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Abstract A simple undirected graph is said to be semisymmetric if it is regular and
edge-transitive, but not vertex-transitive. Every semisymmetric graph is a bipartite
graph with two biparts of equal size. It was proved by Folkman in (J Comb Theory Ser
B 3:215–232, 1967) that there exist no semisymmetric graphs of order 2p and 2p2,
where p is a prime. For any distinct primes p and q, the classification of semisymmetric
graphs of order 2pq was given by Du and Xu in (Comm Algebra 28:2685–2715, 2000).
Naturally, one of our long-term goals is to determine all the semisymmetric graphs of
order 2p3, for any prime p. All these graphs � are divided into two subclasses: (I) the
automorphism group Aut (�) acts unfaithfully on at least one bipart; and (II) Aut (�)

acts faithfully on both biparts. In Wang and Du (Eur J Comb 36:393–405, 2014), a
group theoretical characterization for Subclass (I) was given by the authors. Based on
this characterization, this paper gives a complete classification for Subclass (I).

Keywords Permutation group · Vertex-transitive graph · Semisymmetric graph

1 Introduction

All graphs considered in this paper are finite, connected, simple, and undirected. For
a permutation group G on �, a subset � ⊂ � and a subgroup N ≤ G preserving �,
by G� and G(�) we denote the stabilizer of G relative to � setwise and pointwise,

S. Du (B)· L. Wang
School of Mathematical Sciences, Capital Normal University and Beijing Center for Mathematics
and Information Interdisciplinary Sciences, Beijing 100048, China
e-mail: dushf@mail.cnu.edu.cn

L. Wang
School of Mathematics and Information Sciences, Henan Polytechnic University,
Jiaozuo 454000, China

123



276 J Algebr Comb (2015) 41:275–302

respectively, and by �N , the set of N -orbits on �. For a graph � = (V, E) with the
vertex set V and edge set E , by {u, v} and (u, v), we denote an edge and an arc of
�, respectively, and by Aut (�) its full automorphism group. A graph � is said to
be regular if all the vertices have the same degree. Set A = Aut (�). The graph �

is said to be vertex-transitive and edge-transitive if A acts transitively on V and E ,
respectively. If � is bipartite with the bipartition V = W ∪ U , then we let A+ be a
subgroup of A preserving both W and U . Since � is connected, we know that either
|A : A+| = 2 or A = A+, depending on whether or not there exists an automorphism
which interchanges the two biparts. For G ≤ A+, � is said to be G-semitransitive if
G acts transitively on both W and U , while an A+-semitransitive graph is simply said
to be semitransitive.

A graph is said to be semisymmetric if it is regular and edge-transitive, but not
vertex-transitive. It is easy to see that every semisymmetric graph is a semitransitive
bipartite graph with two biparts of equal size.

The first person who studied semisymmetric graphs was Folkman. In 1967, he
constructed several infinite families of such graphs and proposed eight open problems,
see [11]. Afterwards, much work have been done on semisymmetric graphs, see [2,
3,15–17,23]. They gave new constructions of such graphs and nearly solved all of
Folkman’s open problems. In particular, using group-theoretical methods, Iofinova
and Ivanov [15] in 1985 classified cubic semisymmetric graphs whose automorphism
group acts primitively on both biparts, this was the first classification theorem for such
graphs. More recently, following some deep results in group theory which depend on
the classification of finite simple groups and some methods from graph coverings,
some new results of semisymmetric graphs have appeared, see [4,6–10,12,18–22,26]
and so on.

In [11], Folkman proved that there are no semisymmetric graphs of order 2p and
2p2 where p is a prime. In [10], the first author and Xu classified semisymmetric
graphs of order 2pq for two distinct primes p and q. Therefore, a natural question
is to determine semisymmetric graphs of order 2p3, where p is a prime. Since the
smallest semisymmetric graphs have order 20 (see [11]), we let p ≥ 3. It was proved
in [20] that the Gray graph of order 54 is the only cubic semisymmetric graph of order
2p3. The classification of all the semisymmetric graphs of order 2p3 is still one of
attractive and difficult open problems. These graphs � are naturally divided into two
subclasses:

Subclass (I): Aut (�) acts unfaithfully on at least one bipart;
Subclass (II): Aut (�) acts faithfully on both biparts.

In [24], a group theoretical characterization for Subclass (I) was given. Based on this
characterization, this paper will give a complete classification for Subclass (I).

First, we introduce two definitions in the following two paragraphs.
Let � = (V1, E1) be a connected edge-transitive graph with bipartition V1 =

W1 ∪ U1, where |W1| = p3 and |U1| = p2 for an odd prime p. Now we define a
bipartite graph � = (V, E) with bipartition V = W ∪ U , where

W = W1, U = U1 × Z p = {(u, i)
∣
∣ u ∈ U1, i ∈ Z p},

E = {{w, (u, i)} ∣∣ {w, u} ∈ E1, i ∈ Z p
}

.

123



J Algebr Comb (2015) 41:275–302 277

Then we shall call that � is the graph expanded from �. By Lemma 2.12, � is edge-
transitive and regular, and moreover, if any two vertices in W1 have the different
neighborhood in �, then � is semisymmetric.

Let P be a partition of the vertex set V . Then we let �P be the quotient graph of �

relative to P , that is, the graph with the vertex set P , where two subsets V1 and V2 in
P are adjacent if there exist two vertices v1 ∈ V1 and v2 ∈ V2 such that v1 and v2 are
adjacent in �. In particular, when P is the set of orbits of a subgroup N of Aut (�),
we denote �P by �N .

The starting point is the following two propositions, see [24].

Proposition 1.1 Let p be an odd prime, and let � = (V, E) be a semisymmetric
graph of order 2p3 with the bipartition V = W ∪ U and A = Aut (�). Suppose that
A acts unfaithfully on W . Then A is faithful on U. Furthermore, let K = A(W ) and
set � = �K . Then the following hold.

(1) Every orbit of K on U has length p, K ∼= (Sp)
p2

and � is expanded from �.
(2) A/K acts faithfully on UK and on WK ∪ UK , and A/K ∼= Aut (�).
(3) Any two vertices in W have the different neighborhood in �.

By Proposition 1.1, we know that the graph � is uniquely determined by its quotient
graph �, which is a bipartite edge-transitive graph whose biparts have length of p3

and p2, respectively, and whose automorphism group acts faithfully on both biparts.
Therefore, we shall pay attention to such special family of graphs. A group theoretical
characterization for � is given by the following proposition.

Proposition 1.2 Let p be an odd prime, and let � = (V, E) be a bipartite edge-
transitive graph with biparts W and U where |W | = p3 and |U | = p2 and whose
automorphism group A = Aut (�) acts faithfully on both biparts. Then A acts imprim-
itively on U, with a system U of blocks. Set W = WA(U)

. Then, either

(1) A acts primitively on W , p = 3, and � ∼= �11 or �12, as defined in Example 2.1,
or

(2) A acts imprimitively on W , and either
(2.1) |W| = 1, A(U) is solvable, and A is an affine group, or
(2.2) |W| = p and either

(2.2.1) the quotient graph �W∪U ∼= C2p, or
(2.2.2) �W∪U is of valency at least 3, p ≥ 5, A contains a nonabelian normal p-

subgroup acting regularly on W , A(U) is solvable, and A/A(U)
∼= Z p�Zr ,

where r
∣
∣ (p − 1) and r ≥ 3.

Remark 1.3 Based on the above proposition, we shall finish the classification for
Subclass (1), equivalently, we need to determine the graphs � contained in four cases:
(1), (2.1), (2.2.1) and (2.2.2) in Proposition 1.2.

Theorem 1.4 (Classification Theorem) Let p be an odd prime and let � be a semi-
symmetric graph of order 2p3, whose automorphism group acts unfaithfully on one
bipart. Then � is expanded from one of the graphs � given in Table 1:
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Remark 1.5 One may see from [24,25] and the proof of Theorems 3.1 and 4.1 that
every graph � in Table 1 is edge-transitive and any two vertices in W have the different
neighborhood, where |W | = p3. By Lemma 2.12, � is semisymmetric.

Remark 1.6 Every graph in Examples 2.1–2.8 is described by the so-called bi-coset
graph B(A; L , R, D), where A is exactly its full automorphism group and its edge-set
is explicitly listed in the corresponding theorem in Sects. 3 and 4, [24,25]. Moreover,
these graphs are uniquely determined by the given parameters.

In Sect. 2, eight examples will be defined and some preliminary results will be
quoted. Cases (1) and (2.2.1) in Proposition 1.2 have been determined in [24] and
[25], respectively, and here we just quote the results, that is Example 2.1 for Case (1),
and Examples 2.5–2.8 for Case (2.2.1). The remaining two cases (2.1) and (2.2.2) will
be discussed in Sects. 3 and 4, respectively.

