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Abstract We construct a family of pairwise commuting operators such that the Mac-
donald symmetric functions of infinitely many variables x1, x2, . . . and of two param-
eters q, t are their eigenfunctions. These operators are defined as limits at N → ∞
of renormalized Macdonald operators acting on symmetric polynomials in the vari-
ables x1, . . . , xN . They are differential operators in terms of the power sum variables
pn = xn

1 + xn
2 + · · · and we compute their symbols by using the Macdonald repro-

ducing kernel. We express these symbols in terms of the Hall–Littlewood symmetric
functions of the variables x1, x2, . . . . Our result also yields elementary step operators
for the Macdonald symmetric functions.

Keywords Macdonald symmetric functions

1 Introduction

Over the last two decades the Macdonald polynomials [13] were the subject of much
attention in Combinatorics and Representation Theory. These polynomials are sym-
metric in the N variables x1, . . . , xN and also depend on two parameters denoted by
q and t . They are labeled by partitions of 0,1,2, . . . with no more than N parts. Up
to normalization, they can be defined as eigenfunctions of certain linear operators
acting on the space of all symmetric polynomials in the variables x1, . . . , xN with co-
efficients from the field Q(q, t). These operators have been introduced by Macdonald
[13] as the coefficients of a certain operator valued polynomial DN(u) of degree N

in a variable u with the constant term 1, see (2.16). In particular, Macdonald has
observed that all the eigenvalues of the coefficient of DN(u) at u are already free
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from multiplicities. Hence this operator coefficient alone can be used to define the
Macdonald polynomials.

It is quite common in Combinatorics to extend various symmetric polynomials to
an infinite countable set of variables. In particular, the Macdonald polynomials are
extended to infinitely many variables x1, x2, . . . by using the stability property (2.18)
of these polynomials and by passing to their limits as N → ∞. The limits are the
Macdonald symmetric functions, which are labeled by partitions of 0,1,2, . . . . They
have been also studied very well. In particular, the limit at N → ∞ of a renormalized
coefficient of the DN(u) at u was considered in [13]. Another expression for the same
limit was given in [2], see also [3, 6].

The limits at N → ∞ of other coefficients of the DN(u) have so far received
less attention. However, in the remarkable work of Shiraishi [18] the limits of cer-
tain linear combinations of all the coefficients were expressed in terms of the vertex
operators associated with an infinite dimensional Heisenberg Lie algebra, see also
[5, 20]. In a more recent work [1] this result of [18] has been reformulated by us-
ing the well-known correspondence [7] between the vertex operators and the Hall–
Littlewood symmetric functions, which are specializations of the Macdonald sym-
metric functions at q = 0.

In the present article we consider the limits at N → ∞ of linear combinations
of all the coefficients of DN(u), different from those in [1, 5, 18, 20]. Our linear
combinations arise naturally from the theory of the double affine Hecke algebras,
see for instance [17]. We also express our limits in terms of the Hall–Littlewood
symmetric functions. Once stated our result can be derived from those of [1, 18].
However, we obtained our result independently. Moreover, our proof is different and
yields new identities related to the Hall–Littlewood polynomials. Again, the latter can
be regarded as specializations of the Macdonald polynomials at q = 0.

The Macdonald polynomials can be regarded as generalizations of the Jack poly-
nomials which are symmetric in x1, . . . , xN and also depend on a formal parameter α.
The latter polynomials are obtained from the former when q = tα and t → 1. Then
the coefficients of DN(u) degenerate to the Sekiguchi–Debiard differential operators
[4, 16]. In [15] we studied the limits of the latter operators at N → ∞. In the present
article we generalize the main result of that work to the Macdonald case. However,
the methods used here and in [15] are quite different.

As an application of our result, we construct elementary step operators for the
Macdonald symmetric functions. In terms of the labels, our operators correspond
to decreasing any given non-zero part of a partition by 1 and to the operation on
partitions inverse to that, see our formulas (2.42) and (2.40) respectively. For the
origins of this construction see the work [19] and references therein. For related but
different results on the Macdonald polynomials see the works [9, 10] and [11].

Here is the plan of the present article. In Sect. 2 we recall some basic facts from the
theory of symmetric functions, including the definition of Macdonald polynomials.
After establishing the basics we state our main result, which is an explicit expression
for the limit of a renormalized polynomial DN(u) at N → ∞. Then we explicitly
construct our elementary step operators. The proof of our main result is given in
Sect. 3. Our main tool is the notion of the symbol of an operator relative to the repro-
ducing kernel associated with the Macdonald polynomials. Using it, we reduce the
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proof to a certain determinantal identity for each N = 1,2, . . . which is proved in the
rest of Sect. 3.

