

 Skip to main content

 [image: SpringerLink]

 Log in

 Menu

 Find a journal

 Publish with us

 Track your research

 Search

 Cart

 	
 Home

	
 Journal of Automated Reasoning

	
 Article

Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic

 	
 Published: 22 October 2016

 	
 Volume 58, pages 33–65, (2017)

	
 Cite this article

 [image:]

 Journal of Automated Reasoning

 Aims and scope

 Submit manuscript

 	Thomas Ströder1,
	Jürgen Giesl1,
	Marc Brockschmidt2,
	Florian Frohn1,
	Carsten Fuhs3,
	Jera Hensel1,
	Peter Schneider-Kamp4 &
	…
	Cornelius Aschermann1

Show authors

 	

 461 Accesses

	

 17 Citations

	

 1 Altmetric

	
 Explore all metrics

 Abstract
While automated verification of imperative programs has been studied intensively, proving termination of programs with explicit pointer arithmetic fully automatically was still an open problem. To close this gap, we introduce a novel abstract domain that can track allocated memory in detail. We use it to automatically construct a symbolic execution graph that over-approximates all possible runs of a program and that can be used to prove memory safety. This graph is then transformed into an integer transition system, whose termination can be proved by standard techniques. We implemented this approach in the automated termination prover AProVE and demonstrate its capability of analyzing C programs with pointer arithmetic that existing tools cannot handle.

 This is a preview of subscription content, log in via an institution

 to check access.

 Access this article

 Log in via an institution

 Buy article PDF USD 39.95

 Price excludes VAT (USA)

 Tax calculation will be finalised during checkout.

 Instant access to the full article PDF.

 Rent this article via DeepDyve

 Institutional subscriptions

 Fig. 1[image:]

Fig. 2[image:]

Fig. 3[image:]

Fig. 4[image:]

 Similar content being viewed by others

 [image:]

 Schematic Program Proofs with Abstract Execution

 Article
 Open access
 26 March 2024

 Dominic Steinhöfel & Reiner Hähnle

 [image:]

 Symbolic Computation in Automated Program Reasoning

 Chapter

 © 2023

 [image:]

 Fast Approximations of Quantifier Elimination

 Chapter

 © 2023

 Notes
	This LLVM program corresponds to the code obtained from strlen with the Clang compiler [23]. To ease readability, we wrote variables without “%” in front (i.e., we wrote “str” instead of “%str” as in proper LLVM) and added line numbers.

	We use “\(\hookrightarrow \)” instead of “\(\mapsto \)” in separation logic, since \(mem \models n_1 \mapsto n_2\) would imply that \(mem (n)\) is undefined for all \(n \ne n_1\). This would be inconvenient in our formalization, since \(PT \) usually only contains information about a part of the allocated memory.

	A corresponding representation could also be defined for big-endian layout. This layout information is necessary to decide which concrete states are represented by abstract states, but it is not used when constructing symbolic execution graphs (i.e., our remaining approach is independent of such layout information).

	We identify sets of first-order formulas \(\{\varphi _1,\ldots , \varphi _n\}\) with their conjunction \(\varphi _1 \wedge \cdots \wedge \varphi _n\). Thus, \(CS \) is identified with the set resp. with the conjunction of the equations \(\bigcup _{1 \le i \le n} \{ \texttt {x}_i = LV _i(\texttt {x}) \mid \texttt {x} \in \mathcal {V}_{\mathcal {P}}, LV _i(\texttt {x}) \text { is defined}\}\). Moreover, we wrote [image:] to ensure that this part of the formula is \(true \) if \(AL ^*= \varnothing \).

	The reason is that then there is an address \(end \in {\mathbb {N}}_{>0}\) with \(end \ge as ^c(\texttt {str}_1)\) such that \(mem ^c(end) = 0\) and \(mem ^c\) is defined for all numbers between \(as ^c(\texttt {str}_1)\) and \(end \). Hence if a is the state in (\(\dagger \)), then \(mem ^c \models \sigma (\langle {a}\rangle _{ SL })\) holds for any instantiation \(\sigma \) with \(\sigma (u_{\texttt {str}}) = as ^c(\texttt {str}_1)\), \(\sigma (v_{ end }) = end \), and \(\sigma (z) = 0\).

	For any terms, “\(\llbracket {}t_1,\,t_2\rrbracket \; \bot \; \llbracket {}\overline{t_1},\,\overline{t_2}\rrbracket \)” is a shorthand for \(t_2< \overline{t_1} \vee \overline{t_2} < t_1\).