2 Examples and preliminaries

For group-theoretic concepts and notation, the reader is refereed to [1,14]. Moreover,
for a prime p, by pi

∣
∣
∣
∣ n we mean that pi

∣
∣ n but pi+1

� n. For a ring S, let S∗
be the multiplicative group of all the units in S. For a group G and a subgroup H
of G, by [G : H ] we denote the set of right cosets of H in G, where the action
of G on [G : H ] is always assumed to be the right multiplication action. For any
α in the n-dimensional row vector space V =V(n, p) over GF (p), we denote by
tα the translation corresponding to α in the affine group AGL (n, p) and by N the
translation subgroup. Then AGL (n, p) ∼= N � GL (n, p). We adopt matrix notation
for GL (n, p) and so we have g−1tαg = (tα)g = tαg , for any tα ∈ N ≤ AGL (n, p)

and any g ∈ GL (n, p).

The following definition is basic for this paper.

Definition [10] Let G be a group, let L and R be subgroups of G and let D = Rd L be
a double coset of R and L in G. Define a bipartite graph � = B(G, L , R; D) with the
bipartition V = [G : L] ∪ [G : R] and edge set E = {(Lg, Rdg)

∣
∣ g ∈ G, d ∈ D}.

This graph is called the bi-coset graph of G with respect to L , R and D.

Now we are ready to define eight families of bi-coset graphs with biparts of size
p2 and p3, respectively, which are all the graphs in Theorem 1.4.

Example 2.1 [24] Let M = 〈a, b〉 ∼= S3 where |a| = 3 and |b| = 2. Let

A = (

M × M × M
)

� S3 = M � S3,

L = (〈b〉 × 〈b〉 × 〈b〉)� S3, R = (〈b〉 × M × M
)

�

〈

(23)
〉

,

D1 = RL , D2 = RaL ,

Define two bi-coset graphs

�11 = B
(

A; L , R, D1
)

and �12 = B
(

A; L , R, D2
)

.

The valency d(L) of the vertex L ∈ [G : L] is 3 for �11 and 6 for �12.
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Example 2.2 Let p ≥ 5. Let � be the subgroup of order r ≥ 1 of GF (p)∗. Set

x =
⎛

⎝

1 2 2
0 1 2
0 0 1

⎞

⎠ , y = y(λ, μ) =
⎛

⎝

μ2λ−1 0 0
0 μ 0
0 0 λ

⎞

⎠ ∈ GL (3, p),

S = 〈

y(μ, λ)
∣
∣ μ ∈ GF (p)∗, λ ∈ �

〉 ≤ NGL(3,p)

(〈x〉).

Let N be the translation subgroup of AGL (3, p) and N0 = 〈t(1,0,0), t(0,1,0)〉 ≤ N .

Set

A = N �

(〈x〉 � S
)

, L = 〈x〉 � S, R = N0 � S

Define the graphs

�21(p) = B
(

A; L , R, D
)

, where � = GL (p)∗, D = RL;
�22(p, r) = B

(

A; L , R, D
)

, where 2 ≤ r, D = Rt(0,0,1)L .

Moreover, d(L) = p for �21(p) and d(L) = r p for �22(p, r), see Sect. 3.

Example 2.3 For p ≥ 5, let

P = 〈a, b, c
∣
∣ a p = bp = cp = 1, [b, a] = c, [c, a] = [c, b] = 1〉.

For any s′, t ′ ∈ GF (p)∗ = 〈θ〉, set φ(s′, t ′) ∈ Aut (P) such that a → as′
, b → bt ′ .

Let r1 and r2 be two divisors of p − 1 where r2 ≥ 3. Define a abelian subgroup
S = 〈φ(1, 2), φ(s, t)〉 of order r1r2 such that

S ∩ 〈φ(1, θ)
〉 = 〈

φ(1, e)
〉 ∼= Zr1 , S/〈φ(1, e)〉 ∼= Zr2 ,

that is |e| = r1, |s| = r2 and tr2 ∈ 〈e〉. Now, T = 〈t ∈ GF (p)∗
∣
∣ tr2 ≤ 〈e〉〉 is a

subgroup of GF (p)∗ of order r1(r2,
p−1
r1

) and so we choose

e = θ
p−1
r1 , s = θ

p−1
r2 , t = (

θ

p−1

r1(r2,
p−1
r1

)
)r3 ,

where 0 ≤ r3 ≤ (r2,
p−1
r1

) − 1, and if r1 = 1 then we let r3 	∈ {1, r2 − 1}.
Let

A = P � S, L = S, R = 〈b〉S.

Define the graphs

�31(p, r2) = B
(

A; L , R, D
)

, D = RaL , where r1 = p − 1, r3 = 0;
�32(p, r1, r2, r3) = B

(

A; L , R, D
)

, D = RcaL .
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Moreover, d(L) = r2 for �31(p, r2) and d(L) = r1r2 for �32(p, r1, r2, r3), see
Sect. 4.1.

Example 2.4 Let p ≥ 5 and let

P = 〈

a, b
∣
∣ a p2 = bp = 1, [b, a] = a p〉.

Let Z∗
p2 = 〈λ〉 and r ≥ 3, a divisor of p − 1. Let S = 〈φ(λ

p(p−1)
r )〉 ≤ Aut (P) such

that φ(a) = aλ
p(p−1)

r and φ(b) = b. Let

A = P � S, L = S, R = 〈b〉S, D = RaL .

Define a graph �4(p, r) = B(A; L , R, D). Moreover, d(L) = r , see Sect. 4.2.

The remaining four families of bi-coset graphs B(A; L , R, D) are quoted from
[25]. For these graphs, A acts imprimitively on both [A : L] and [A : R]. Let p ≥ 3
and set

σ = (0, 1, . . . , p − 1), τ = (0)(1,−1), . . . ,

(
p − 1

2
,

p + 1

2

)

∈ Sp.

Then 〈σ, τ 〉 ∼= D2p. For a group M and a positive integer k, set Mk =
k times

︷ ︸︸ ︷

G × · · · × G .

Example 2.5 For p ≥ 3, let M ∼= Sp, H ≤ M and H ∼= Sp−1. Pick up an element
m ∈ M \ H . Set

A = M � 〈σ, τ 〉 = M p
� 〈σ, τ 〉,

L =
(

M
p−1

2 −1 × H × H × M
p+1

2 −1
)

� 〈τ 〉,
R =

(

H × M p−1
)

� 〈τ 〉,

D1 = Rσ
p−1

2 L , D2 = R

⎛

⎜
⎝m,

p−1 times
︷ ︸︸ ︷

1, . . . , 1

⎞

⎟
⎠ σ

p−1
2 L

Define

�51(p) = B
(

A; L , R, D1
)

, �52(p) = B
(

A; L , R, D2
)

.

Then d(L) = 2 for �51 and 2(p − 1) for �52.

Example 2.6 Let M ∼= P SL(2, 11) and let H and J be two subgroups of M which are
isomorphic to A5 and are not conjugate in M . It is well known that acting on [M : H ],
the subgroup J has two orbits of length 5 and 6, respectively. No loss of any generality,
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set J ∩ H ∼= A4 and J ∩ Hm ∼= D10 for some m ∈ M so that |J : (J ∩ H)| = 5 and
|J : (J ∩ Hm)| = 6.

Set

A = M � 〈σ, τ 〉 = M p
� 〈σ, τ 〉,

L =
(

M
p−1

2 −1 × J × J × M
p+1

2 −1
)

� 〈τ 〉,
R =

(

H × M p−1
)

� 〈τ 〉.

D1 = Rσ
p−1

2 L , D2 = R

⎛

⎜
⎝m,

p−1 times
︷ ︸︸ ︷

1, . . . , 1

⎞

⎟
⎠ σ

p−1
2 L .

Then define

�61 = B
(

A; L , R, D1
)

and �62 = B
(

A; L , R, D2
)

.

Then d(L) = 10 for �61 and 12 for �62.

Example 2.7 Let M ∼= P�L(n, q), where p = qn−1
q−1 ≥ 5. In the projective geometry

PG (n, q), take a point v and two hyperplanes S1 and S2 such that v ∈ S1 and v 	∈ S2.
Let H , J and J m for some m ∈ M be the stabilizers of v, S1, and S2, respectively. For
the above M , J and m, let A, R, L , D1, and D2 have the same form as in Example 2.6.
Then define

�71(p) = B
(

A; L , R, D1
)

and �72(p) = B
(

A; L , R, D2
)

.

Then d(L) = 2 qn−1−1
q−1 for �71 and 2qn−1 for �72.

Example 2.8 For p ≥ 5, let S = 〈t〉 � 〈c〉 ∼= Z p � Z p−1. For r
∣
∣ (p − 1) and

r 	= 1, p − 1, let M = 〈t〉 � 〈c p−1
r 〉 ∼= Z p � Zr and H = 〈c p−1

r 〉. Set

A1 = M � 〈σ, τ 〉 = M p
� 〈σ, τ 〉,

L1 =
(

M
p−1

2 −1 × H × H × M
p+1

2 −1
)

� 〈τ 〉,
R1 =

(

H × M p−1
)

� 〈τ 〉,
D1 = Rσ

p−1
2 L .

