Skip to main content
Log in

Type \({{\varvec{D}}}_{{\varvec{n}}}^\mathbf{(1)}\) rigged configuration bijection

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

We establish a bijection between the set of rigged configurations and the set of tensor products of Kirillov–Reshetikhin crystals of type \(D^{(1)}_n\) in full generality. We prove the invariance of rigged configurations under the action of the combinatorial R-matrix on tensor products and show that the bijection preserves certain statistics (cocharge and energy). As a result, we establish the fermionic formula for type \(D_n^{(1)}\). In addition, we establish that the bijection is a classical crystal isomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In general, if we consider \(\gamma \) for \(B^{r,s}\), the strings in \((\nu ,J)^{(r)}\) which are shorter than s become non-singular.

  2. In general, if we consider \(\beta \) for \(B^{r,1}\), the next \(\delta \) removes length 1 singular strings of \((\nu ,J)^{(1)},(\nu ,J)^{(2)},\ldots ,(\nu ,J)^{(r-1)}\) added by \(\beta \).

References

  1. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press. [Harcourt Brace Jovanovich Publishers], London (1989). Reprint of the 1982 original

  2. bin Mohammad, M.: Scattering rules in soliton cellular automata associated with \(U_q(D_n^{(1)})\)-crystal \(B^{n,1}\). J. Phys. A 45(7), 075208–0752022 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: One-dimensional configuration sums in vertex models and affine Lie algebra characters. Lett. Math. Phys. 17(1), 69–77 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deka, L., Schilling, A.: New fermionic formula for unrestricted Kostka polynomials. J. Comb. Theory Ser. A 113(7), 1435–1461 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Di Francesco, P., Kedem, R.: Proof of the combinatorial Kirillov–Reshetikhin conjecture. Int. Math. Res. Not. (7) Art. ID rnn006, 57 (2008)

  6. Fourier, G., Okado, M., Schilling, A.: Kirillov–Reshetikhin crystals for nonexceptional types. Adv. Math. 222(3), 1080–1116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hernandez, D.: The Kirillov–Reshetikhin conjecture and solutions of \(T\)-systems. J. Reine Angew. Math. 596, 63–87 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Remarks on fermionic formula. In: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., vol. 248. Am. Math. Soc., Providence, RI, pp. 243–291 (1999)

  9. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Tsuboi, Z.: Paths, crystals and fermionic formulae. In: MathPhys Odyssey, 2001, Prog. Math. Phys., vol. 23. Birkhäuser Boston, Boston, MA, pp. 205–272 (2002)

  10. Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kashiwara, M.: Similarity of crystal bases. In: Lie Algebras and Their Representations (Seoul, 1995), Contemp. Math., vol. 194. Am. Math. Soc., Providence, RI, pp. 177–186 (1996)

  12. Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Affine crystals and vertex models. In: Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., vol. 16. World Sci. Publ., River Edge, NJ, pp. 449–484 (1992)

  13. Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, Toshiki, Nakayashiki, Atsushi: Perfect crystals of quantum affine Lie algebras. Duke Math. J. 68(3), 499–607 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kerov, S.V., Kirillov, A.N., Yu, N.: Reshetikhin. Combinatorics, the Bethe ansatz and representations of the symmetric group. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155(Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII), 50–64, 193 (1986)

  15. Kleber, M.S.: Finite Dimensional Representations of Quantum Affine Algebras. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)—University of California, Berkeley (1998)

  16. Kashiwara, M., Nakashima, T.: Crystal graphs for representations of the \(q\)-analogue of classical Lie algebras. J. Algebra 165(2), 295–345 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuniba, A., Nakanishi, T., Tsuboi, Z.: The canonical solutions of the \(Q\)-systems and the Kirillov–Reshetikhin conjecture. Commun. Math. Phys. 227(1), 155–190 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuniba, A., Okado, M., Sakamoto, R., Takagi, T., Yamada, Yasuhiko: Crystal interpretation of Kerov–Kirillov–Reshetikhin bijection. Nuclear Phys. B 740(3), 299–327 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirillov, A.N., Yu, N.: Reshetikhin. The Bethe ansatz and the combinatorics of Young tableaux. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155(Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII), 65–115, 194 (1986)