In this article we generally keep to the notation of the book [13] for symmetric
functions. When using results from [13] we simply indicate their numbers within the
book. For example, the statement (6.9) from Chap. I of the book will be referred to
as [I.6.9] assuming it is from [13]. We do not number our own lemmas, propositions,
theorems or corollaries because here we have only one of each.

2 Symmetric functions

2.1 Monomial functions and power sums

Fix a field F. For any integer N ≥ 1 denote by ΛN the F-algebra of symmetric poly-
nomials in N variables x1, . . . , xN . The algebra ΛN is graded by the polynomial
degree. The substitution xN = 0 defines a homomorphism ΛN → ΛN−1 preserving
the degree. Here Λ0 = F. The inverse limit of the sequence

Λ1 ← Λ2 ← ·· ·
in the category of graded algebras is denoted by Λ. The elements of Λ are called
symmetric functions. Following [13] we will introduce some standard bases of Λ.

Let λ = (λ1, λ2, . . .) be any partition of 0,1,2, . . . . The number of non-zero parts
is called the length of λ and is denoted by �(λ). If �(λ) ≤ N then the sum of all
distinct monomials obtained by permuting the N variables in x

λ1
1 · · ·xλN

N is denoted
by mλ(x1, . . . , xN). The symmetric polynomials mλ(x1, . . . , xN) with �(λ) ≤ N form
a basis of the vector space ΛN . By definition, for �(λ) ≤ N ,

mλ(x1, . . . , xN) =
∑

1≤i1<···<ik≤N

∑

σ∈Sk

c−1
λ x

λ1
iσ (1)

· · ·xλk

iσ(k)
,

where we write k instead of �(λ). Here Sk is the symmetric group permuting the
numbers 1, . . . , k and

cλ = k1!k2! · · · (2.1)

if k1, k2, . . . are the respective multiplicities of the parts 1,2, . . . of λ. Further,

mλ(x1, . . . , xN−1,0) =
{

mλ(x1, . . . , xN−1) if �(λ) < N;
0 if �(λ) = N.

(2.2)

Hence for any fixed partition λ the sequence of polynomials mλ(x1, . . . , xN) with
N ≥ �(λ) has a limit in Λ. This limit is called the monomial symmetric function
corresponding to λ. Simply omitting the variables, we will denote the limit by mλ.
With λ ranging over all partitions of 0,1,2, . . . the symmetric functions mλ form a
basis of the vector space Λ. Note that if �(λ) = 0 then we set mλ = 1.

We will be also using another standard basis of the vector space Λ. For each
n = 1,2, . . . denote pn(x1, . . . , xN) = xn

1 + · · · + xn
N . When the index n is fixed the
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sequence of symmetric polynomials pn(x1, . . . , xN) with N = 1,2, . . . has a limit in
Λ, called the power sum symmetric function of degree n. We will denote it by pn.
More generally, for any partition λ, put

pλ = pλ1pλ2 · · · , (2.3)

where we set p0 = 1. The elements pλ form another basis of Λ. In other words, the
elements p1,p2, . . . are free generators of the commutative algebra Λ over F.

In this article we will be using the natural ordering of partitions. By definition,
here λ ≥ μ if λ and μ are partitions of the same number and

λ1 ≥ μ1, λ1 + λ2 ≥ μ1 + μ2, . . . .

This is a partial ordering. Note that by [I.6.9] any monomial symmetric function mμ

is a linear combination of the symmetric functions pλ where λ ≥ μ.

2.2 Hall–Littlewood functions

Choose F to be the field Q(t) where t is a formal parameter. Take any partition λ with
�(λ) ≤ N . Using the notation of (2.1), put

vλ(t) =
∏

i≥0

ki∏

j=1

1 − tj

1 − t
, (2.4)

where k0 = N − �(λ). Consider the sum of all the N ! products obtained from

x
λ1
1 · · ·xλN

N

∏

1≤i<j≤N

xi − txj

xi − xj

by permuting x1, . . . , xN . This sum is a symmetric polynomial in x1, . . . , xN with
coefficients from Z[t]. Dividing it by vλ(t) we get the Hall–Littlewood symmetric
polynomial Pλ(x1, . . . , xN), see [III.2.1]. All coefficients of the latter polynomial also
belong to Z[t] by [III.1.5]. Furthermore, by [III.2.5] similarly to (2.2) we have

Pλ(x1, . . . , xN−1,0) =
{

Pλ(x1, . . . , xN−1) if �(λ) < N;
0 if �(λ) = N.