Then define

�81(p, r) = B
(

A1; L1, R1, D1
)

,

where d(L) = 2r .
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Suppose that 2r
∣
∣ (p − 1), where r ≥ 2. Set d = (c

p−1
2r , · · · , c

p−1
2r ) ∈ S p. Set

A2 = M � 〈σ, dτ 〉 = M p
� 〈σ, dτ 〉,

L2 =
(

M
p−1

2 −1 × H × H × M
p+1

2 −1
)

� 〈dτ 〉,
R2 =

(

H × M p−1
)

� 〈dτ 〉,

D2 = R

⎛

⎜
⎝t,

p−1 times
︷ ︸︸ ︷

1, . . . , 1

⎞

⎟
⎠ σ

p−1
2 L .

Then define

�82(p, r) = B
(

A2; L2, R2, D2
)

,

where d(L) = 2r .

Finally, we quote some results.

Proposition 2.9 [10] The graph � = B(G, L , R; D) defined before Example 2.1 is
a well-defined bipartite graph. Under the right multiplication action on V of G, the
graph � is G-semitransitive and edge-transitive. The kernel of the action of G on V
is Core G(L)∩ Core G(R), the intersection of the cores of the subgroups L and R in
G. Furthermore, we have

(i) the degree of any vertex in [G : L] (resp. [G : R]) is equal to the number of right
cosets of R (resp. L) in D (resp. D−1), so � is regular if and only if |L| = |R|;

(ii) � is connected if and only if G is generated by elements of D−1 D.
(ii) Suppose �′ is a G-semitransitive and edge-transitive graph with bipartition V =

U ∪ W . Take u ∈ U and w ∈ W . Set D = {g ∈ G
∣
∣ wg ∈ �′

1(u)}. Then
D = GwgGu and �′ ∼= B(G, Gu, Gw; D).

Proposition 2.10 [5, Theorem 3.4, 3.5] For an odd prime p, let H be a maximal sub-
group of G = GL (2, p) and H 	= SL (2, p). Then up to conjugacy, H is isomorphic
to one of the following subgroups:

(i) D � 〈b〉; where D is the subgroup of diagonal matrices and b =
(

0 1
1 0

)

;

(ii) 〈a〉 � 〈b〉, where b =
(

1 0
0 −1

)

and 〈a〉 is the Singer subgroup of G, defined by

a =
(

γ δθ

δ γ

)

∈ G, where GF (p)∗ = 〈θ〉, Fp2 = GF (p)(t) for t2 = θ, and

F∗
p2 = 〈γ + δt〉;

(iii) 〈a〉 � D, where a =
(

1 1
0 1

)

;
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(iv) H/〈z〉 is isomorphic to A4 × Z p−1
2

, for p ≡ 3, 5( mod 8); S4 × Z p−1
2

for p ≡
1, 7( mod 8); or A5 × Z p−1

2
for p ≡ ±1( mod 10), where z =

(−1 0
0 −1

)

,

Z p−1
2

= Z(G)/〈z〉;
(v) H/〈z〉 = A4 � 〈s〉, 〈s2〉 ≤ Z(G)/〈z〉, if p ≡ 1( mod 4).

Proposition 2.11 [24] Let G be an imprimitive transitive group of degree p2 with
p ≥ 3 and p3

∣
∣ |G|. Suppose that G has an imprimitive p-block system B with the

kernel K . Let P be a Sylow p-subgroup of G and N = P ∩ K . Then

(1) Exp (P) ≤ p2, |Z(P)| = p and P = N 〈t〉, where t p ∈ Z(P);
(2) K is solvable, NcharK and so N � G, provided either p = 3; or p ≥ 5 and

|N | ≤ p p−1.

The following result has been used in several papers without any proof. Here we
give a proof for the readers.

Lemma 2.12 Let � = (V1, E1) be a connected edge-transitive graph with bipartition
V1 = W1 ∪ U1, where |W1| = p3 and |U1| = p2 for an odd prime p, as defined in
Sect. 1. Suppose that � is expanded from the graph �. Then � is edge-transitive and
regular. Moreover, if any two vertices in W1 have the different neighborhood in �,
then � is semisymmetric.

Proof Recall that � = (V, E) is defined as a bipartite graph with bipartition V =
W ∪ U , where

W = W1, U = U1 × Z p = {

(u, i)
∣
∣ u ∈ U1, i ∈ Z p

}

,

E = {{w, (u, i)} ∣∣ {w, u} ∈ E1, i ∈ Z p
}

.

To show � is edge-transitive, take any two edges {w1, (u1, i)} and {w2, (u2, j)},
where {w1, u1}, {w2, u2} ∈ E1 and i, j ∈ Z p. Since � is edge-transitive with |W1| 	=
|U1|, there exists an automorphism φ1 ∈ Aut (�) such that φ1{w1, u1} = {w2, u2}.
Pick a permutation σ on Z p such that σ(i) = j . Define a map φ on V (�) by

φ
{

w, (u, k)} = {φ1(w), (φ1(u), σ (k))
}

,

where w ∈ W1, u ∈ U1, k ∈ Z p. Then one may check that φ is an automorphism of
� mapping {w1, (u1, i)} to {w2, (u2, j)}. Therefore, � is edge-transitive.

Take any w ∈ W1 and u ∈ U1 and let d1(w) and d1(u) be the respective valency
of w and u in �. Since � is edge-transitive, we have p3d1(w) = p2d1(u), that is,
p · d1(w) = d1(u). For any w ∈ W = W1 and (u, i) ∈ U , let d(w) and d(u, i)
be the respective valency of w and u in �. By the definition of �, we know that
d(w) = p · d1(w) = d1(u) = d(u, i). Therefore, � is regular.

By the definition, we see that for any u ∈ U1, the p vertices {(u, i)
∣
∣ i ∈ Z p} in U

have the same neighborhood in �. Therefore, if any two vertices in W1 have the differ-
ent neighborhood in �, then � cannot be vertex-transitive and so it is semisymmetric.

��
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3 Case (2.1) in Proposition 1.2

Throughout Sects. 3 and 4, the graph � = (V, E) is assumed to be an edge-transitive
graph with the bipartition V = W ∪U such that |W | = p3, |U | = p2 and A = Aut (�)

acts faithfully and imprimitively on both biparts. Let U be a block system of A on U
with the kernel A(U). Let W = WA(U)

, the set of orbits of A(U) on W . Clearly, W is
also a block system of A on W .

The aim of this section was to determine Case (2.1) in Proposition 1.2.

Theorem 3.1 Suppose that |W| = 1, A(U) is solvable, and A is an affine group on
W . Then � is isomorphic to one of the graphs �21(p) and �22(p, r), as defined in
Example 2.2.

Proof Considering the imprimitive action of A on U , we find that A � Sp � Sp =
(Sp)

p
� Sp and A(U) � (Sp)

p. Let P ∈ Syl p(A) and N = P
⋂

A(U). Then
P � (Z p)

p
� Z p and N � (Z p)

p. By the hypothesis of the theorem, |W| = 1, that is
A(U) is transitive on W , which implies that the abelian p-group N is regular on W , so
that |N | = p3. In fact, N � A by Proposition 2.11. Since P/N acts transitively on U ,
where |U | = p, we get |P| = p4. Take w ∈ W and u ∈ U . Since P acts transitively on
W and U respectively, it follows that P = N � Pw

∼= Z3
p � Z p and Pu = Nu ∼= Z2

p.

By the hypothesis, A is an imprimitive affine group on W , that is A = N � Aw, where
N is identified with the translation subgroup of AGL (3, p) and Aw is a reducible
subgroup of GL (3, p). Let V be the 3-dimensional row vector space over GF (p).

The proof is divided into the following six steps:
Step (1): Determination of P , Pw and Z(P).
By Proposition 2.11, |Z(P)| = p. Since P is nonabelian, Z(P) ≤ N . From P =

N � Pw, we get Z(P) ≤ CP (Pw)∩ N ≤ Z(P), which implies CP (Pw)∩ N = Z(P).
Therefore, Pw centralizes exactly p elements in N , in other words, Pw fixes exactly p
vectors in V. Observe that Pw fixes setwise one 1-dimensional subspace if and only if
it fixes pointwise this 1-dimensional subspace. Therefore, Pw fixes setwise exactly one
1-dimensional subspace. It is well known that (see [5]) GL (3, p) has two conjugacy
classes of elements of order p with the respective representatives

x =
⎛

⎝

1 2 2
0 1 2
0 0 1

⎞

⎠ and x ′ =
⎛

⎝

1 0 1
0 1 0
0 0 1

⎞

⎠ ,

where x ′ fixes setwise more than one 1-dimensional subspaces and more than one
2-dimensional subspaces, but x fixes setwise only one 1-dimensional subspace, say
〈α〉, and only one 2-dimensional subspace, say V1, where

α = (0, 0, 1), V1 = {(0, a2, a3)
∣
∣ a2, a3 ∈ GF (p)}.

