Skip to main content
Log in

The Terwilliger algebra of the incidence graph of the Hamming graph

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

Let \(\varGamma \) be a distance-semiregular graph on Y, and let \(D^Y\) be the diameter of \(\varGamma \) on Y. Let \(\varDelta \) be the halved graph of \(\varGamma \) on Y. Fix \(x \in Y\). Let T and \(T'\) be the Terwilliger algebras of \(\varGamma \) and \(\varDelta \) with respect to x, respectively. Assume, for an integer i with \(1 \le 2i \le D^Y\) and for \(y,z \in \varGamma _{2i}(x)\) with \(\partial _{\varGamma }(y,z)=2\), the numbers \(|\varGamma _{2i-1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) and \(|\varGamma _{2i+1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) depend only on i and do not depend on the choice of y, z. The first goal in this paper is to show the relations between T-modules of \(\varGamma \) and \(T'\)-modules of \(\varDelta \). Assume \(\varGamma \) is the incidence graph of the Hamming graph H(Dn) on the vertex set Y and the set \({\mathcal {C}}\) of all maximal cliques. Then, \(\varGamma \) satisfies above assumption and \(\varDelta \) is isomorphic to H(Dn). The second goal is to determine the irreducible T-modules of \(\varGamma \). For each irreducible T-module W, we give a basis for W the action of the adjacency matrix on this basis and we calculate the multiplicity of W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes, Benjamin-Cummings Lecture Note Series 58. Benjamin-Cummings, Menlo Park, CA (1984)

    Google Scholar 

  2. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, New York (1989)

    Book  MATH  Google Scholar 

  3. Go, J.T.: The Terwilliger algebra of the hypercube. Eur. J. Comb. 23, 399–429 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kong, Q., Lv, B., Wang, K.: The Terwilliger algebra of odd graphs. Discrete Math. 313, 698–703 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kong, Q., Lv, B., Wang, K.: The Terwilliger algebra of the incidence graphs of Johnson geometry. Electron. J. Comb. 20(4), 5 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Lv, B., Wang, K.: The Terwilliger algebra of the incidence graphs of Johnson geometry, II. Discrete Math. 338, 2378–2386 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Levstein, F., Maldonado, C.: The Terwilliger algebra of the Johnson schemes. Discrete Math. 307, 1621–1635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Levstein, F., Maldonado, C., Penazzi, D.: The Terwilliger algebra of a Hamming scheme \(H(d, q)\). Eur. J. Comb. 27, 1–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Levstein, F., Maldonado, C., Wang, K.: More on the Terwilliger algebra of the Johnson schemes. Discrete Math. 328, 54–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Suzuki, H.: Distance-semiregular graphs. Algebra Colloq. 2, 315–328 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Suzuki, H.: Completely regular clique graphs. J. Algebraic Comb. 40, 233–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Suzuki, H.: Completely regular clique graphs, II. J. Algebraic Comb. 43, 417–445 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Terwilliger, P.: The subconstituent algebra of an association scheme, I. J. Algebraic Comb. 1, 363–388 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Terwilliger, P.: The subconstituent algebra of an association scheme, II. J. Algebraic Comb. 2, 73–103 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Terwilliger, P.: The subconstituent algebra of an association scheme, III. J. Algebraic Comb. 2, 177–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Terwilliger, P.: Algebraic graph theory, hand-written note of a series of lectures given in 1993, rewritten and added comments by H. Suzuki. http://subsite.icu.ac.jp/people/hsuzuki/lecturenote/

  17. Terwilliger, P.: Algebraic graph theory, hand-written course notes from Math 846 Algebraic Graph Theory, Spring term (2009). https://www.math.wisc.edu/~terwilli/teaching.html

  18. Tomiyama, M., Yamazaki, N.: The subconstituent algebra of a strongly regular graphs. Kyushu J. Math. 48, 323–334 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was done when the author was an Honorary Fellow at the University of Wisconsin–Madison (April–September 2016) supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Tomiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomiyama, M. The Terwilliger algebra of the incidence graph of the Hamming graph. J Algebr Comb 48, 77–118 (2018). https://doi.org/10.1007/s10801-017-0793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-017-0793-z

Keywords

Navigation