  20. Kirillov, A.N., Reshetikhin, N.Y.: Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras. J. Sov. Math. 52, 3156–3164 (1990)

    Article  MathSciNet  Google Scholar 

  21. Kirillov, A.N., Schilling, A., Shimozono, M.: A bijection between Littlewood–Richardson tableaux and rigged configurations. Sel. Math. (N.S.) 8(1), 67–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Littelmann, P.: A Littlewood–Richardson rule for symmetrizable Kac–Moody algebras. Invent. Math. 116(1–3), 329–346 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lecouvey, C., Okado, M., Shimozono, M.: \(X=K\) under review. In: Infinite Analysis 2010—Developments in Quantum Integrable Systems, RIMS Kôkyûroku Bessatsu, B28. Res. Inst. Math. Sci. (RIMS), Kyoto, pp. 155–164 (2011)

  24. Lecouvey, C., Okado, M., Shimozono, M.: Affine crystals, one-dimensional sums and parabolic Lusztig \(q\)-analogues. Math. Z. 271(3–4), 819–865 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lascoux, A., Schützenberger, M.-P.: Sur une conjecture de H. O. Foulkes. C. R. Acad. Sci. Paris Sér. A-B 286(7), A323–A324 (1978)

    MathSciNet  MATH  Google Scholar 

  26. Nakajima, H.: \(t\)-analogs of \(q\)-characters of Kirillov–Reshetikhin modules of quantum affine algebras. Represent. Theory 7, 259–274 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  27. Naoi, K.: Fusion products of Kirillov–Reshetikhin modules and the \(X=M\) conjecture. Adv. Math. 231(3–4), 1546–1571 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Okado, M.: Existence of crystal bases for Kirillov–Reshetikhin modules of type \(D\). Publ. Res. Inst. Math. Sci. 43(4), 977–1004 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Okado, M.: Similarity and Kirillov-Schilling-Shimozono bijection. Algebr. Represent. Theor. 19(4), 975–989 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Okado, M., Schilling, A.: Existence of Kirillov–Reshetikhin crystals for nonexceptional types. Represent. Theory 12, 186–207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Okado, M., Sano, N.: KKR type bijection for the exceptional affine algebra \(E_6^{(1)}\). In: Algebraic Groups and Quantum Groups. Contemp. Math., vol 565. Am. Math. Soc., Providence, RI, pp. 227–242 (2012)

  32. Okado, M., Schilling, A., Shimozono, M.: A crystal to rigged configuration bijection for nonexceptional affine algebras. In: Algebraic Combinatorics and Quantum Groups. World Sci. Publ., River Edge, NJ, pp. 85–124 (2003)

  33. Okado, M., Schilling, A., Shimozono, M.: Virtual crystals and fermionic formulas of type \(D^{(2)}_{n+1},A^{(2)}_{2n}\), and \(C^{(1)}_n\). Represent. Theory 7, 101–163 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  34. Okado, M., Schilling, A., Shimozono, M.: Virtual crystals and Kleber’s algorithm. Commun. Math. Phys. 238(1–2), 187–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Okado, M., Sakamoto, R., Schilling, A.: Affine crystal structure on rigged configurations of type \(D_n^{(1)}\). J. Algebraic Comb. 37(3), 571–599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sakamoto, R.: Mathematica implementation of rigged configurations. https://sites.google.com/site/affinecrystal/rigged-configurations

  37. Sakamoto, R.: Rigged configurations and Kashiwara operators. SIGMA Symmetry Integra. Geom. Methods Appl. 10, Paper 028, 88 (2014)

  38. Schilling, A.: A bijection between type \(D^{(1)}_n\) crystals and rigged configurations. J. Algebra 285(1), 292–334 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schilling, A.: Crystal structure on rigged configurations. Int. Math. Res. Not., Art. ID 97376, 27 (2006)