Hence for any fixed partition λ the sequence of polynomials Pλ(x1, . . . , xN) with
N ≥ �(λ) has a limit in Λ. This is the Hall–Littlewood symmetric function Pλ.

Along with the symmetric function Pλ it is convenient to use the symmetric func-
tion Qλ which is a scalar multiple of Pλ. By definition,

Qλ = bλ(t)Pλ, (2.5)

where

bλ(t) =
∏

i≥1

ki∏

j=1

(
1 − tj

)
. (2.6)
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We will also use the symmetric polynomial

Qλ(x1, . . . , xN) = bλ(t)Pλ(x1, . . . , xN).

When we need to distinguish x1, x2, . . . from any other variables, we will write
f (x1, x2, . . .) instead of f ∈ Λ. Now let y1, y2, . . . be variables independent of the
x1, x2, . . . . Then by [III.4.4] we have the identity

∞∏

i,j=1

1 − txiyj

1 − xiyj

=
∑

λ

Qλ(x1, x2, . . .)Pλ(y1, y2, . . .), (2.7)

where λ ranges over all partitions of 0,1,2, . . . . The product at the left-hand side of
this identity is regarded as an infinite sum of monomials in x1, x2, . . . and in y1, y2, . . .

by expanding the factor corresponding to i, j as a series at xiyj → 0.
Note that at t = 0 both Pλ(x1, . . . , xN) and Qλ(x1, . . . , xN) specialize to the Schur

symmetric polynomial sλ(x1, . . . , xN). Respectively, the symmetric functions Pλ and
Qλ specialize at t = 0 to the Schur symmetric function sλ. The symmetric function
Pλ also admits specialization at t = 1. By [III.2.4] the latter specialization coincides
with the monomial symmetric function mλ.

Now take the symmetric function Qλ corresponding to the partition λ = (n) with
one part only. We will denote this symmetric function by Qn. By using a variable u

independent of x1, x2, . . . and t introduce the generating function

Q(u) = 1 +
∞∑

n=1

Qnu
n. (2.8)

By [III.2.10] then

Q(u) =
∞∏

i=1

1 − txiu

1 − xiu
. (2.9)

By taking the logarithm of the infinite product here and then exponentiating,

Q(u) = exp

( ∞∑

n=1

1 − tn

n
pnu

n

)
. (2.10)

2.3 Green polynomials

The basis of Hall–Littlewood symmetric functions can be related to the basis of pλ

as follows. Write

pλ =
∑

μ

Xλμ(t)Pμ, (2.11)

where Xλμ(t) ∈ Q(t) while both λ and μ are partitions of the same number. By
[III.2.7] each Xλμ(t) is a polynomial in the variable t with integral coefficients. Fur-
thermore, by [III.7.7] this polynomial in t is monic and has the degree

nμ =
∑

i≥1

(i − 1)μi.
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The elements

tnμXλμ

(
t−1) ∈ Z[t]

are called the Green polynomials, see [Ex. III.7.7] and references therein.
Since Pμ specializes at t = 0 to the Schur symmetric function sμ, the value Xλμ(0)

coincides with the value of the irreducible character of the symmetric group labeled
by the partition μ at the conjugacy class labeled by the partition λ. Moreover, there
are orthogonality relations [III.7.3]:

∑

λ

Xλμ(t)Xλν(t)/zλ(t) = δμνbμ(t), (2.12)

where

zλ(t) = zλ

�(λ)∏

i=1

1

1 − tλi

while

zλ = 1k1k1!2k2k2! · · · (2.13)

in the notation of (2.1). At t = 0 the relations (2.12) specialize to the standard orthog-
onality relations for the irreducible characters of symmetric groups. Due to (2.5) and
to (2.12) the definition (2.11) of the polynomials Xλμ(t) implies that

Qμ =
∑

λ

Xλμ(t)pλ/zλ(t). (2.14)

2.4 Macdonald functions

Now let F be the field Q(q, t) where q and t are formal parameters independent of
each other. Define a bilinear form 〈, 〉 on the vector space Λ by setting, for any λ

and μ,

〈pλ,pμ〉 = zλδλμ

�(λ)∏

i=1

1 − qλi

1 − tλi
(2.15)

in the notation of (2.13). This form is obviously symmetric and non-degenerate. By
[VI.4.7] there exists a unique family of elements Mλ ∈ Λ such that

〈Mλ,Mμ〉 = 0 for λ 
= μ

and such that any Mλ equals mλ plus a linear combination of the elements mμ with
μ < λ in the natural partial ordering. The elements Mλ ∈ Λ are called the Macdonald
symmetric functions. Alternatively, they can be defined as follows.