Therefore, up to group isomorphism, we may set

Pw = 〈x〉 and Z(P) = 〈tα〉,
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recalling that tα denotes the translation corresponding to α.
Step (2): Show that 〈x〉 � Aw.
Since Aw is a reducible subgroup and x ∈ Pw ≤ Aw and since x fixes only one

1-dimensional subspace 〈α〉 and only one 2-dimensional subspace V1, respectively,
we know that Aw is contained in the subgroup of GL (3, p), fixing 〈α〉 setwise, that
is

G =

⎧

⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

a13
X

a23
0 0 a33

⎞

⎟
⎟
⎠

∣
∣ X ∈ GL(2, p), a13, a23, a33 ∈ GF (p), a33 	= 0

⎫

⎪⎪⎬

⎪⎪⎭

or the subgroup fixing V1 setwise, that is

H =

⎧

⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

a11 a12 a13
0

X
0

⎞

⎟
⎟
⎠

∣
∣ X ∈ GL(2, p), a11, a12, a13 ∈ GF (p), a11 	= 0

⎫

⎪⎪⎬

⎪⎪⎭

.

Since the proofs for the two cases Aw ≤ G and Aw ≤ H use the similar arguments,
we write the proof in detail only for the first case.

Let

G1 = {

g ∈ G
∣
∣ X = E, a33 = 1

} ∼= Z2
p,

G2 = {

g ∈ G
∣
∣ a13 = a23 = 0, a33 = 1

} ∼= GL (2, p),

G3 = {

g ∈ G
∣
∣ X = E, a13 = a23 = 0

} ∼= Z p−1.

Then

G = G1 � (G2 × G3) ∼= Z2
p �

(

GL (2, p) × Z p−1
)

.

We are now showing that 〈x〉� Aw. For the contrary, suppose that 〈x〉 � Aw. Since
p
∣
∣
∣
∣ |Aw|, it follows that any subgroup of order p in Aw is not normal. Then from

Aw ∩ G1 � Aw, we get Aw ∩ G1 = 1. Therefore, in G/G1 we have Aw
∼= Aw and

〈x〉 ∼= 〈x〉. Thus, 〈x〉 � Aw.
Now Aw � G/G1 ∼= GL (2, p) × Z p−1. Clearly, every Sylow p-subgroup of

SL (2, p) is also a Sylow p-subgroup of GL (2, p). As the Sylow p-subgroups of Aw

are non-normal, inspecting the maximal subgroup of GL (2, p) (Proposition 2.10), we
know that Aw contains a subgroup, say Q, such that Q ∼= SL (2, p). Recalling that Aw

is transitive on U and since |U | = p, the group Q is also transitive on U . For any v ∈ U ,
take U1 ≤ U such that v ∈ U1. Then |QU1 | = |Q|/|U | = p2 −1. Note that AU1/A(U1)

is a transitive group of degree p and N A(U1)/A(U1) is a normal subgroup of AU1/A(U1).
So, AU1/A(U1) � Z p�Z p−1. Clearly, QU1/Q(U1)

∼= QU1 A(U1)/A(U1) ≤ AU1/A(U1).

Since |QU1 | = p2 − 1, if follows that p + 1
∣
∣ |Q(U1)|, and so the unique involution,

say e of Q (∼= SL (2, p)) is in Q(U1). Thus, e fixes v. By the arbitrariness of v, we
know that e ∈ A(U ), a contradiction.
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Step (3): Determination of Aw and Au .
By Step (2), 〈x〉 � Aw. Then Aw ≤ NGL(3,p)(〈x〉). One may check (see [5]) that

NGL(3,p)(〈x〉) = 〈x, x ′〉 � Ŝ ∼= Z2
p � Z2

p−1, where x ′ is as defined in Step 1 and

Ŝ = 〈y(μ, λ)
∣
∣ μ, λ ∈ GL (p)∗〉 ∼= Z2

p−1 where,

y(λ, μ) =
⎛

⎝

μ2λ−1 0 0
0 μ 0
0 0 λ

⎞

⎠ .

Since 〈x〉 � Aw ≤ NGL(3,p)(〈x〉) and p
∣
∣
∣
∣ |Aw|, we can write

Aw = 〈x〉S and A = N �

(〈x〉S
) = P S.

where S ≤ NGL(3,p)(〈x〉) and |S| ∣∣ (p − 1)2. In particular, A is solvable.
Since |A| = p4|S| where |S| ∣∣ (p − 1)2, it follows that |Au | = p2|S| for some

u ∈ U . Since A and Au are solvable, we get that S is contained in a conjugacy of Au

and then no loss of any generality, let S ≤ Au . Then S normalizes Nu = N ∩ Au ∼= Z2
p.

Therefore, we get

Au = Nu S.

Let V(S) = 〈γ ∈ V
∣
∣ tγ ∈ Nu〉. Then V(S) is a 2-dimensional S-invariant subspace.

Since Z(P) = 〈tα〉 ≤ N , we get that tα cannot fix any vertex in U , in particular,
α 	∈ V(S). Since x fixes setwise V1 = {(0, a2, a3)

∣
∣ a2, a3 ∈ GF (p)}, we get

V(S) 	= V1.
To determine Nu , in other words, determine V(S), let � be the set of all 2-

dimensional subspaces of V not containing α. Then it is easy to check that |�| = p2.

Set

V0 = {

(a1, a2, 0)
∣
∣ a1, a2 ∈ GF (p)} and N0 = {tγ

∣
∣ γ ∈ V0

}

.

Clearly, V0 ∈ �. Let x, x ′ be defined as before. Then it is easy to check that 〈x, x ′〉
acts regularly on �. Thus there exists y ∈ 〈x, x ′〉 such that V(S)y = V0, equivalently,
N y

u = N0.

By Proposition 2.9, our graph � is isomorphic to a bi-coset graph

�1 = B
(

A; 〈x〉S, Nu S, (Nu S)d(〈x〉S)
)

for some d ∈ A. Then

�1 ∼= B
(

Ay; 〈x〉Sy, N0Sy, (N0Sy)d y(〈x〉Sy)
)

.

Since Sy normalizes both 〈x〉 and N0, we get

Sy ≤ NGL(3,p)

(〈x〉) ∩ NAGL(3,p)(N0) = Ŝ.
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Rechoosing Sy by S, d y by d and Ay by A, respectively, we get that

� ∼= B
(

A; 〈x〉S, N0S, N0Sd〈x〉S
)

.

In summary, we let Nu = N0 and S ≤ Ŝ so that

A = N �

(〈x〉S
) = P S, Aw = 〈x〉S and Au = N0S.

Clearly, in this case, A acts imprimitively on both W and U .
Step (4): Determination of the possible bi-coset graphs isomorphic to �.
For each given S in last step, define

� = 〈

λ ∈ GF (p)∗
∣
∣ y(μ, λ) ∈ S

〉 ≤ GF (p)∗

and assume |�| = r . Clearly, if S = Ŝ then � = GF (p)∗. For convenience, set

a = t(1,0,0), b = t(0,1,0) and c = t(0,0,1).

Then for any y(μ, λ) ∈ R, we have

ax = ab2c2, bx = bc2, cx = c; ay(μ,λ) = aμ2λ−1
, by(μ,λ) = bμ, cφ(s,t) = cλ.

Set

′
� = B

(

A; 〈x〉S, N0S, N0Sd〈x〉S
)

,

W ′ = [A : Aw] = {

Awai b j ck
∣
∣ i, j, k ∈ Z p

}

,

U ′ = [A : Au] = {

Auch xl
∣
∣ h, l ∈ Z p

}

.

In the following, we shall determine the possible double cosets. Since there exist
edges leading w to every block in U , we just need to consider the double cosets
D(m) := Aucm Aw, where m ∈ Z p.

Assume m 	= 0. Then under the conjugacy action, y(m, m) fixes Aw and Au ,
and maps D(1) to D(m). Therefore, y(m, m) induces an isomorphism between two
bi-coset graphs. So we just need to consider two cases for D(m): m = 0 and m = 1.

For any l ∈ Z p and y(μ, λ) ∈ S, we have

Aucm y(μ, λ)xl = Aucmλxl .

Then

D(m) = Aucm Aw = {

Aucmλxl
∣
∣ λ ∈ �, l ∈ Z p

}

.
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Furthermore, for any i, j, k ∈ GF (p), by computing we have

(

Aucmλxl
)

ai b j ck = Aucmλ
(

ax−l
)i (

bx−l
) j (

cx−l
)k

xl

= Aucmλai b−2l j c2l2i−2l j+k xl = Aucmλ+2l2i−2l j+k xl ,

and so the neighborhood of Awai b j ck in the bi-coset graph is

{

Aucmλ+2l2i−2l j+k xl
∣
∣ l ∈ Z p, λ ∈ �

}

.

Therefore, the edge set is

E = { (

Awai b j ck, Aucmλ+2l2i−2l j+k xl
) ∣
∣ i, j, k ∈ Z p, l ∈ Z p, λ ∈ �

}

.

Define a bipartite graph �′′ with the bipartition W ′′ ∪ U ′′ where W ′′ = Z3
p and

U ′′ = Z2
p, and the edge-set

{

((i, j, k), (h, l))
∣
∣ i, j, k, h, l ∈ Z p, h = mλ + 2l2i − 2l j + k

}

.