  40. Schilling, A.: Combinatorial structure of Kirillov–Reshetikhin crystals of type \(D^{(1)}_n, B^{(1)}_n, A^{(2)}_{2n-1}\). J. Algebra 319(7), 2938–2962 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Scrimshaw, T.: A crystal to rigged configuration bijection and the filling map for type \(D_4^{(3)}\). J. Algebra 448C, 294–349 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schilling, A., Shimozono, M.: \(X=M\) for symmetric powers. J. Algebra 295(2), 562–610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schilling, A., Scrimshaw, T.: Crystal structure on rigged configurations and the filling map. Electron. J. Comb. 22(1), Paper 1.73, 56 (2015)

  44. Takahashi, D., Satsuma, J.: A soliton cellular automaton. J. Phys. Soc. Jpn. 59(10), 3514–3519 (1990)

    Article  MathSciNet  Google Scholar 

  45. The Sage Developers. Sage Mathematics Software (Version 6.9) (2015). http://www.sagemath.org

  46. The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics (2008). http://combinat.sagemath.org

Download references

Acknowledgements

This work benefited from computations in SageMath [45, 46] (using implementations of crystals and rigged configurations by Schilling and Scrimshaw) and Mathematica (using an implementation of rigged configurations by Sakamoto [36]). AS and TS would like to thank Osaka City University for kind hospitality during their stay in July 2015. Both authors were partially supported by the JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers “Mathematical Science of Symmetry, Topology and Moduli, Evolution of International Research Network based on OCAMI.” MO was partially supported by the Grants-in-Aid for Scientific Research No. 23340007 and No. 15K13429 from JSPS. The work of RS was partially supported by Grants-in-Aid for Scientific Research No. 25800026 from JSPS. AS was partially supported by NSF grants OCI–1147247 and DMS–1500050. TS was partially supported by NSF Grant OCI–1147247 and RTG Grant NSF/DMS–1148634.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Schilling.

Appendix: Example of the rigged configuration bijection

Appendix: Example of the rigged configuration bijection

In this section, we provide an example of the algorithm \(\Phi ^{-1}\). The reader may easily infer from the following example the meaning of the correspondence between the operators summarized in Table 1.

Example 7.1

Consider the unrestricted rigged configuration \(r_1 \in {\text {RC}}(L(B))\) for \(B=B^{3,2}\otimes B^{3,3}\otimes B^{2,3}\) of type \(D^{(1)}_5\):

figure ae

In the above diagram, we show the partition \(\mu ^{(a)}\) as defined in Sect. 3.1 over the corresponding rigged partition \((\nu ^{(a)},J^{(a)})\) in order to make it easier to see the operations \(\gamma \) and \(\beta \). In \(\Phi ^{-1}\), let us remove the \(B^{3,2}\) part first. We begin by applying \(\gamma \) and obtain \(r_2{:}{=}\gamma (r_1)\) which looks as follows:

figure af

The changes are the shape of \(\mu ^{(3)}\) and the resulting change of the vacancy numbers for \(P^{(3)}_1(\nu )\) which makes the length 1 strings of \((\nu ,J)^{(3)}\) non-singular.Footnote 1 This operation corresponds to

$$\begin{aligned} {\text {ls}}:B^{3,2}\longrightarrow B^{3,1}\otimes B^{3,1}. \end{aligned}$$
(7.1)

Then \(r_3{:}{=}\beta (r_2)\) looks as follows:

figure ag

This corresponds to

$$\begin{aligned} {\text {lb}} :B^{3,1}\longrightarrow B^{1,1}\otimes B^{2,1}. \end{aligned}$$
(7.2)

Note that the vacancy numbers for \(\nu ^{(3)}\) do not change. Since \(\beta \) adds length 1 singular strings to \((\nu ,J)^{(1)}\) and \((\nu ,J)^{(2)}\), applying \(\delta \) removes the boxes with “\(\times \)” in the above diagram.Footnote 2 Then \(\delta \) gives the following rigged configuration \(r_4{:}{=}\delta (r_3)\) together with the output letter \(\overline{5}\) which fills the bottom left corner of \(B^{3,2}\) as

figure ah

.

