, namely the underlying

parameters of the learner methods. However for the sake of

this work we have excluded this dimension, and simply

exploited the default parameters for the underlying Pipeline

Pilot implementation of each method.

Skin sensitization classification models

Assessment of skin sensitization potential is a requirement

under REACH Annex VII. Structural data were provided by

the original authors. The raw data are classified into five cat-

egories: non; weak; moderate, strong; extreme. Though the

majority of statistical methods currently exposed through the

QSAR Workbench are able to build multi class models, we

have chosen to follow the work of Chaudry et al. [15] who

built binary classifiers. All results presented in this work have

been defined using a ‘‘non-sensitizer’’ class containing all

compounds with raw classification ‘‘non’’ or ‘‘weak’’, result-

ing in a total of 108 non-sensitizers and 101 sensitizers. For the

purposes of statistical calculation—e.g. model specificity—

the positive class is defined as ‘‘sensitizer’’ (Fig. 3)

Of the potential 350 models, 346 were successfully

built. Plots of Train versus Test ROC AUC and compara-

tive ROC plots over the successfully built models are

shown in Figs. 4 and 5 respectively. All models are shown

for illustration, however, the interactive triage in the

Workbench means that we would rarely look at the full set

of results in this way, more commonly filtering down to a

few models of interest. From Fig. 4 it is possible to observe

a potential trend in terms of models exhibiting over-fitting.

There is a clear set of models with very high training set

ROC AUC (*1.0) yet a broad range of values for test set

ROC AUC, these are built mostly using the R NN learner

method. The interactive nature of the model triage report

allows selection of a subset of models from the chart.

Selection of the models with a ROC AUC score of *1.0

for the training set and passing these through to the second

step of the model triage report reinforces the impression

given by the comparative chart: of the 39 selected models,

28 were built using the R NN method; 3 with PP Bayes; 8

with R SVM. Analysis of the different train/test set splits

used in these likely over-fit models shows no overall trend,

4 models use From Paper; 10 IndOpt50; 4 IndOpt75; 9

Rand50; 3 Rand75; 4 RPC50; 5 RPC75. Again there is no

obvious trend in the descriptor subsets used, 8 models use

Chi_ECFP6_Estate_FCFP4_MolProps; 7 ECFP6; 4

Estate_molprops; 5 FCFP4; 8 FCFP4_Molprops.

This analysis might lead us to distrust the models built

using the R NN method in the context of this study.

However it is most likely that the reason for this arises

from a sub-optimal choice of learner parameters for mod-

eling this data. In real-life application of the QSAR

Workbench the modeler would almost certainly re-visit this

Table 2 Details of training/test set splits used for all endpoints. For

details of split algorithms see the data set splitting section above and

in the supplementary material

Split label Training set

percentage

Split algorithm

Rand50 50 Random

Rand75 75 Random

IndOpt50 50 Independent clusters (optimized)

IndOpt75 75 Independent clusters (optimized)

RPC50 50 Random per cluster

RPC75 75 Random per cluster

From Paper 80 As defined in the QMRF

submissions

Table 3 Details of descriptor subsets used for all endpoints. Further details on the descriptors are given in supporting information

Descriptor subset Number of

descriptors

Descriptor subset details

Chi 12 Kier-Hall topological Chi indices [46]

ECFP6 1 Extended connectivity fingerprint with atom type classes, diameter 6 [47]

Estate 161 Electrotopological state values and counts [48–50]

FCFP4 1 Extended connectivity fingerprint with functional type classes, diameter 4 [47]

Molprops 19 A set of simple common molecular properties and counts as implemented in

Pipeline Pilot

Chi_Molprops 31 Combination of subsets Chi and MolProps

ECFP6_Molprops 20 Combination of subsets ECFP6 and MolProps

Estate_Molprops 180 Combination of subsets estate and MolProps

FCFP4_Molprops 20 Combination of subsets FCFP4 and MolProps

Chi_ECFP6_Estate_FCFP4_Molprops 194 Combination of subsets Chi, ECFP6, estate, FCFP4 and MolProps
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dimension of model space to understand better the root

cause. Here we shall simply discount these—and other R

NN derived models—from further consideration.

