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                    Abstract
While automated verification of imperative programs has been studied intensively, proving termination of programs with explicit pointer arithmetic fully automatically was still an open problem. To close this gap, we introduce a novel abstract domain that can track allocated memory in detail. We use it to automatically construct a symbolic execution graph that over-approximates all possible runs of a program and that can be used to prove memory safety. This graph is then transformed into an integer transition system, whose termination can be proved by standard techniques. We implemented this approach in the automated termination prover AProVE and demonstrate its capability of analyzing C programs with pointer arithmetic that existing tools cannot handle.
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                    Notes
	This LLVM program corresponds to the code obtained from strlen with the Clang compiler [23]. To ease readability, we wrote variables without “%” in front (i.e., we wrote “str” instead of “%str” as in proper LLVM) and added line numbers.


	We use “\(\hookrightarrow \)” instead of “\(\mapsto \)” in separation logic, since \( mem \models n_1 \mapsto n_2\) would imply that \( mem (n)\) is undefined for all \(n \ne n_1\). This would be inconvenient in our formalization, since \( PT \) usually only contains information about a part of the allocated memory.


	A corresponding representation could also be defined for big-endian layout. This layout information is necessary to decide which concrete states are represented by abstract states, but it is not used when constructing symbolic execution graphs (i.e., our remaining approach is independent of such layout information).


	We identify sets of first-order formulas \(\{\varphi _1,\ldots , \varphi _n\}\) with their conjunction \(\varphi _1 \wedge \cdots \wedge \varphi _n\). Thus, \( CS \) is identified with the set resp. with the conjunction of the equations \(\bigcup _{1 \le i \le n} \{ \texttt {x}_i = LV _i(\texttt {x}) \mid \texttt {x} \in \mathcal {V}_{\mathcal {P}}, LV _i(\texttt {x}) \text { is defined}\}\). Moreover, we wrote [image: ] to ensure that this part of the formula is \( true \) if \( AL ^*= \varnothing \).


	The reason is that then there is an address \( end \in {\mathbb {N}}_{>0}\) with \( end \ge as ^c(\texttt {str}_1)\) such that \( mem ^c( end ) = 0\) and \( mem ^c\) is defined for all numbers between \( as ^c(\texttt {str}_1)\) and \( end \). Hence if a is the state in (\(\dagger \)), then \( mem ^c \models \sigma (\langle {a}\rangle _{ SL })\) holds for any instantiation \(\sigma \) with \(\sigma (u_{\texttt {str}}) = as ^c(\texttt {str}_1)\), \(\sigma (v_{ end }) = end \), and \(\sigma (z) = 0\).


	For any terms, “\(\llbracket {}t_1,\,t_2\rrbracket \; \bot \; \llbracket {}\overline{t_1},\,\overline{t_2}\rrbracket \)” is a shorthand for \(t_2< \overline{t_1} \vee \overline{t_2} < t_1\).


	Analogous refinement rules can also be used for other conditional LLVM instructions, e.g., conditional jumps with br or other cases of icmp.


	Since we do not consider struct data structures in this paper, we disregard getelementptr instructions with more than two parameters. Note that getelementptr instructions with just two parameters suffice for several levels of de-referencing (where memory has to be accessed after each getelementptr instruction).


	
                                 Evaluation edges are edges that are not refinement or generalization edges.


	This step corresponds to other work for machine-checked abstract interpreters [9, 17, 46].


	For programs starting in states represented by an abstract state \(a_0\), it would suffice to prove termination of all \(\rightarrow _{{\mathcal {I}}}\)-evaluations starting in ITS states of the form \((a_0,\sigma )\).


	In the transition, we do not impose the additional constraints of \(\langle {\overline{a}}\rangle \) on the post-variables \({\mathcal {V}}'\), since they are checked anyway in the next transition which starts in \(\overline{a}\).


	The instructions supported by our implementation are icmp (eq,ne,sgt,sge,slt,sle, ugt,uge,ult,ule), add, sub, mul, sdiv, srem, urem, and, or, xor, shl, ashr, lshr, call, br, bitcast, ptrtoint, trunc, sext, zext, getelementptr (with at most 2 parameters), select, phi, ret, alloca, load, and store.


	
                    http://sv-comp.sosy-lab.org/
                  


	
                    http://termination-portal.org/wiki/Termination_Competition
                  


	As mentioned above, we also started implementing support for non-termination in AProVE. When running the tools on all 631 C examples, AProVE proves termination for 409 and non-termination for 91 examples. Ultimate shows termination for 392 and non-termination for 111 programs. Finally, HipTNT+ proves termination in 312 and non-termination in 107 cases. Again, the detailed results can be found at [3].
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