Clearly, the map

φ : Awai b j ck → (i, j, k), Auch xl → (h, l),

where i, j, k, h, l ∈ Z p, gives an isomorphism from �′ to �′′.
Note that every element in S is of the form y(μ, λ) and that the above arguments

are independent on the parameter μ. Therefore, all the graphs arising from different
subgroups S corresponding to the same group � are all isomorphic to �′′. Hence,
given a group �, S can be taken as the biggest one, that is

S = 〈

y(μ, λ)
∣
∣ μ ∈ GF (p)∗, λ ∈ �

〉 ∼= Z p−1 × Zr .

Step (5): Determination of the isomorphism classes and automorphism groups for
the above bi-coset graphs.

Let �′(r, m) denote the corresponding coset graphs, where m ∈ {0, 1} and r = |�|
is as defined in Step 4. Then for the graph �′(r, 0), d(Aw) = p; and for the graph
�′(r, 1), d(Aw) = r p.

To determine the automorphism group of the graph �′(r, m), we first recall Proposi-
tion 1.2. This proposition tells us that for the graph � = (V, E), Aut (�) is imprimitive
on U with a system U and the kernel (Aut (�))(U). Then, either

(i) Aut (�) acts primitively on W , p = 3 and � ∼= �11, �12; or
(ii) Aut (�) acts imprimitively on W , and either (Aut (�))(U) is transitive on W , and

it is a solvable and affine group on W ; or (Aut (�))(U) induces p blocks of length
p2 on W .
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Now, come back to our graph �′ = �′(r, m). We know that A ≤ Aut (�′(r, m))

and A acts edge-transitively on �′(r, m). By Proposition 1.2, Aut (�′(r, m)) acts
imprimitively on U ′.

(1) Suppose that p = 3. Then r = 1 or 2 so that d(Aw) = 3 or 6. These two
graphs are clearly the graphs �11 or �12 as defined in Example 2.1. However, the
automorphism group for two graphs is S3 � S3, acting primitively on U , which does
not satisfy the hypothesis of this section.

(2) Suppose that p ≥ 5. By Proposition 1.2, the graphs �11 and �12 in Example 2.1
where p = 3 are the only graphs whose automorphism group acts primitively on W ′.
Therefore, Aut (�′(r, m)) is imprimitive on both biparts W ′ and U ′. Since N ≤ A(U)

acts transitively on W ′, Aut (�′(r, m)) belongs to Case (2.1) in Proposition 1.2. Then
by the proof of the above four steps, we get

A = N � 〈x〉S ≤ Aut
(

�′(r, m)
) ≤ N � 〈x〉Ŝ.

In what follows, we deal with the two cases, separately.
(2.1) Graphs �′(r, 0) and �′(1, 1).

The respective edge set of the two graphs is

E = {

(Awai b j ck, Auc2l2i−2l j+k xl)
∣
∣ i, j, k, l ∈ Z p

}

,

E = {

(Awai b j ck, Auc1+2l2i−2l j+k xl)
∣
∣ i, j, k, l ∈ Z p

}

.

The mapping ρ fixing W ′ pointwise and multiplying c to each vertex in U ′ from the
right side gives an isomorphism between the two graphs. Thus, we may just consider
the graphs �′(r, 0).

Define a bipartite graph �′′′ with the bipartition W ′′′ ∪ U ′′′ where W ′′′ = Z3
p and

U ′′′ = Z2
p, and the edge-set

{

((i, j, k), (h, l))
∣
∣ i, j, k, h, l ∈ Z p, h = 2l2i − 2l j + k

}

.

Clearly, the map

φ : Awai b j ck → (i, j, k), Auch xl → (h, l),

where i, j, k, h, l ∈ Z p, gives an isomorphism from �′ to �′′′.
Note that the edge-set of �′′′ is independent of the parameters λ and μ. Therefore,

S may achieve at the biggest group Ŝ, so that Aut (�(r, 0)) = N � 〈x〉Ŝ. Clearly,
�′(r, 0) is exactly the graph �21(p), as defined in Example 2.2.

(2.2) Graph �′(r, 1) for 2 ≤ r ≤ p − 1 and r
∣
∣ (p − 1).

Since d(Aw) = r p, which is determined by r = |�| and since S is the maximal
subgroup of Ŝ such that |�| = r , one has Aut (�′(r, 1)) ∩ Ŝ = S, noting that 2 ≤
r ≤ p − 1. Therefore, Aut (�′(r, 1)) = N 〈x〉(Aut (�′(r, 1))) ∩ Ŝ) = N 〈x〉S = A.
Therefore, �′(r, 1) ∼= �22(p, r), where 2 ≤ r ≤ p − 1, as defined in Example 2.2.

Step (6): Checking any two vertices in W ′have the different neighborhood.
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We already know that �′(r, m) is edge-transitive. Suppose that there exist two
vertices in W ′ which have the same neighborhood. Then by the vertex-transitivity of
A on W ′, we know that Aw and Awai b j ck have the same neighborhood, for some
(i, j, k) 	= (0, 0, 0), that is

{

Aucmλxl
∣
∣ λ ∈ �, l ∈ Z p} = {Aucmλ+2l2i−2l j+k xl

∣
∣ λ ∈ �, l ∈ Z p

}

.

Then for any l, we have 2l2i − 2l j + k ∈ m�, noting that m ∈ {0, 1}, which is
impossible. Therefore, any two vertices in W ′ have the different neighborhood. ��

4 Case (2.2.2) in Proposition 1.2

The main result in this section is the following theorem.

Theorem 4.1 Suppose that �W∪U is of valency at least 3, p ≥ 5, A contains
a nonabelian normal p-subgroup acting regularly on W , A(U) is solvable, and
A/A(U)

∼= Z p � Zr , where r
∣
∣ (p − 1) and r ≥ 3. Then � is isomorphic to the

graphs as defined either in Example 2.3 or Example 2.4.

Since a nonabelian normal Sylow p-subgroup of A acts regularly on W , we know
that |P| = p3. Since there are two nonisomorphic nonabelian groups P of order p3,
that is, Exp (P) = p or p2, we shall deal with them in Sects. 4.1 and 4.2, separately.
Thus, the proof of Theorem 4.1 consists of Lemmas 4.4 and 4.5.

The following two group theoretical lemmas will be used in Sect. 4.1.

Lemma 4.2 For any odd prime p, let

P = 〈

a, b, c
∣
∣ a p = bp = cp = 1, [b, a] = c, [c, a] = [c, b] = 1

〉

.

(1) Aut (P) consists of the following automorphisms

π : a → ai b j ck, b → ambncl , where in 	= jm.

Hence |Aut (P)| = p3(p − 1)2(p + 1).
(2) Let

π1 : a → ac, b → b; π2 : a → a, b → bc.

Then Q = 〈π1, π2〉 ∼= Z2
p, Q � Aut (P) and Aut (P)/Q ∼= GL(2, p).

(3) For any s, t ∈ GF (p)∗, let

φ(s, t) : a → as, b → bt .

Then Ŝ := 〈φ(s, t)
∣
∣ s, t ∈ GF (p)∗〉 ∼= Z p−1 × Z p−1. For every subgroup

M ≤ Aut (P) fixing a subgroup of P of order p2 such that |M | ∣∣ (p − 1)2, M is

contained in a conjugacy of Ŝ.
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(4) Let φ(s, t) ∈ Ŝ, where (s, t) 	= (1, 1). Then

CAut (P)(φ(s, t)) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈π : a → ai , b → bncl
∣
∣ i, n ∈ GF (p)∗, l ∈ GF (p)〉, if s = 1, t 	= 1;

〈π : a → ai ck , b → bn
∣
∣ i, n ∈ GF (p)∗, k ∈ GF (p)〉, if s 	= 1, t = 1;

Ŝ if s 	= t; s, t 	= 1;
〈π : a → ai b j c

1
2 i j , b → ambnc

1
2 mn

∣
∣ if s = t ≥ 2.

i, j, m, n ∈ GF (p), in 	= mj〉,

(5) For e, s 	= 1 and t |s| ≤ 〈e〉, CAut (P)(〈φ(1, e), φ(s, t)〉) = Ŝ.

Proof (1) Direct checking.
(2) Considering the induced action of Aut (P)on P/〈c〉 ∼= Z2

p, we know that the kernel
is Q and Aut (P)/Q ≤ GL (2, p). Since |Aut (P)/Q| = p(p − 1)2(p + 1), it
follows Aut (P)/Q = GL (2, p).

(3) Suppose that M ≤ Aut (P) is a subgroup fixing a subgroup of P of order p2

such that |M | ∣∣ (p − 1)2. Since M Q/Q ≤ GL (2, p) and M Q/Q fixes a
1−dimensional subspace in V (2, p) := P/〈c〉, it follows from the structure of
GL (2, p), that (M Q/Q)g ≤ ŜQ/Q for some g ∈ Aut (P), that is Mg ≤ ŜQ.

Since Mg must be contained in a p-complement of Q in QŜ, we get that Mgg1 ≤ Ŝ
for some g1 ∈ ŜQ, as desired.

(4) Let π ∈ CAut (P)(φ(s, t)) and assume

aπ = ai b j ck and bπ = ambncl .