Returning to the first step of the model triage report, we

now investigate the small set of ‘‘best’’ models—those with

high ROC AUC for both training and test sets. Again we look

at the break down of statistical method, training/test set splits

and descriptor subsets. Of the 5 models, 2 are built using PP

Bayes and 3 with R SVM. Considering the training/test set

splits: four use From Paper and one RPC 75. In the descriptor

subset dimension the model breakdown is as follows: three

use Chi_ECFP6_Estate_FCFP4_Molprops; one ECFP6_

Molprops; one FCFP4_Molprops. Though this subset of

models is almost certainly too small to draw any concrete

conclusions, it already raises some suspicions. The training/

test set split From Paper was generated in a very similar

manner to RPC75—‘‘by random but stratified, sampling’’

[15]. Though this mechanism for defining a test set is com-

monly employed, there is a risk of over-emphasizing the

model quality from test set statistics. Because the test set is

selected as a subset of structurally derived clusters, there is

an explicit similarity between the training set and test set.

This lack of independence means one would generally expect

the test set statistics to be of similar quality to the training set.

To examine this effect the QSAR Workbench provides

analysis tools for visualizing the training/test set splits in a

two-dimensional representation of structural similarity (the

Analyze Split task). In Fig. 6 three such plots are shown,

Fig. 3 Model validation and triage view. The view shown is for

categorical models. The summary plot of AUC test versus train is

scaleable. The right-hand plots update with the selected models in the

spreadsheet. Models are grouped by model type and are sortable by

the different columns. Selected models can be progressed to a more

detailed view, providing more information on individual models

Fig. 4 ROC plot for training versus test set for all models built for

the skin sensitization end point
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these have been generated using the ECFP_6 fingerprint. It

is immediately obvious that the From Paper and RPC75

splits have very similar distributions, with test set com-

pounds evenly interspersed with training set compounds. In

contrast the IndOpt75 plot shows clear ‘‘islands’’ contain-

ing just training or just test set compounds. So, although

these five ‘‘best’’ models seem to show robust statistics for

both training and test sets, an experienced modeler looking

to build a model with reliable predictive power, may not be

entirely happy with any of them. Thus, we now look at

models with balanced training/test-set statistics in the hope

that the final model would provide greater predictive power

in real-life application.

A ‘‘balanced’’ set of models was selected from step one of

the model triage report. Figure 7 shows the filtered set of

comparative ROC plots for training and test sets. This subset

of 16 models shows no overall trend in terms of statistical

method, containing three models built using PP Bayes; 6

with PP RP Forest; 2 with PP RP Tree; 1 with R NN; 4 with R

SVM. As with the ‘‘best’’ model set, these models do show a

strong preference for training/test set splits defined with

random selection within individual clusters: 12 models use

From Paper; two IndOpt75; two RPC75. The descriptor

subsets used show no major overall trend: 3 use Chi_ECF-

P6_Estate_FCFP4_Molprops; 1 ECFP6_Molprops; 3

Estate; 4 Estate_Molprops; 1 FCFP4; 2 FCFP4_Molprops; 4

Molprops. However it is interesting to note that 12 of the 16

models include the simple set of molecular properties and

property counts—the subset Molprops. This is an appealing

result as these descriptors are simple to interpret—an

important factor in judging the quality of QSAR models

according to the OECD principles [33]. Following the dis-

cussion about the ‘‘best’’ model set, we here chose to set aside

models built using the From Paper and RPC75 splits.

The two remaining models, which both use the Ind-

Opt75 split, and the same learner method (PP RP Tree),

have identical statistical measures, and confusion matrices.

As such the preference would be for the model using the

simplest descriptor subset, MolProps. The confusion matrix

for this model is shown in Fig. 8. An appealing aspect of

the use of the PP RP Tree method is that we can get a direct

understanding of the importance of individual descriptors

to the final model. Table 4 shows the ‘‘Number of Ques-

tions’’ in which each of the 19 descriptors within the

MolProps subset is used, each question representing a

branch within the tree. As can be seen this model could be

further simplified with little loss of quality by only con-

sidering the five most significant descriptors: ALogP;

Molecular_Weight; Num_RotatableBonds; Num_Bonds;

Num_Atoms. Table 5 shows comparative statistics for

several models: this manually selected ‘‘balanced’’

model—using PP RP Tree/IndOpt75/MolProps; the model

with the best test-set ROC AUC—using PP Bayes/From-

Paper/Chi_ECFP6_Estate_FCFP4_MolProps; the pub-

lished model of Chaudry et al. [15].

Bioconcentration factor regression models

Bioconcentration factor (BCF) describes the likelihood of

chemical concentration in organisms due to environmental

exposure to the compound. Assessment of BCF is a

requirement within REACH legislation. We have taken

structural data from the curated data set of Lombardo et al.