figure ai

Since the above \(\delta \) determines \(B^{1,1}\) of (7.2), we start to apply \(\gamma \), \(\beta \), and \(\delta \) corresponding to \(B^{2,1}\) of (7.2). Since \(\gamma (r_4) = r_4\), the unrestricted rigged configuration \(r_5 {:}{=} \beta (r_4)\) looks as follows:

figure aj

This corresponds to

$$\begin{aligned} {\text {lb}}:B^{2,1}\longrightarrow B^{1,1}\otimes B^{1,1}. \end{aligned}$$
(7.3)

Then \(\delta \) removes the boxes with “\(\times \)” in the above diagram which determines one of \(B^{1,1}\) in (7.3). As the result, we obtain the following unrestricted rigged configuration \(r_6{:}{=}\delta (r_5)\) and the output letter within \(B^{3,2}\) as

figure ak

:

figure al

The next \(\delta \) removes the box with “\(\times \)” in the above diagram and determines the remaining \(B^{1,1}\) in (7.3). As the result, we obtain the following unrestricted rigged configuration \(r_7 {:}{=} \delta (r_6)\) and the output letter within \(B^{3,2}\) as

figure am

:

figure an

Next we determine the remaining \(B^{3,1}\) in (7.1). \(r_8 = (\delta \circ \beta )(r_7)\) is the following unrestricted rigged configuration with the output letter in \(B^{2,3}\) as

figure ao

:

figure ap

\(r_9 = (\delta \circ \beta )(r_8)\) is the following unrestricted rigged configuration with the output letter in \(B^{2,3}\) as

figure aq

:

figure ar

\(r_{10} = \delta (r_9)\) is the following unrestricted rigged configuration with the output letter in \(B^{2,3}\) as

figure as

:

figure at

For the KN tableau representation of the rectangular tableau, we need to apply the inverse of the filling map of Definition 2.5 to obtain

figure au

. If we further determine \(B^{3,3}\) and \(B^{2,3}\) in this order, we obtain the empty rigged configuration and the following path

figure av

Summary As we see in the above example, the algorithm \(\Phi ^{-1}\) is recursively defined as follows. Suppose that we consider the unrestricted rigged configuration \((\nu ,J)\) associated with the tensor product of type

$$\begin{aligned} B=B^{r,s}\otimes B'. \end{aligned}$$

Then we determine \(b\in B^{r,s}\) by the following procedure. In correspondence with the operation

$$\begin{aligned} {\text {ls}}:B^{r,s} \longrightarrow B^{r,1}\otimes B^{r,s-1}, \end{aligned}$$
(7.4)

we apply \(\gamma \) to the unrestricted rigged configuration. Then apply \({\text {lb}}\) on \(B^{r,1}\) in (7.4)

$$\begin{aligned} {\text {lb}}:B^{r,1}\longrightarrow B^{1,1}\otimes B^{r-1,1}, \end{aligned}$$
(7.5)

which on the rigged configuration side corresponds to \(\beta \). Finally we use \({\text {lh}}\) and \(\delta \) to remove \(B^{1,1}\) of (7.5). In order to process the remaining \(B^{r-1,1}\) of (7.5), we apply \(\beta \) and \(\delta \) repeatedly for \((r-1)\)-times. We fill the leftmost column of \(B^{r,s}\) from bottom to top by the letters obtained by \(\delta \) during this procedure. In order to determine the remaining \(B^{r,s-1}\) of (7.4), we repeat the same procedure for the first column and fill the remaining columns of \(B^{r,s}\) from left to right. Once \(B^{r,s}\) is fully determined, we proceed to the leftmost rectangle of \(B'\) and repeat the same procedure used for \(B^{r,s}\). In this manner, we obtain the filling of shape B, which we denote by \(b\in B\). Then we define

$$\begin{aligned} \Phi ^{-1}:(\nu ,J)\longmapsto b. \end{aligned}$$

The inverse procedure \(\Phi \) is obtained by reversing all the steps of \(\Phi ^{-1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okado, M., Sakamoto, R., Schilling, A. et al. Type \({{\varvec{D}}}_{{\varvec{n}}}^\mathbf{(1)}\) rigged configuration bijection. J Algebr Comb 46, 341–401 (2017). https://doi.org/10.1007/s10801-017-0756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-017-0756-4

Keywords

Mathematics Subject Classification

Navigation