	Analogous refinement rules can also be used for other conditional LLVM instructions, e.g., conditional jumps with br or other cases of icmp.

	Since we do not consider struct data structures in this paper, we disregard getelementptr instructions with more than two parameters. Note that getelementptr instructions with just two parameters suffice for several levels of de-referencing (where memory has to be accessed after each getelementptr instruction).

	
 Evaluation edges are edges that are not refinement or generalization edges.

	This step corresponds to other work for machine-checked abstract interpreters [9, 17, 46].

	For programs starting in states represented by an abstract state \(a_0\), it would suffice to prove termination of all \(\rightarrow _{{\mathcal {I}}}\)-evaluations starting in ITS states of the form \((a_0,\sigma)\).

	In the transition, we do not impose the additional constraints of \(\langle {\overline{a}}\rangle \) on the post-variables \({\mathcal {V}}'\), since they are checked anyway in the next transition which starts in \(\overline{a}\).

	The instructions supported by our implementation are icmp (eq,ne,sgt,sge,slt,sle, ugt,uge,ult,ule), add, sub, mul, sdiv, srem, urem, and, or, xor, shl, ashr, lshr, call, br, bitcast, ptrtoint, trunc, sext, zext, getelementptr (with at most 2 parameters), select, phi, ret, alloca, load, and store.

	
 http://sv-comp.sosy-lab.org/

	
 http://termination-portal.org/wiki/Termination_Competition

	As mentioned above, we also started implementing support for non-termination in AProVE. When running the tools on all 631 C examples, AProVE proves termination for 409 and non-termination for 91 examples. Ultimate shows termination for 392 and non-termination for 111 programs. Finally, HipTNT+ proves termination in 312 and non-termination in 107 cases. Again, the detailed results can be found at [3].

References
	Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: A framework for abstraction- and interpolation-based software verification. In: Proceedings of CAV’12

	Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termination analysis of Java Bytecode. In: Proceedings of FMOODS’08

	
 AProVE. http://aprove.informatik.rwth-aachen.de/eval/PointerJournal/

	Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs for programs with shape-shifting heaps. In: Proceedings of CAV’06

	Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.W.: Variance analyses from invariance analyses. In: Proceedings of POPL’07

	Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level code. In: Proceedings of CAV’11

	Bertot, Y., Castéran, P.: Coq
 Art. Springer, 2004

	Blanqui, F., Koprowski, A.: CoLoR: A Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates. Math. Struct. Comput. Sci. 4, 827–859 (2011)
Article
 MathSciNet
 MATH

 Google Scholar

	Bodin, M., Jensen, T., Schmitt, A.: Certified abstract interpretation with pretty-big-step semantics. In: Proceedings of CPP’15

	Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs with lists are counter automata. Formal Methods Syst. Design 38(2), 158–192 (2011)
Article
 MATH

 Google Scholar

	Brockschmidt, M., Otto, C., von Essen, C., Giesl, J.: Termination graphs for Java Bytecode. In: Verification, Induction, Termination Analysis, LNAI 6463, (2010)

	Brockschmidt, M., Otto, C., Giesl, J.: Modular termination proofs of recursive Java Bytecode programs by term rewriting. In: Proceedings of RTA’11

	Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-termination and NullPointerExceptions for Java Bytecode. In: Proceedings of FoVeOOS’11

	Brockschmidt, M., Musiol, R., Otto, C., Giesl, J.: Automated termination proofs for Java programs with cyclic data. In: Proceedings of CAV’12

	Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooperation. In: Proceedings of CAV’13

	Brotherston, J., Gorogiannis, N.: Cyclic abduction of inductively defined safety and termination preconditions. In: Proceedings of SAS’14

	Cachera, D., Pichardie, D.: A certified denotational abstract interpreter. In: Proceedings of ITP’10

	Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation of high-coverage tests for complex systems programs. In: Proceedings of OSDI’08

	Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Beyond reachability: Shape abstraction in the presence of pointer arithmetic. In: Proceedings of SAS’06

	Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Space invading systems code. In: Proceedings of LOPSTR’08

	Calcagno, C., Distefano, D.: Infer: An automatic program verifier for memory safety of C programs. In: Proceedings of NFM’11

	Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wächter, N.: Synthesising interprocedural bit-precise termination proofs. In: Proceedings of ASE’15