[16, 17], published as part of their QMRF submission.

Data preparation, train/test splits and model parameters

were as described above for the Skin Sensitization models.

Of the potential 280 models, all were successfully built. Plots

of Train versus Test R2 and comparative REC plots over the

Fig. 5 Comparative ROC plots

for training and test set for all

models built for the skin

sensitization endpoint. The

color scheme for the models is

the same as that in Fig. 4

J Comput Aided Mol Des (2013) 27:321–336 329

123



successfully built models, as presented to users in step one of

the model triage report, are shown in Fig. 9. The purpose of

these plots is to give the modeler an overview of relative

model performance and to indicate modeling methods, splits

and/or descriptors that are outliers or may be overfit. There

are issues with using R2 (or any statistical measure) in iso-

lation to select between models, particularly with varying

data set splits and sizes. This is mitigated for by the REC plot

and the inclusion of other statistical parameters such as

RMSE in the sortable table below the plot (as illustrated in

Fig. 3). More detailed analysis is provided in subsequent

visualizations following model selection.

In contrast to the classification models built for the skin

sensitization end-point there are no clear trends, in terms of

over-fitting, observable from these plots. It does appear

however that there are a large number of high quality

Fig. 6 Comparison of data set

splits in chemical space for the

skin sensitization end-point,

using multi-dimensional scaling

plots based on ECFP_6

fingerprint similarity for: From

Paper (left panel); RPC75

(centre panel); IndOpt75 (right
panel). Training set members

are represented by green circles,

test set members by red
triangles

Fig. 7 Filtered set of

comparative ROC plots for

‘‘balanced’’ models for the skin

sensitization end-point

Fig. 8 Confusion matrix for the

skin sensitization model built

using the PP RP Tree learner

method, IndOpt75 training/test

set split and MolProps

descriptor subset
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models that use the R SVM learner. Selection of the best

models and drill-down through step two of the model triage

report confirms this observation. Of the 51 selected models

30 are built using the R SVM learner; 5 with PP PLS; 14

with R NN; 1 with R PLS. Comparison of the distribution

of the different training/test set splits methods shows no

clear trend, with 6 of the 7 methods contributing to this

subset of models: 8 models use Chi_ECFP6_Esta-

te_FCFP4_MolProps; 9 Chi_MolProps; 3 ECFP6_Mol-

Props; 6 Estate; 11 Estate_MolProps; 2 FCFP4_MolProps;

11 MolProps. It is interesting to note that 88 % of these

models are built with descriptor sub-sets containing the

MolProps set of simple molecular properties.

Using the drill-down to fine details of the models avail-

able from step two of the model triage report, allows

identification of poor models which might have been con-

sidered reasonable if simply considering the raw statistical

metrics. An example of such a model is Model_258, this

model was built using R NN learner, Rand75 split method

and ECFCP6_MolProps descriptor subset. The training set

R2 of 0.94 and RMSE of 0.46 is very promising (the vari-

ability in experimental values is 0.45 log units), though the

test set values of 0.62 and 1.24 for R2 and RMSE are less

encouraging. The plots of predicted versus actual response,

shown in Fig. 10, highlight some serious issues with this

model. For both training and test sets the model appears to

have strict upper and lower boundaries on predictions.

We now analyze the distribution of the different learner

algorithms, training test set splits and descriptor subsets, for

three hierarchical subsets of models, with increasing test set

R2. 175 models have a test set R2 of 0.70 or better, but there

appears to be no overall trend. Of these models 43 are built

using PP PLS; 30 with R NN; 49 with R PLS; 53 with R SVM.

Considering the different training/test set splits: 28 use From

Paper; 15 IndOpt50; 16 IndOpt75; 29 Rand75; 29 Rand75;

29 RPC50; 29 RPC75. The distribution of descriptor subsets

used is: 5 use the Chi subset; 18 Chi_ECFP6_Esta-

te_FCFP4_MolProps; 25 Chi_MolProps; 2 ECFP6; 20

ECFP6_MolProps; 22 Estate; 25 Estate_MolProps; 12

FCFP4; 20 FCFP4_MolProps; 16 MolProps. We next con-

sider the subset of these models that have a test set R2 of 0.80

or better, 79 models. Of these models 16 are built using PP

PLS; 16 with R NN; 11 with R PLS; 36 with R SVM. Con-

sidering the different training/test set splits: 12 use From

Paper; 2 IndOpt50; 9 Rand50; 12 Rand75; 21 RPC50; 23

RPC75. The distribution of descriptor subsets used is: 9 use

the Chi_ECFP6_Estate_FCFP4_MolProps split; 13

Chi_MolProps; 10 ECFP6_MolProps; 12 Estate; 13

Estate_MolProps; 9 FCFP4_MolProps; 13 MolProps.