Take the algebra ΛN of symmetric polynomials in the variables x1, . . . , xN . For
each index i = 1, . . . ,N define the q-shift operator Ti on the algebra ΛN by

(Tif )(x1, . . . , xN) = f (x1, . . . , qxi, . . . , xN).
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Denote by Δ(x1, . . . , xN) the Vandermonde polynomial of N variables

det
[
x

N−j
i

]N
i,j=1 =

∏

1≤i<j≤N

(xi − xj ).

Put

DN(u) = Δ(x1, . . . , xN)−1 · det
[
x

N−j
i

(
1 − ut1−j Ti

)]N
i,j=1, (2.16)

where u is another variable. The last determinant is defined as the alternated sum

∑

σ∈SN

(−1)σ
N∏

i=1

(
x

N−σ(i)
i

(
1 − ut1−σ(i)Ti

))
, (2.17)

where, as usual, (−1)σ denotes the sign of permutation σ . In every product over
i = 1, . . . ,N appearing in (2.17) the operator factors pairwise commute, hence their
ordering does not matter. By [VI.4.16] the DN(u) is a polynomial in u with pairwise
commuting operator coefficients preserving the space ΛN . We will call the restric-
tions of the coefficients to the space ΛN the Macdonald operators. By [VI.4.15] they
have a common eigenbasis in ΛN parameterized by partitions λ of length �(λ) ≤ N .
These eigenvectors are the Macdonald symmetric polynomials.

For each λ with �(λ) ≤ N there is an eigenvector denoted by Mλ(x1, . . . , xN)

which is equal to mλ(x1, . . . , xN) plus a linear combination of the polynomials
mμ(x1, . . . , xN) with μ < λ and �(μ) ≤ N . It turns out that each coefficient in this
linear combination does not depend on N . Note that if λ and μ are any two partitions
of the same number such that λ ≥ μ, then �(λ) ≤ �(μ) by [I.1.11]. It follows that
the polynomials Mλ(x1, . . . , xN) have the same stability property as the polynomials
mλ(x1, . . . , xN) in (2.2):

Mλ(x1, . . . , xN−1,0) =
{

Mλ(x1, . . . , xN−1) if �(λ) < N;
0 if �(λ) = N.

(2.18)

In particular, the sequence of polynomials Mλ(x1, . . . , xN) with N ≥ �(λ) has a limit
in Λ. This is exactly the Macdonald symmetric function Mλ. Further, the eigenvalues
of Macdonald operators acting on ΛN are known. By [VI.4.15],

DN(u)Mλ(x1, . . . , xN) =
N∏

i=1

(
1 − uqλi t1−i

) · Mλ(x1, . . . , xN). (2.19)

Note that Mλ(x1, . . . , xN) is a homogeneous polynomial of degree λ1 + λ2 + · · · ,

T1 · · ·TNMλ(x1, . . . , xN) = qλ1+λ2+···Mλ(x1, . . . , xN). (2.20)

Hence the operator T1 · · ·TN on ΛN commutes with every coefficient of DN(u). Also
note that by [VI.4.14] the symmetric function Mλ admits a specialization at q = 0.
This specialization equals the Hall–Littlewood symmetric function Pλ.
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2.5 Reproducing kernel

In this subsection we will regard the elements of Λ as infinite sums of finite products
of the variables x1, x2, . . . . For instance, we have

pn = xn
1 + xn

2 + · · ·
for any n ≥ 1. Like in the identity (2.7), we will write f (x1, x2, . . .) instead of any f ∈
Λ when we need to distinguish x1, x2, . . . from other variables. Now let y1, y2, . . . be
variables independent of x1, x2, . . . . According to [VI.2.7], with the bilinear form
(2.15) on Λ one associates the reproducing kernel

Π =
∞∏

i,j=1

(txiyj ;q)∞
(xiyj ;q)∞

, (2.21)

where, as usual,

(u;q)∞ =
∞∏

k=0

(
1 − uqk

)
. (2.22)

The property of Π most useful for us can be stated as the following lemma. For
any f ∈ Λ denote by f ∗ the operator on Λ adjoint to the multiplication by f relative
to the bilinear form (2.15). Note that here f = f (x1, x2, . . .).

