Skip to main content

Advertisement

Log in

Optimal colonization and growth of marine benthic diatoms on artificial substrata: protocol for a routine use in bioindication

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Benthic diatoms growing on hard substrata are used for their bioindication ability in freshwater quality monitoring. Artificial substrata are needed in cases where any natural substrate is present or to achieve similar sampling conditions between sites. Prior to use marine benthic diatoms for monitoring, a standardized protocol for sampling on artificial substrata must be set up. Two major types of information are required: (1) the time needed for a diatom community to be well developed and mature (climax stage); (2) the optimal growth conditions, given that the substrataum nature and texture are important parameters for the initial phase of biofilm development and can influence the future diatom assemblage. Three substrataum types were tested: frosted Plexiglass®, frosted glass, and rough enameled tiles. They were submerged for 8 weeks and sampled weekly. The experiment was conducted at five sites of distinct morphology and water chemistry, along the coastal area of Martinique Island, French West Indies. Development of diatom community was studied through biofilm dry weight, valve density, species richness, and species relative abundances. Globally, substratum type had no significant effect on any parameter. Frosted Plexiglass® was found to be the most interesting substratum because of higher valve densities and practical use. The asymptotic phase of biofilm development was encountered between 5 and 8 weeks depending on site and parameter. A compromise between community development and vandalism or loss through time was fixed to 5 weeks. This period is longer than for stream environments and is valid for tropical oligotrophic marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acs E, Kiss KT (1993) Colonization processes of diatoms on artificial substrates in the River Danube near Budapest (Hungary). Hydrobiologia 269/270:307–315

    Article  Google Scholar 

  • AFNOR (2007) NF T90-354: Détermination de l'indice biologique diatomées (IBD)

  • Agatz R, Asmus M, Deventer B (1999) Structural changes in the benthic diatom community along a eutrophication gradient on a tidal flat. Biomed Life Sci 53:92–101

    Google Scholar 

  • Almeida OUH, Beltrones DAS (2008) Variations in the structure of epiphytic diatom assemblages in subtropical macroalgae. Hidrobiologica 18:51–61

    Google Scholar 

  • Biggs BJF (1988) Artificial substrate exposure times for periphyton biomass estimates in rivers. N Z J Mar Freshwat Res 22:507–515

    Article  CAS  Google Scholar 

  • Blinn DW, Fredericksen A, Korte V (1980) Colonization rates and community structure of diatoms on three different rock substrata in a lotic system. Eur J Phycol 15:303–310

    Article  Google Scholar 

  • Brandini FP, Da Silva ET, Pellizzari FM, Fonseca ALO, Fernandes LF (2001) Production and biomass accumulation of periphytic diatoms growing on glass slides during a 1-year cycle in a subtropical estuarine environment (Bay of Paranagua, southern Brazil). Mar Biol 138:163–171

    Article  CAS  Google Scholar 

  • Brown H (1976) A comparison of the attached algal communities of a natural and an artificial substrate. J Phycol 12:301–306

    Google Scholar 

  • Cahoon LB, Nearhoof JE, Tilton CL (1999) Sediment grain size effect on benthic microalgal biomass in shallow aquatic ecosystems. Estuaries 22:735–741

    Article  Google Scholar 

  • Cattaneo A, Amireault MC (1992) How artificial are artificial substrata for periphyton. J N Am Benthol Soc 11:244–256

    Article  Google Scholar 

  • CEN (2003) EN 13946 Water quality–Guidance standard for the routine sampling and pretreatment of benthic diatoms from rivers. European Standards

  • Cooksey B, Cooksey KE, Miller CA, Paul JH, Rubin RW, Webster D (1984) The attachment of microfouling organisms. In: Costlow JD, Tipper RC (eds) Marine biodeterioration: an interdisciplinary study. US Naval Institute, Annapolis, pp 167–171

    Chapter  Google Scholar 

  • Desrosiers C, Leflaive J, Eulin A, Ten-Hage L (2013) Bioindicators in marine waters: benthic diatoms as a tool to assess water quality from eutrophic to oligotrophic coastal ecosystems. Ecol Indic 32:25–34

    Article  CAS  Google Scholar 

  • Diaz-Pulido G, McCook LJ (2002) The fate of bleached corals: patterns and dynamics of algal recruitment. Mar Ecol Prog Ser 232:115–128

    Article  Google Scholar 

  • Edyvean RGJ, Rands GA, Moss BL (1985) A comparison of diatom colonization on natural and artificial substrata in seawater. Estuar Coast Shelf Sci 20:233–238

    Article  Google Scholar 

  • Frankovich TA, Gaiser EE, Zieman JC, Wachnicka AH (2006) Spatial and temporal distributions of epiphytic diatoms growing on Thalassia testudinum Banks ex König: relationships to water quality. Hydrobiologia 569:259–271