Finally reducing this subset to only consider models with test

set R2 of 0.85 or better leaves us with just 25 models. Of these

models one is built using PP PLS; 4 with R NN; 20 with R

SVM. Considering the different training/test set splits: 4 use

FromPaper; 5 Rand50; 4 Rand75; 4 RPC50; 7 RPC75. The

distribution of descriptor subsets used is: 4 use the

Chi_ECFP6_Estate_FCFP4_MolProps split; 5 Chi_Mol-

Props; 4 Estate; 4 Estate_MolProps; 8 MolProps.

As the set of models retained is reduced across the three

cut-offs for test set R2 we can begin to identify some

trends. Firstly in terms of the ‘‘best’’ learner method, the R

SVM method clearly stands out, being used in 30, 46 and

Table 4 Frequency of descriptor usage in the skin sensitization

model built using PP RP tree method, IndOpt75 split and the Mol-

props descriptor subset

Descriptor Number of questions

ALogP 17

Molecular_Weight 17

Num_Rotatablebonds 16

Num_Bonds 13

Num_Atoms 12

Num_H_Acceptors 4

Num_H_Acceptors_Lipinski 4

HBA_Count 3

Num_H_Donors_Lipinski 3

HBD_Count 2

Num_H_Donors 2

Num_Rings 2

Num_StereoBonds 2

Num_AromaticBonds 1

Num_AromaticRings 1

Num_StereoAtoms 1

Num_BridgeBonds 0

Num_BridgeHeadAtoms 0

Num_SpiroAtoms 0

Table 5 Comparison of model statistics for selected models for the skin sensitization end-point. See main text for details of model selection

Model details learner/split/descriptor Training set

sensitivity

Training set

specificity

Test set

sensitivity

Test set

specificity

PP RP Tree/IndOpt75/MolProps 0.79 0.67 0.64 0.70

PP Bayes/From Paper/

Chi_ECFP6_Estate_FCFP4_MolProps

0.86 0.93 0.67 0.90

Chaudry et al. [15] 0.85 0.87 0.70 0.67
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80 % of the models for the 0.70, 0.80 and 0.85 cut-offs

respectively. The frequency that we see use of the different

splits, follows what is probably an unsurprising trend, with

the number of models using either of the IndOpt methods

falling from 18 % at the 0.70 cut-off to 2.5 % at the 0.80

cut-off, and no models using this method at the 0.85 cut-

off. As discussed in the analysis of the results for the skin

sensitization model, the IndOpt split selection method

explicitly attempts to make the test set ‘‘look’’ different (in

terms of chemistry space) to the training set. The split

methods that ensure that the test set do look similar to the

training set tend to out-perform the IndOpt method, when

considering test set statistics. These methods include the

RPC splits, and the From Paper split—which in this case is

an 80:20 random selection [16]. The QSAR Workbench

Analyze Splits tasks can again be used to compare to

known methods. Figure 11 shows comparison of four split

methods for the BCF data set. Though not as pronounced as

in the skin sensitization example, the plot for the IndOpt75

split does show islands of compounds in the test set sep-

arated from any compounds in the training set, for example

the five compounds on the far right of the plot, and a

smaller island on the top-left of the plot. There are again

marked similarities between the plots for the From Paper

and RPC75 splits. There does not appear to be any major

trend in the distribution of descriptor sub-sets used across

the increasingly more accurate model sub-sets, though it is

again pleasing to note that all but 4 of the most accurate 25

models include, at least in part, the simple MolProps

descriptor subset.