Then we have

aφ(s,t)π = (at )π = (ai b j ck)t = ait b jt c
1
2 i j t (t−1)+kt

= aπφ(s,t) = (ai b j ck)φ(s,t) = ait b jsckst ,

bφ(s,t)π = (bs)π = (ambncl)s = amsbnsc
1
2 mns(s−1)+sl

= bπφ(s,t) = (ambncl)φ(s,t) = amt bsncstl .

Thus we get

⎧

⎪⎪⎨

⎪⎪⎩

j (t − s) = 0
m(s − t) = 0
k(s − 1) = 1

2 i j (t − 1)

l(t − 1) = 1
2 mn(s − 1).

If t = 1, then k = j = m = 0, that is, aπ = ai , bπ = bncl .

If t 	= 1 and s = 1, then j = m = 0 and l = 0, that is aπ = ai ck, bπ = bn .

If t 	= 1, s 	= 1 and s = t, then k = 1
2 i j and l = 1

2 mn, that is , aπ = ai b j c
1
2 i j

and bπ = ambnc
1
2 mn .

If t 	= 1, s 	= 1 and s 	= t, then j = m = k = l = 0, that is 〈π〉 ≤ Ŝ.

(5) By using (4), we get
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CAut (P)

(〈φ(1, e), φ(s, t)〉) = CAut (P)(φ(1, e)) ∩ CAut (P)(φ(s, t)) = Ŝ.

��
Let S be any subgroup of Ŝ = 〈φ(1, θ), φ(θ, 1)〉, as defined in Lemma 4.2. Suppose

that

S ∩ 〈φ(1, θ)
〉 = 〈

φ(1, e)
〉 ∼= Zr1 , S/

〈

φ(1, e)
〉 = 〈

φ(s, t)
〉 ∼= Zr2 ,

where e, s, t ∈ GF (p)∗ and r1, r2 are divisors of p − 1. Then

S = 〈

φ(1, e), φ(s, t)
〉

and φ(s, t)r2 ∈ 〈φ(1, e)
〉

.

In other words, in GF (p)∗,

|e| = r1, |s| = r2, tr2 ∈ 〈e〉,

where if e = 1, then S = 〈φ(s, t)〉 ∼= Zr2 and 〈t〉 ≤ 〈s〉 ∼= Zr2 . Clearly, we may set

e = θ
p−1
r1 and s = θ

p−1
r2 .

Let T = {t ∈ GF (p)∗
∣
∣ tr2 ≤ 〈e〉}, which is a subgroup of order r1(r2,

p−1
r1

).
Therefore, we set

t =
(

θ

p−1

r1(r2,
p−1
r1

)

)r3

,

where 0 ≤ r3 ≤ (r2,
p−1
r1

) − 1. Clearly, |S| = r1r2.

Lemma 4.3 For l = 1, 2, let Sl = 〈φ(1, e), φ(s, tl)〉 be as above such that S1 	= S2
and s 	= 1. Let Al = P � Sl . Suppose that γ is an isomorphism from A1 to A2 such
that γ (S1) = S2. Then γ satisfies

γ (a) = b j1 , γ (b) = ai , γ (φ(1, e)) = φ(e, 1), γ (φ(s, t1)) = φ(t1, s),

for some i, j1 ∈ GF (p)∗, and S2 = 〈φ(e, 1), φ(t1, s)〉.
Proof Suppose that γ is an isomorphism from A1 to A2 such that γ (S1) = S2. Since
P is characteristic in Al , we have γ (P) = P .

(1) Case e 	= 1.
Assume that

γ (a) = ai1 b j1 ck1 , γ (b) = ai b j ck, γ (c) = cl ,

γ
(

φ(1, e)
) = φ(1, e)m1φ(s, t2)

n1, γ
(

φ(s, t1)
) = φ(1, e)m2φ(s, t2)

n2 .
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where i1 j − j1i 	= 0. Since

φ(1, e)−1aφ(1, e) = a, φ(1, e)−1bφ(1, e) = be, φ(1, e)−1cφ(1, e) = ce,

φ(s, t1)
−1aφ(s, t1) = as, φ(s, t1)

−1bφ(s, t1) = bt1 , φ(s, t)−1cφ(s, t1) = ct1s,

we get

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(φ(1, e)m1φ(s, t2)n1)−1ai1 b j1 ck1φ(1, e)m1φ(s, t2)n1 = ai1 b j1 ck1

(φ(1, e)m1φ(s, t2)n1)−1ai b j ckφ(1, e)m1φ(s, t2)n1 = (ai b j ck)e

(φ(1, e)m1φ(s, t2)n1)−1clφ(1, e)m1φ(s, t2)n1 = cle

(φ(1, e)m2φ(s, t2)n2)−1ai1 b j1 ck1φ(1, e)m2φ(s, t2)n2 = (ai1 b j1 ck1)s

(φ(1, e)m2φ(s, t2)n2)−1ai b j ckφ(1, e)m2φ(s, t2)n2 = (ai b j ck)t1

(φ(1, e)m2φ(s, t2)n2)−1clφ(1, e)m2φ(s, t2)n2 = clt1s

.

Solving these equations, we get

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) i1(sn1 − 1)=0; (i i) j1(em1 tn1
2 − 1) = 0; (i i i) k1(em1(t2s)n1 − 1)=0;

(iv) i(sn1 − e) = 0; (v) j (em1 tn1
2 − e) = 0; (vi) k(em1(t2s)n1 − e)

= 1
2 i je(e − 1);

(vi i) em1(t2s)n1 = e; (vi i i) i1(sn2 − s) = 0; (i x) j1(em2 tn2
2 − s) = 0;

(x) k1(em2(t2s)n2 − s) (xi) i(sn2 − t1) = 0; (xii) j (em2 tn2
2 − t1) = 0;

= 1
2 i1 j1s(s − 1);

(xii i) k(em2(t2s)n2 − t1) (xiv) em2(t2s)n2 = t1s.
= 1

2 i j t1(t1 − 1);

First suppose that i1 	= 0. By (i), we get sn1 = 1 and by combing (iv) and e 	= 1,
we get i = 0. Then j 	= 0. From (vi i i), we get sn2 = s and then n2 ≡ 1( mod r2),
where r2 = |s|. Thus, from (xii), one has t1 = em2 tn2

2 = em2 t2, which forces that
S1 = S2, a contradiction.

Suppose that i1 = 0. Then j1, i 	= 0. From (i i) and (iv), respectively, we get
em1 tn1

2 = 1 and sn
1 = e, which implies γ (φ(1, e)) = φ(e, 1). From (i x) and (xi),

respectively, we get em2 tn2
2 = s and sn2 = t1, which implies γ (φ(s, t1)) = φ(t1, s),

as desired. Moreover, by (i i) and (v), we get j = 0; by (i i), (i i i) and (iv), we get
k1 = 0; and finally by (i x), (xi) and (xii i), we get k = 0. Therefore, γ (a) = b j1 and
γ (b) = ai .

(2) Case e = 1.
Assume that

γ (a) = ai1 b j1 ck1 , γ (b) = ai b j ck, γ (c) = cl , γ (φ(s, t1)) = φ(s, t2)
n .

where i1 j − j1i 	= 0 and by our notion, when e = 1, we have |ti |
∣
∣ r2. Then from

⎧

⎨

⎩

(φ(s, t2)n)−1γ (a)φ(s, t2)n = γ (as)

(φ(s, t2)n)−1γ (b)φ(s, t2)n = γ (bt1)

(φ(s, t2)n)−1γ (c)φ(s, t2)n = γ (cst1)
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we can get

⎧

⎨

⎩

(i) i1(sn − s) = 0; (i i) j1(tn
2 − s) = 0; (i i i) k1((t2s)n − s) = 1

2 i1 j1s(s − 1);
(iv) i(sn − t1) = 0; (v) : j (tn

2 − t1) = 0; (vi) k((t2s)n − t1) = 1
2 i j t1(t1 − 1);

(vi i) : (t2s)n = t1s.

First suppose that i1 	= 0. Then by (i) we get n ≡ 1( mod r2) and by combing
(vi i), we get t2s = tn

2 sn = t1s and then t1 = t2, a contradiction.
Second suppose that i1 = 0. Then j1, i 	= 0. By (i i) and (iv) we get tn

2 = s and
t1 = sn , which implies γ (φ(s, t1)) = φ(t1, s).

By (i i i), we get k1 = 0; by (v), we get j = 0 and then by (vi), we get k = 0.
Therefore, γ (a) = b j1 and γ (b) = ai . ��

4.1 Exp (P) = p

Throughout this subsection, we shall use the notation of Lemmas 4.2 and 4.3, in
particular, for φ(s, t), Ŝ, r1, r2 and r3. We shall not explain them again.

Lemma 4.4 Suppose that Exp (P) = p. Then � is isomorphic to the graphs defined
in Example 2.3.

Proof We divide the proof into five steps.
Step (1): Determination of the structure of A = Aut (�), Awand Au .
Suppose that Exp (P) = p. Then let

P = 〈

a, b, c
∣
∣ a p = bp = cp = 1, [b, a] = c, [c, a] = [c, b] = 1

〉

.