    Article  CAS  Google Scholar 

  • Hein MK, Winsborough BM, Sullivan MJ (2008) Bacillariophyta (diatoms) of the Bahamas. In: Lange-Bertalot (ed) Iconographia diatomologica Vol. 19. Koeltz, Koenigstein

  • Hendey NI (1951) Littoral diatoms of Chichester harbour with special reference to fouling. J Roy Microsc Soc 71:1–86

    Article  CAS  Google Scholar 

  • Hillebrand H, Sommer U (1997) Response of epilithic microphytobenthos of the Western Baltic Sea to in situ experiments with nutrient enrichment. Mar Ecol Prog Ser 160:34–46

    Article  Google Scholar 

  • Hillebrand H, Sommer U (2000a) Diversity of benthic microalgae in response to colonization time and eutrophication. Aquat Bot 67:221–236

    Article  Google Scholar 

  • Hillebrand H, Sommer U (2000b) Effect of continuous nutrient enrichment on microalgae colonizing hard substrates. Hydrobiologia 426:185–192

    Article  Google Scholar 

  • Kelly MG (2000) Identification of common benthic diatoms in rivers. Field Stud 9:583–700

    Google Scholar 

  • Kelly MG, Whitton BA (1995) The trophic diatom index: a new index for monitoring eutrophication in rivers. J Appl Phycol 7:433–444

    Article  Google Scholar 

  • Kelly MG, Cazaubon A, Coring E, Dell'Uomo A, Ector L, Goldsmith B, Guasch H, Hürlimann J, Jarlman A, Kawecka B, Kwandrans J, Laugaste R, Lindstrøm E-A, Leitao M, Marvan P, Padisák J, Pipp E, Prygiel J, Rott E, Sabater S, van Dam H, Vizinet J (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10:215–224

    Article  Google Scholar 

  • Kelly M, Juggins S, Guthrie R, Pritchard S, Jamieson J, Rippey B, Hirst H, Yallop M (2008) Assessment of ecological status in U.K. rivers using diatoms. Freshwater Biol 53:403–422

    Google Scholar 

  • Kolkwitz R, Marsson M (1902) Grundsätze für die biologische Beurteilung des Wassers nach seiner Flora und Fauna (Principles for the biological assessment of water bodies according to their flora and fauna). Mitt Königlischen Prüfungsanstalt für Wasserversorgung und Abwässerbeseitigung zu Berlin 1:33–72

    Google Scholar 

  • Korte VL, Blinn DW (1983) Diatom colonization on artificial substrates in pool and riffle zones studied by light and scanning electron microscopy. J Phycol 19:332–341

    Article  Google Scholar 

  • Krammer K, Lange-Bertalot H (1991) Bacillariophyceae 3.Teil: Centrales, Fragilariaceae, Eunotiaceae, vol 2/3. Süβwasserflora von Mitteleuropa. Spektrum Akademischer Verlag, Berlin

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1997a) Bacillariophyceae 1.Teil: Naviculaceae, vol 2/1. Süβwasserflora von Mitteleuropa. Spektrum Akademischer Verlag, Berlin

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1997b) Bacillariophyceae 2.Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, vol 2/2. Süβwasserflora von Mitteleuropa. Spektrum Akademischer Verlag, Berlin

    Google Scholar 

  • Lane C, Taffs K, Corfield J (2003) A comparison of diatom community structure on natural and artificial substrata. Hydrobiologia 493:65–79

    Article  Google Scholar 

  • Lange-Bertalot H (1979) Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64:285–304

    Google Scholar 

  • Lecointe C, Coste M, Prygiel J (1993) ‘Omnidia’ software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269/270:509–513

    Article  Google Scholar 

  • Lenoir A, Coste M (1996) Development of a practical diatom index of overall water quality applicable to the French National Water Board Network. In: Whitton B, Rott E (eds) Use of algae for monitoring rivers II. Universität Innsbruck, Innsbruck, pp 29–43

    Google Scholar 

  • Lewis MA, Weber DL, Moore JC (2002) An evaluation of the use of colonized periphyton as an indicator of wastewater impact in near-coastal areas of the Gulf of Mexico. Arch Env Contam Toxicol 43:11–18

    Article  CAS  Google Scholar 

  • Lobban CS, Schefter M, Jordan RW, Arai Y, Sasaki A, Theriot EC, Ashworth MP, Ruck EC, Pennesi C (2012) Coral-reef diatoms (Bacillariophyta) from Guam: new records and preliminary checklist, with emphasis on epiphytic species from farmer-fish territories. Micronesica 43:237–479