Table 6 shows the training and test set R2 and RMSE for

four models: the model published by Lombardo et al.; the

best model (in terms of test set R2) found using the From

Paper split; a ‘‘balanced’’ model, which uses the IndOpt

split method, thus eliminating explicit bias towards

improved test set statistics; the best model (in terms of R2)

found excluding those built with either the From Paper or

RPC split methods, in this case using the Rand75 split

Fig. 9 Training set versus test set R2 (left) and REC plot over all models built for the BCF endpoint

Fig. 10 Actual versus predicted

regression plots for Model_258,

for the BCF end-point. Results

for the training set are shown on

the left, results for the test set on

the right. This is an example of

a poor model even though the

model statistics appear

reasonable
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method, where it is not entirely clear what bias may have

been introduced. It should be noted that the model of

Lombardo et al. is actually a composite model composed of

two different predictors. In addition a domain of applica-

bility test was employed so that not all compounds in the

test set were included in the statistics of the published

model. All of the models created for this work use the R

SVM learner, two of the three use just the MolProps

descriptor sub-set, the other the Chi_MolProps subset. All

of these models show very reasonable statistics, as such it

would probably be appealing to use the one without bias in

the test-set statistics for real-life application. Figure 12

shows the actual versus predicted regression plots for

training and test sets for this finally selected model.

Discussion and conclusions

The QSAR Workbench encapsulates the workflow required

to build, validate, analyze and publish QSAR models. The

intended users are QSAR model experts, where the system

provides a framework to build and explore a range of

configuration and model building parameters, and modelers

with an understanding of the principles of QSAR but per-

haps with less familiarity of the various algorithms and

software packages available.

The system can be used in a highly automated fashion

through the configuration of appropriate default settings for

different modeling scenarios: continuous, categorical,

multi-class data sets. These different scenarios would

normally require expert parameterization and set up using a

variety of bespoke and/or 3rd party software but through

the Workbench the appropriate best practice can now be

embedded into saved workflows for immediate selection

and replay on new data sets of similar nature by users with

only limited knowledge of QSAR. Thus even the relatively

inexperienced modeler will be capable of exploring good

quality QSAR solutions to their data with the confidence

that the modeling has been appropriately set up. In this

scenario the system can provide a rapid assessment of

whether a particular dataset is amenable to QSAR model-

ing and point the user to model subspaces worthy of further

Fig. 11 Comparison of data set

splits in chemical space for the

BCF end-point, using multi-

dimensional scaling plots based

on ECFP_6 fingerprint

similarity for: From Paper (top-

left); IndOpt75 (top-right);
Rand75 (bottom-left); RPC75

(bottom-right). Training set

members are represented by

green circles, test set members

by red triangles
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exploration. In the use cases presented in this work, the

human set-up time to build the approximately 600 QSAR

models was under one hour, once the model spaces have

been built the modeler is able to concentrate on the analysis

of the models.

The publication capabilities of the QSAR Workbench

provide mechanisms for capturing modeling protocols. The

Workbench also provides access to the important descrip-

tors as allowed by the various modeling algorithms. In

addition, published models include auto generated help text

that embeds the model building and validation details.

Thus those wishing to utilize the models can understand the

finer details of the process. The published models are

available by default as calculable properties in Pipeline

Pilot and integration with other workflow tools or inter-

faces is possible through the use of web-services and two

additional protocols have been written to this end.

However, the QSAR Workbench is not a black-box

system and provides the flexibility to drill down to the

detail of any particular step or, indeed, to build individual

models in a bespoke manner. Important aspects of the data

preparation such as chemistry normalization are handled in

a consistent and flexible manner and the use of standard

workflows makes the system extensible and highly cus-

tomizable. Thus, the system enables the model builder to

focus on the important aspects of model validation and

analysis rather than data manipulation and the requirements

of disparate software packages.

As the example applications above have shown the user

can then start to answer questions such as: why did this

model outperform others? Are there combinations of

models and descriptors that are working better? How stable

are the models to the pretreatment and parameterization?

The results show that with reasonable default settings and

protocols the QSAR Workbench can produce models that

are equivalent in terms of performance to what might be

considered as state-of-the-art models for the specific end-

points considered.

The use of large scale automated modeling also raises

several challenges or opportunities. As described earlier,

the decision was made at the outset not to include any form

of competitive workflow into the model building process.

Nevertheless the possibility of chance correlation should

not be overlooked. The Workbench enforces good model-

ing practice and provides a number of features to mitigate

this risk, as mentioned in the Implementation section when

describing model validation. The emphasis on plots and

interactive triage highlights a particular model as being an

outlier if other similarly built models all appear worse. The

Split algorithms to create Test sets of increasing difficulty

also help as it is unlikely that a much better model would

be derived from a whole cluster based selection than from

Table 6 Comparison of model statistics for selected models for the BCF end-point. See main text for details of model selection