	
 Clang compiler. http://clang.llvm.org

	Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)
Article
 MathSciNet
 MATH

 Google Scholar

	Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certified proofs with CiME3. In: Proceedings of RTA’11

	Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination. In: Proceedings of SAS’05

	Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: Proceedings of PLDI’06

	Cook, B., Podelski, A., Rybalchenko, A.: Summarization for termination: no return!. Formal Methods Syst. Design 35(3), 369–387 (2009)
Article
 MATH

 Google Scholar

	Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proceedings of POPL’78

	David, C., Kroening, D., Lewis, M.: Unrestricted termination and non-termination arguments for bit-vector programs. In: Proceedings of ESOP’15

	de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of TACAS’08

	D’Silva, V., Urban, C.: Conflict-driven conditional termination. In: Proceedings of CAV’15

	Dudka, K., Peringer, P., Vojnar, T.: Predator: A shape analyzer based on symbolic memory graphs (competition contribution). In: Proceedings of TACAS’14

	Dutertre, B., de Moura, L.: The Yices SMT solver. Tool paper at http://yices.csl.sri.com/tool-paper.pdf

	Falke, S., Kapur, D., Sinz. C.: Termination analysis of C programs using compiler intermediate languages. In: Proceedings of RTA’11

	Falke, S., Merz, F., Sinz, C.: LLBMC: Improved bounded model checking of C using LLVM (competition contribution). In: Proceedings of TACAS’13

	Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., Falke, S.: Proving termination of integer term rewriting. In: Proceedings of RTA’09

	Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving termination of programs automatically with AProVE. In: Proceedings of IJCAR’14

	Gonnord, L., Monniaux, D., Radanne, G.: Synthesis of ranking functions using extremal counterexamples. In: Proceedings of PLDI’15

	Gulwani, S., Tiwari, A.: An abstract domain for analyzing heap-manipulating low-level software. In: Proceedings of CAV’07

	Habermehl, P., Iosif, R., Rogalewicz, A., Vojnar, T.: Proving termination of tree manipulating programs. In: Proceedings of ATVA’07

	Harris, W.R., Lal, A., Nori, A., Rajamani, S.K.: Alternation for termination. In: Proceedings of SAS’10

	Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso programs. In: Proceedings of ATVA’13

	Hensel, J., Giesl, J., Frohn, F., Ströder, T.: Proving termination of programs with bitvector arithmetic by symbolic execution. In: Proceedings of SEFM’16

	Iosif, R., Rogalewicz, A.: Automata-based termination proofs. Comput. Inf. 32(4), 739–775 (2013)
MathSciNet
 MATH

 Google Scholar

	Jourdan, J.-H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified C static analyzer. In: Proceedings of POPL’15

	Kop, C., Nishida, N.: Automatic constrained rewriting induction towards verifying procedural programs. In: Proceedings of APLAS’14

	Kop, C., Nishida, N.: Constrained Term Rewriting tooL. In: Proceedings of LPAR’15

	Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C. M.: Termination analysis with compositional transition invariants. In: Proceedings of CAV’10

	Larraz, D., Oliveras, A., Rodríguez-Carbonell, E., Rubio A.: Proving termination of imperative programs using Max-SMT. In: Proceedings of FMCAD’13

	Lattner, C., Adve V.S.: LLVM: A compilation framework for lifelong program analysis & transformation. In: Proceedings of CGO’04

	Le, T.C., Qin, S., Chin, W.: Termination and non-termination specification inference. In: Proceedings of PLDI’15

	
 LLVM reference manual. http://llvm.org/docs/LangRef.html

	Löwe, S., Mandrykin, M., Wendler, P.: CPAchecker with sequential combination of explicit-value analyses and predicate analyses (competition contribution). In: Proceedings of TACAS’14

	Magill, S.: Instrumentation Analysis: An Automated Method for Producing Numeric Abstractions of Heap-Manipulating Programs. Ph.D. thesis, CMU, Pittsburgh, PA (2010). Available at http://www.cs.cmu.edu/~smagill/papers/thesis.pdf

	Magill, S., Tsai, M., Lee, P., Tsay, Y.: Automatic numeric abstractions for heap-manipulating programs. In: Proceedings of POPL’10

	Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1), 31–100 (2006)
Article
 MathSciNet
 MATH

 Google Scholar

	Moy, Y., Marché, C.: Modular inference of subprogram contracts for safety checking. J. Symb. Comput., 45(11), 2010

	Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM, 53(6), 2006

	Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic. Springer, 2002

	O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter data structures. In: Proceedings of CSL’01

	
 http://fxr.watson.org/fxr/source/lib/libsa/strlen.c?v=OPENBSD

	Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination analysis of Java Bytecode by term rewriting. In: Proceedings of RTA’10

	Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model checking with abstraction refinement. In: Proceedings of PADL’07

	Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via graph reachability. In: Proceedings of POPL’95

	Spoto, F., Mesnard, F., Payet, É.: A termination analyser for Java Bytecode based on path-length. ACM TOPLAS, 32(3), 2010

	Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-Kamp, P.: Proving termination and memory safety for programs with pointer arithmetic. In: Proceedings of IJCAR’14

	Ströder, T., Aschermann, C., Frohn, F., Hensel, J., Giesl, J.: AProVE: Termination and memory safety of C programs (competition contribution). In: Proceedings of TACAS’15

	Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: Proceedings of TPHOLs’09

	Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop summarization and termination analysis. In: Proceedings of TACAS’11

	Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and pieces. In: Proceedings of TACAS’16

	Wikibooks C Programming. http://en.wikibooks.org/wiki/C_Programming/

	Zhao, J., Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Formalizing the LLVM IR for verified program transformations. In: Proceedings of POPL’12

Download references

Acknowledgments
We are grateful to the developers of the other tools for termination or memory safety [33, 35, 43, 52, 71] for their help with the experiments.

Author information
Authors and Affiliations
	LuFG Informatik 2, RWTH Aachen University, Aachen, Germany
Thomas Ströder, Jürgen Giesl, Florian Frohn, Jera Hensel & Cornelius Aschermann

	Microsoft Research Cambridge, Cambridge, UK
Marc Brockschmidt

	Department of Computer Science and Information Systems, Birkbeck, University of London, London, UK
Carsten Fuhs

	Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
Peter Schneider-Kamp

Authors	Thomas StröderView author publications
You can also search for this author in
 PubMed Google Scholar

	Jürgen GieslView author publications
You can also search for this author in
 PubMed Google Scholar

	Marc BrockschmidtView author publications
You can also search for this author in
 PubMed Google Scholar

	Florian FrohnView author publications
You can also search for this author in
 PubMed Google Scholar

	Carsten FuhsView author publications
You can also search for this author in
 PubMed Google Scholar

	Jera HenselView author publications
You can also search for this author in
 PubMed Google Scholar

	Peter Schneider-KampView author publications
You can also search for this author in
 PubMed Google Scholar

	Cornelius AschermannView author publications
You can also search for this author in
 PubMed Google Scholar

Corresponding author
Correspondence to
 Jürgen Giesl.

Additional information
Supported by Deutsche Forschungsgemeinschaft (DFG) Grant GI 274/6-1, Research Training Group 1298 (AlgoSyn), and the Danish Council for Independent Research, Natural Sciences.

Rights and permissions
Reprints and permissions

About this article
[image: Check for updates. Verify currency and authenticity via CrossMark]

Cite this article
Ströder, T., Giesl, J., Brockschmidt, M. et al. Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic.
 J Autom Reasoning 58, 33–65 (2017). https://doi.org/10.1007/s10817-016-9389-x
Download citation
	Received: 16 September 2016

	Accepted: 05 October 2016

	Published: 22 October 2016

	Issue Date: January 2017

	DOI: https://doi.org/10.1007/s10817-016-9389-x

Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.

Copy to clipboard

 Provided by the Springer Nature SharedIt content-sharing initiative

Keywords
	
 LLVM

	
 C programs
	Termination
	Memory Safety
	Symbolic Execution

 Access this article

 Log in via an institution

 Buy article PDF USD 39.95

 Price excludes VAT (USA)

 Tax calculation will be finalised during checkout.

 Instant access to the full article PDF.

 Rent this article via DeepDyve

 Institutional subscriptions

 Advertisement

 Search

 Search by keyword or author

 Search

 Navigation

 	

 Find a journal

	

 Publish with us

	

 Track your research

	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z

			

			
			
				Publish with us

					Publish your research
	Open access publishing

			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers

			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress

			

			
		

	

		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					

		
	
	
		
			
				
					
					44.203.91.249
				

				Not affiliated

			

		
	
	
		
			[image: Springer Nature]
		
	
	© 2024 Springer Nature

	