    Article  Google Scholar 

  • Lopez Fuerte FO, Siquieros Beltrones DA, Navarro JN (2010) Benthic diatoms associated with mangroves environments in the northwest region of México. 1st edn. Siquieros Beltrones, D.A.Garcia Gomez, R.E., Mexico

  • Munda IM (2005) Seasonal fouling by diatoms on artificial substrata at different depths near Piran (Gulf of Trieste, Northern Adriatic). Acta Adriat 46:137–157

    Google Scholar 

  • Patil JS, Anil AC (2005a) Biofilm diatom community structure: influence of temporal and substratum variability. Biofouling 21:189–206

    Article  CAS  PubMed  Google Scholar 

  • Patil JS, Anil AC (2005b) Quantification of diatoms in biofilms: standardisation of methods. Biofouling 21:181–188

    Article  CAS  PubMed  Google Scholar 

  • Penna A, Magnani M, Fenoglio I, Fubini B, Cerrano C, Giovine M, Bavestrello G (2003) Marine diatom growth on different forms of particulate silica: evidence of cell/particle interaction. Aquat Microb Ecol 32:299–306

    Article  Google Scholar 

  • Potapova M, Charles DF (2007) Diatom metrics for monitoring eutrophication in rivers of the United States. Ecolog Indic 7:48–70

    Article  Google Scholar 

  • Prygiel J, Coste M (1996) Les diatomées et indices diatomiques dans les réseaux de mesure de la qualité des cours d’eau Français: Historique et Avenir. B Fr Pêche Piscic 341–342:65–79

    Article  Google Scholar 

  • Riaux-Gobin C, Romero OE, Compère P, Al-Handal AY (2011) Small-sized Achnanthales (Bacillariophyta) from coral sands off Mascarenes (Western Indian Ocean). Bibl Diatomol 57:1–234

    Google Scholar 

  • Sekar R, Venugopalan VP, Satpathy KK, Nair KVK, Rao VNR (2004) Laboratory studies on adhesion of microalgae to hard substrata. Hydrobiologia 512:109–116

    Article  Google Scholar 

  • Siver P (1977) Comparison of attached diatom communities on natural and artificial substrata. J Phycol 13:402–406

    Google Scholar 

  • Tilley LJ, Haushild WL (1975) Use of productivity of periphyton to estimate water quality. J Water Pollut Contr Fed 47:2157–2171

    CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Chapman DJ (2008) Dynamics and patterns of algal colonization on mechanically damaged and dead colonies of the coral Porites lutea. Bot Mar 51:285–296

    Article  Google Scholar 

  • Totti C, Cucchiari E, de Stefano M, Pennesi C, Romagnoli T, Bavestrello G (2007) Seasonal variations of epilithic diatoms on different hard substrata in the northern Adriatic Sea. J Mar Biol Assoc U K 87:649–658

    Article  CAS  Google Scholar 

  • Tuchman ML, Stevenson RJ (1979) Comparison of clay tile, sterilized rock, and natural substrate diatom communities in a small stream in Southeastern Michigan, USA. Hydrobiologia 75:73–79

    Article  Google Scholar 

  • Tuji A, Hino S (2000) Observation of developmental processes in loosely attached diatom (Bacillariophyceae) communities. Phycol Res 48:75–84

    Article  Google Scholar 

  • Vermeulen S, Sturaro N, Gobert S, Bouquegneau JM, Lepoint G (2011) Potential early indicators of anthropogenically derived nutrients: a multiscale stable isotope analysis. Mar Ecol Prog Ser 422:9–22

    Article  Google Scholar 

  • Vermeulen S, Lepoint G, Gobert S (2012) Processing samples of benthic marine diatoms from Mediterranean oligotrophic areas. J Appl Phycol 24:1253–1260

    Article  Google Scholar 

  • Witkowski A, Lange-Bertalot H, Metzeltin D (2000) Diatom flora of marine coasts. In: Lange-Bertalot (ed) Iconographia diatomologica. Vol.7. Koeltz, Koenigstein

  • Zelinka M, Marvan P (1961) Zur Präzisierung der biologischen Klassifikation des Rheinheit fliessender Gewässer. Arch Hydrobiol 57:389–407

    Google Scholar 

Download references

Acknowledgments

This work was funded by the European Regional Development Fund and supported by the French Direction de l'Environnement, de l'Agriculture et du Logement de Martinique and the Office de l'Eau Martinique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joséphine Leflaive.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desrosiers, C., Leflaive, J., Eulin, A. et al. Optimal colonization and growth of marine benthic diatoms on artificial substrata: protocol for a routine use in bioindication. J Appl Phycol 26, 1759–1771 (2014). https://doi.org/10.1007/s10811-013-0204-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0204-3

Keywords

Navigation