Model details Training set R2 Training set RMSE Test set R2 Test set RMSE

Lombardo et al. 0.85 0.53 0.83 0.51

R SVM/Rand75/Chi_MolProps 0.93 0.49 0.88 0.65

R SVM/FromPaper/MolProps 0.93 0.50 0.86 0.68

R SVM/IndOpt50/MolProps 0.93 0.52 0.81 0.70

Fig. 12 Actual versus predicted

regression plots for Model_80,

for the BCF end-point. Results

for the training set are shown on

the left, results for the test set on

the right. Model_80 was built

using R SVM, IndOpt50 split

and MolProps descriptor subset
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say a Randomized or Diverse selection. Indeed the whole

cluster (approximating to a leave-class-out validation) has

been described as pessimistic by some experts [34]. A

completely independent hold out set is used for model

validation. The true test of a model is a further ‘completely

independent’ and probably temporal set [34] which would

be the last gate a model would pass through prior to pro-

duction deployment. There are additional approaches that

can be taken to help identify such chance correlations and

the latest version of the Workbench includes options for

additional model cross-validation (outside of that used in a

particular modeling approach) and Y-scrambling.

The availability of a large number of models from dif-

ferent methodologies provides a pool of models for an

ensemble modeling approach. The creation of such models,

with increased predictive power, through methods such as

data fusion are well established [35]. When models, that

have independence in the predicted errors, are combined in

this way then the average predictive value should approach

the true value as the square of the number of models

included in the ensemble. Though such methods offer a

clear route to improved predictions, there is almost always

an associated reduction in the ability to interpret the

resulting ensemble model. This situation is akin to the use

of a Random Forest of recursive partitioning trees. The

version of QSAR Workbench used in the preparation of

this work does not contain any functionality to generate

such ensemble models; however we believe that the choice

of the Pipeline Pilot framework provides the flexibility to

allow this to be rapidly implemented. In fact a recent

update to the QSAR Workbench includes an interactive

graphical report allowing users to ‘‘drill down’’ to the

individual predictions across a sub-set of models, for an

external data-set. In this way a manual set of models

suitable for combination into an ensemble could be selec-

ted, following the general philosophy of the Workbench

that the QSAR expert can bring value to the model selec-

tion process.

Another important factor when considering the utility of

a model in providing predictions to medicinal chemists in

an industrial setting is the quantification of the domain of

applicability of the model. Ideally a QSAR model predic-

tion would also come with an associated estimate of the

error of prediction. In practical usage of global models in a

drug discovery program setting, the continued verification

of the model performance is good practice. This can

highlight systematic variation (a slope or intercept shift) or

cases where the global model breaks down and a local

model can be built as more information becomes available.

Such activities are made more tractable by having an

appropriate modeling infrastructure as presented here.

There have been a number of recent efforts to derive

quantitative measures of applicability domain of QSAR

models [6, 36–38]. Generally these utilize a measure of

‘‘distance’’ to the training set, from simple Euclidean

measures to more advanced methods like the Mahalanobis

distance. The underlying Pipeline Pilot learner compo-

nents exploited in the current version of the QSAR

Workbench all have the ability to provide some measure

of applicability domain along with the prediction. These

include warnings when descriptors are out of range of

those seen in the training set, or outside the Optimal

Prediction Space [39] as well as other measures such as

Mahalanobis distance. Provision of estimates of errors in

prediction could also be derived from these measures [40].

Currently no explicit reporting of these metrics is per-

formed in the QSAR Workbench. The advantages of an

implementation in a workflow tool such as Pipeline Pilot

opposed to compiled code in a product are particularly

evident in such cases where the science is not well

developed and could become fast moving as implemen-

tation (and subsequent removal) of one or more such

methods is straightforward.

In conclusion, we have presented the QSAR Work-

bench. A workflow based system for automated high-

throughput model building based on local expert specifi-

cations. The Workbench interfaces to a range of model

building methodologies and provides graphical tools for

navigating and triaging the resulting model space. This

allows for identification of outlier models or methods that

are tending to over-fit in a particular scenario and identi-

fication of trends in the data pretreatment (data set split-

ting) amongst others. The system integrates directly with

the chemist desktop through the publication of models as

web-services and is extensible and maintainable through

the extensive use of Pipeline Pilot workflows to build the

main work protocols. The examples presented show that

the system is capable of building robust, high quality

models in an automated fashion. With this infrastructure in

place we are now in a position to exploit the full value from

enterprise wide QSAR modeling across all endpoints of

interest to drug discovery programs.

Supporting information

The full list of descriptors and the relevant groupings used

in building the models. A full description of the QSAR

Workbench system. This material is available free of

charge via the link below.
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