Set S = Aw for some w ∈ W . Then A = P � S, where S is core-free. Now S can
be viewed as a subgroup of Aut (P). Note that all the subgroups of order |S| in A
are conjugate. Considering the action of A on U , where |U | = p2, we know that
S ≤ Au for some u. Then S normalizes Pu = Au ∩ P of order p and also 〈c〉. By
Lemma 4.2.(3), S is contained in a conjugacy of Ŝ in Aut (P). Therefore, up to graph
isomorphism, we may assume that

S = 〈

φ(1, e), φ(s, t)
〉 ≤ Ŝ

as stated before Lemma 4.3. Clearly, U is exactly the set of 〈c〉-orbits on U . Since
�W∪U is of valency at least 3, we know that |S| ≥ 3.

Now we determine Pu , noting that u ∈ U and S ≤ Au . Suppose that Pu = 〈g〉,
where g = ai b j ck . Then S normalizes 〈g〉. Let μ = φ(s1, t1) be any element in S, that
is μ : a → as1 , b → bt1 . Since S normalizes Pu , we set gμ = gl , for some integer l.
Then

ais1 b jt1 cks1t1 = ailb jlckl+ 1
2 i jl(l−1).
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So we have

i(s1 − l) = j (t1 − l) = k(s1t1 − l) − 1

2
i jl(l − 1) = 0.

Noting the arbitrariness of μ and |S| ≥ 3, from the above equations, we conclude all
possibilities for Pu = 〈g〉:
(i) g = b, S ≤ Ŝ;

(ii) g = a, S ≤ Ŝ;
(iii) g = ack, k 	= 0, t1 = 1;
(iv) g = b j ck, k 	= 0, s1 = 1;
(v) g = ai bc

i
2 , i 	= 0, s1 = t1 ≥ 3.

In case (iii), for any φ(s1, t1) ∈ S, we have t1 = 1 and so Aw = S = 〈φ(s1, 1)〉
and then [b, S] = 1. Thus, S fixes every block in u〈a,c〉bh

setwise, where h ∈ GF (p),
that is S ≤ A(U), a contradiction. The same arguments can be applied for case (iv).

Let τ1 ∈ Aut (P) such that τ1 : a → b and b → a. Then Ŝτ1 = Ŝ and so
〈a〉S → 〈b〉Sτ1 . By Proposition 2.9, every bi-coset graph B(P S; S, 〈a〉S, 〈a〉Sd S) is
isomorphic to a coset graph B(P Sτ1; Sτ1 , 〈b〉Sτ1 , 〈b〉Sτ1 dτ1 Sτ1), noting that Sτ1 ≤ Ŝ.

Therefore, for cases (i) and (ii), we may just consider one of them, say g = 〈b〉.
As for the case (v), S = 〈φ(s1, s1)〉. Let τ2 ∈ Aut (P) such that τ2 : a → ai bc

i
2

and b → b. Then by Lemma 4.2.(4), Sτ2 = S, and 〈a〉S → 〈ai bc
i
2 〉S. Again, using

the same arguments as in the last paragraph, one may see that cases (i) and (v) may
give the isomorphic bi-coset graphs.

In summary, we conclude 〈g〉 = 〈b〉, which is the case (i). Then, we have

A = P � S, Aw = S, Au = 〈b〉S,

where S = 〈φ(1, e), φ(s, t)〉. Moreover, φ(1, e) fixes each block u〈c,ai 〉 setwise, where
i ∈ GF (p), and φ(s, t) acts on U as a permutation of order r2 with the kernel φ(1, tr2).
Since �W∪U is of valency at least 3, we know that r2 ≥ 3. In what follows, take into
account that for any s′ and t ′, we have

aφ(s′,t ′) = as′
, bφ(s′,t ′) = bt ′ , cφ(s′,t ′) = cs′t ′ .

Step (2): Determination of the possible bi-coset graphs isomorphic to �.
Our graph � is isomorphic to a bi-coset graph �′ = B(A; S, 〈b〉S, D), where

D = 〈b〉Sd S for some d ∈ A. Set

W ′ = [A : S] = {Sg
∣
∣ g ∈ A} = {Sai b j ck

∣
∣ i, j, k ∈ Z p},

U ′ = [A : 〈b〉S] = {〈b〉Sg
∣
∣ g ∈ A} = {〈b〉Schal

∣
∣ h, l ∈ Z p}

and let W ′ and U ′ to correspond to W and U , respectively.
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First we determine all possible double cosets. Every coset is of the form D(h, l) :=
(〈b〉S)chal S, for any h, l ∈ Z p.

If l = 0, then 〈D(h, 0)−1 D(h, 0)〉 	= A. By Proposition 2.9, �′ is disconnected.
Therefore, l 	= 0.

For h 	= 1, let μ = φ(l, l−1h). Then in P � Aut (P), under the conjugacy action,
μ fixes 〈b〉, S and A, and maps D(1, 1) to D(h, l). Then by Proposition 2.9, σ induces
an isomorphism between two bi-coset graphs. So we just need to consider two cases
for D(h, 1), where h = 0 and 1.

Recall S = 〈φ(1, e), φ(s, t)〉 is abelian. For any m1 ∈ Zr1 and m2 ∈ Zr2 , we have

〈b〉Schaφ(1, e)m1φ(s, t)m2 = 〈b〉S(ch)φ(1,e)m1 aφ(1,e)m1
φ(s, t)m2

= 〈b〉Schem1 aφ(s, t)m2 = 〈b〉S(chem1
)φ(s,t)m2 aφ(s,t)m2

= 〈b〉Schem1 (st)m2 asm2
.

Then

D(h, 1) = 〈b〉SchaS = {〈b〉Schem1 (st)m2 asm2
∣
∣ m1 ∈ Zr1 , m2 ∈ Zr2

}

.

Furthermore, for any i, j, k ∈ Z p, we have

〈b〉Schaφ(1, e)m1φ(s, t)m2 bi c j ak = 〈b〉Schem1 (st)m2 asm2 bi c j ak

= 〈b〉Schem1 (st)m2
(asm2

)bi
c j ak

= 〈b〉Schem1 (st)m2 −ism2 + j ak+sm2
.

Then for any point Sbi c j ak in W ′, its neighborhood is

{〈b〉Schem1 (st)m2 −ism2 + j ak+sm2
∣
∣ i, j, k ∈ Z p, m1 ∈ Zr1 , m2 ∈ Zr2

}

.

Since �′ is now determined by r1, r2, r3, and h, we denote it by �′ =
�′(r1, r2, r3, h).

Step (3): Determination of the automorphism group for �′(r1, r2, r3, h).
Let Ã = Aut (�′). Similar to Step (5) in the proof of Theorem 3.1, we shall

determine Ã with a help of Proposition 1.2.
By Proposition 1.2, the graphs �11 and �12 in Example 2.1 in which p = 3 are

the only graphs whose automorphism group acts primitively on W ′. Since p ≥ 5 for
our graph �′, it follows that Aut (�′(r, m)) is imprimitive on both biparts W ′ and U ′,
and so �′ belongs to Case (2) of Proposition 1.2.

Take w ∈ W ′. Then d(w) = r2 for h = 0; and r1r2 for h = 1, where r2 and r3
are divisor of p − 1. However, d(w) = p for �21(p); and r p for �22(p, r). There-
fore, �′ 	∼= �21(p),�22(p, r), and then it belongs to Case (2.2) of Proposition 1.2.
Furthermore, since the degree of �′

W ′∪U ′ is at least 3, �′ belongs to Case (2.2.2)
of Proposition 1.2. Thus, Ã = P � S̃ for some subgroup S̃, where Exp (P) = p
and S ≤ S̃ = Ãw ≤ Ãu . Then S̃ is contained in a conjugacy of Ŝ in PAut (P). In
particular, S̃ is abelian. Then we prove the following facts:
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(1) For �′ = �′(r1, r2, r3, 1), where either e 	= 1 or e = 1 but t 	= 1, s, s−1, we
have Ã = A.

Suppose that either e 	= 1 or e = 1 but t 	= 1, s, s−1. For any z ∈ S̃, set z = gμ2,
where g = ai b j ck ∈ P and μ2 ∈ Aut (P). Since S̃ is abelian, we get

[gμ2, φ(1, e)] = [gμ2, φ(s, t)] = 1,

which implies

[g, φ(1, e)] = 1, [g, φ(s, t)] = 1, [μ2, φ(1, e)] = 1, [μ2, φ(s, t)] = 1.

Noting |s| = r2 ≥ 3, the first two equations give

j (e − 1) = 0, k(e − 1) = 0, i = 0, j (t − 1) = 0, k(st − 1) = 0.

Since either e 	= 1 or e = 1 and t 	= 1, s−1, it follows that i = j = k = 0, that
is g = 1. In other words, μ2 ≤ CAut (P)(S). Moreover, by Lemma 4.2.(5) for e 	= 1
(noting s 	= 1) and by Lemma 4.2.(4) for e = 1 and t 	= 1, s, we get μ2 ∈ Ŝ. In
summary, we have S ≤ S̃ ≤ Ŝ. Observing that |S̃| = d(w) = |S| for w ∈ W ′, we get
S̃ = S and then Ã = A.

(2) For �′ = �′(r1, r2, r3, 0) or �′(1, r2, r3, 1) but e = 1, t = 1, s, s−1, we have
that �′(r1, r2, r3, 0) ∼= �′(1, r2, r3, 1) and Ã ∼= P � 〈φ(1, θ), φ(s, 1)〉.

For these graphs, d(w) = r2 and |�′
1(w) ∩ Ui | = 0 or 1 for any w ∈ W ′ and block

Ui in U ′.
For the graph �′(r1, r2, r3, 0), the edge set is

{

(Sai b j ck, 〈b〉Sc−ism2 + j ak+sm2
)
∣
∣ i, j, k ∈ Z p, m2 ∈ Zr2

}

.

Clearly, this graph is independent on r1 and with the similar arguments as in case
(2.1) of Step (5) of Theorem 3.1, we take r1 = p − 1 so that r3 = 1 and Ã ∼=
P � 〈φ(1, θ), φ(s, 1)〉.

For the graph �′(1, r2, r3, 1), where t = 1 or s, the edge set is E = (S, 〈b〉SacS)P .
Take an automorphism τ of P such that for t = 1, τ : a → ac−1, b → b; for t = s,

τ : a → abc
1
2 , b → b

1
2 . By Lemma 4.2.(4), we get τ fixes S and 〈b〉S and maps

〈b〉SacS to 〈b〉SaS. By Proposition 2.9, τ gives an isomorphism from �′(1, r2, r3, 1)

to �′(r1, r2, r3, 0).

For the graph �′(1, r2, r3, 1), where t = s−1, the edge set is E = {(S, 〈b〉Scatm2
)
∣
∣

m2 ∈ Zr2}P . Fixing W ′ pointwise and right multiple c−1 to U ′ pointwise, we may get
an isomorphism from this graph to �′(r1, r2, r3, 0).

Step (4): Determination of the isomorphism classes for �′(r1, r2, r3, h).
(1) From Step 3, we know that �′(r1, r2, r3, 0) ∼= �′(1, r2, r3, 1), where e = 1,

t = 1, s, s−1. In fact, �′(r1, r2, r3, 0) is the graph �31(p, r2) in Example 2.3. Clearly,
this graph is uniquely determined by r2, which is the valency of w ∈ W ′.

(2) Suppose that �′ = �′(r1, r2, r3, 1), where either e 	= 1 or e = 1 but t 	=
1, s, s−1. We shall show that this graph is uniquely determined by the three parameters:
r1, r2 and r3.
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First note that r2 determines the valency of �′
W ′∪U ′ and d(w) = r1r2 for w ∈ W ′.

By Step (3), Aut (�′) = A. In viewing of the edge set of �′, each group S gives
just one graph �′.

For i = 1, 2, let Si = 〈φ(1, e), φ(s, ti )〉 but S1 	= S2. Let A1 = P � S1 ∼= A2 =
P � S2 and let �′

i be the graph corresponding to Ai . Then we show that �′
1 	∼= �′

2
below.

For the contrary, suppose that γ is an isomorphism from �′
1 and �′

2. For conve-
nience, label the vertex set of both graphs by W ′ = P and U ′ = [P : 〈b〉]. Then
A1, A2, and 〈γ 〉 are permutation groups on both W ′ and U ′, in particular, P acts on
them by right multiplication and Si by conjugacy. Since γ −1 A1γ preserves E2, we
get γ −1 A1γ ≤ A2 and then γ −1 A1γ = A2 by considering |A1| = |A2|. Since P
is characteristic in Ai and all the subgroups of order r1r2 in Ai are conjugate, there
exists an isomorphism from �′

1 to �′
2, denoted by γ again, such that γ −1 Pγ = P and

γ −1S1γ = S2. Now γ induces an isomorphism from A1 and A2 and an automorphism
of P as well. By Lemma 4.3, such γ is defined by aγ = b j1 and bγ = ai , for some
i, j1 ∈ GF (p)∗. Now considering 〈γ 〉 and Si as permutation subgroups on P , we
know that Sγ

1 = S2 and [γ 2, Si ] = 1. Since P � 〈S1, S2, γ 〉 has a representation of
degree p2 on U ′, 〈S1, S2, γ 〉 must fix a subgroup of P of order p. However, Si just
fixes 〈a〉 and 〈b〉 but γ interchanges 〈a〉 and 〈b〉, a contradiction. Therefore, �′

1 	∼= �′
2.

Finally, note that �′(r1, r2, r3, 1) ∼= �32(p, r1, r2, r3) in Example 2.3.
Step (5): Checking any two vertices in W ′ have the different neighborhood.
Similar to the proof of Theorem 3.1. ��

4.2 Exp (P) = p2

Lemma 4.5 Suppose that Exp (P) = p2. Then � is isomorphic to the graphs as
defined in Example 2.4.

Proof We divide the proof into four steps.
Step (1): Determination of the structure of A, Au , and Aw.
Suppose that Exp (P) = p2 and let

P = 〈

a, b
∣
∣ a p2 = bp = 1, [b, a] = a p〉,

where set c = a p. Assume S = Aw for some w ∈ W . Then A = P � S, where S is
corefree subgroup of order r , where r is defined in Proposition 1.2.

A routine checking shows that every automorphism of P has the following form:

π : a → ai b j , b → a pkb,

where i ∈ Z∗
p2 , j, k ∈ Z p. Let Z∗

p2 = 〈λ〉. Let

φ(λ) : a → aλ, b → b, τ : a → ab, b → b.

Then

Aut (P)/ Inn (P) ∼= 〈τ 〉 � 〈φ(λ)〉 ∼= Z p � Z p−1.
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In particular, Aut (P) is solvable. Since |Aut (P)| = p3(p − 1), Aut (P) has only
one conjugacy class of subgroup of order p − 1 with a representative S, and so we let

S = 〈φ(λ
p(p−1)

r )〉 and A = P � S, recalling |S| = r . Set Ŝ = 〈φ(λ)〉 and t = λ
p(p−1)

r .
Now we determine Pu , where u ∈ U and S ≤ Au . Suppose that Pu = 〈g〉, where

g = a pkb j . Since S normalizes 〈g〉, we have

gφ(t) = (a pkb j )φ(t) = a pkt b j = gl = a pkb jl ,

for some l. Then we conclude the following possibilities for 〈g〉:

(i) g = b; (i i) g = a p; (i i i) g = a pkb, t = l = 1.

In case (iii), t = 1 and so S = 1, contradiction. In case (ii), g ∈ Z(P), which
implies that g fixes U pointwise, a contradiction. Therefore, g = b and Au = 〈b〉S.

Step (2): Determine the possible bi-coset graphs isomorphic to �.
Now our graph � is isomorphic to the bi-coset graph �′ = B(A; S, 〈b〉S, D),

where D = 〈b〉Sd S. Let W ′ = [A : S] and U ′ = [A : 〈b〉S].
Every double coset has the form D(l) := 〈b〉Sal S, for any l ∈ Z p2 . If p

∣
∣ l, then

〈D−1 D〉 	= A and the graph �′ is disconnected and so (p, l) = 1. Define σ : A → A
by a → al , b → b, φ(t) → φ(t). Then σ ∈ Aut (A). Clearly, σ fixes S and 〈b〉S,
and maps D(1) to D(l). So we just consider the following case

D(1) = 〈b〉SaS = {〈b〉Saφ(t)m
∣
∣ m ∈ Zr } = {〈b〉Satm ∣

∣ m ∈ Zr
}

.

Then for any point Sbi al in W ′, its neighborhood is

{〈b〉Satm
bi al

∣
∣ m ∈ Zr } = {〈b〉Sal+tm−i tm p

∣
∣ m ∈ Zr

}

.

Set l ≡ j p + k, where i, j, k ∈ Z p so that j p + k + tm − i tm p ≡ yp + z (mod p2),

for some y, z ∈ Z p.

Step (3): Determination of Aut (�′).
Suppose that w is adjacent to another vertex, say 〈b〉Satm

in the block Ui containing

〈b〉Sa. Then atm = aλ(p−1)k
for some 0 	= m ∈ Zr and k ∈ Z p. Then λm p(p−1)

r =
λ(p−1)k , that is, mp p−1

r = (p−1)k. Then r
∣
∣ m and so atm = a, that is m ≡ 0 (modr),

a contradiction. Therefore, for any u′ ∈ Ui such that wu′ ∈ E , u′ is the only vertex in
Ui which is adjacent to w.

Let Ã = Aut (�′). With the similar arguments as in Step (3) in the proof of
Lemma 4.4, �′ belongs to case (2.2.2) of Proposition 1.2. In particular, Exp (P) = p2

and A = P � S. By the proof of Step (1), S ≤ Ŝ. Since d(w) = r for w ∈ W ′, we get
S ∼= Zr so that Ã = A and then different r give nonisomorphic graphs. Note that �′
is exactly the graph �4(p, r) as defined in Example 2.4.

Step (4): Checking any two vertices in W ′ have the different neighborhoods.
Similar to the proof of Theorem 3.1. ��
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