Lemma We have

f ∗(Π)/Π = f (y1, y2, . . .).

Proof The commutative algebra Λ is generated by the elements pn with n ≥ 1. Hence
it suffices to prove the lemma for f = pn only. Take the operator ∂/∂pn of derivation
in Λ relative to pn = pn(x1, x2, . . .). Then, by the definition (2.15),

p∗
n = n

1 − qn

1 − tn

∂

∂pn

. (2.23)

On the other hand, by taking the logarithm of (2.21) and then exponentiating,

Π = exp

( ∞∑

n=1

1

n

1 − tn

1 − qn
pn(x1, x2, . . .)pn(y1, y2, . . .)

)
.

The lemma for f = pn follows from the last two displayed equalities. �

2.6 Limits of Macdonald operators

Let F = Q(q, t) as in the two subsections above. For every N ≥ 1 let ρN be the homo-
morphism ΛN → ΛN−1 defined by setting xN = 0, as in the beginning of Sect. 2.1.
Denote

AN(u) = (T1 · · ·TN)−1DN(u)/
(
u; t−1)

N
(2.24)
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where, as usual,

(u;q)N =
N−1∏

k=0

(
1 − uqk

)
.

The right-hand side of the equation (2.24) is regarded as a rational function of u with
the values being the operators acting on the vector space ΛN . Due to the stability
property (2.18) of the Macdonald polynomials, (2.19) and (2.20) imply

ρNAN(u) = AN−1(u)ρN

where A0(u) = 1. So the sequence of AN(u) with N ≥ 1 has a limit at N → ∞. This
limit can be written as a series

A(u) = 1 + A(1)/
(
u; t−1)

1 + A(2)/
(
u; t−1)

2 + · · ·
where the leading term equals 1 by (2.20) while the coefficients A(1),A(2), . . . are
certain linear operators acting on Λ. The Macdonald symmetric functions are joint
eigenvectors of these operators. Namely, by (2.19) we have the equality

A(u)Mλ = Mλ

∞∏

i=1

q−λi − ut1−i

1 − ut1−i
. (2.25)

In particular, the operators A(1),A(2), . . . pairwise commute and are self-adjoint rel-
ative to the bilinear form (2.15). We call them the Macdonald operators at infinity.
Due to (2.18) their definition immediately implies that

A(k)Mλ = 0 if �(λ) < k.

The operator A(1) has been well studied, see for instance [VI.4.3]. It follows from
(2.19) and (2.20) that for any partition λ,

A(1)Mλ =
∞∑

i=1

(
q−λi − 1

)
t i−1 · Mλ.

In particular, all the eigenvalues of the operator A(1) on Λ are pairwise distinct. By
[2, Eq. 32] the operator A(1) is equal to the coefficient at 1 of the series in u:

1

1 − t
exp

( ∞∑

n=1

1 − tn

n
unpn

)
exp

( ∞∑

n=1

(
q−n − 1

)
u−n ∂

∂pn

)
− 1

1 − t
.

In the next section we will prove the following general expression for every A(k).

Theorem In the notation (2.5) for every k = 1,2, . . . we have

A(k) =
∑

�(λ)=k

q−λ1−λ2−···QλP
∗
λ , (2.26)

where λ ranges over all partitions of length k.
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By using (2.5),(2.14) the symmetric functions Pλ and Qλ can be expressed as
linear combinations of the functions pμ where both λ and μ are partitions of the
same number. By substituting into (2.26) and then using (2.3),(2.23) one can express
every operator A(k) in terms of pn and ∂/∂pn where n = 1,2, . . . .

In the case k = 1 one can also employ the generating function (2.8). In this case
by using the equality (2.10), our theorem follows from the expression for the operator
A(1) given just before stating the theorem. Furthermore, for any k ≥ 1 one can derive
our theorem from the results of [1, Sect. 3] and [18, Sect. 9]. In the present article we
give a proof independent of these results. In particular, our proof yields new identities
for the Hall–Littlewood symmetric polynomials.

2.7 Step operators

In this subsection we will obtain a corollary to our theorem. We will also utilize the
following particular case of the Pieri rule for Macdonald symmetric functions. By
[VI.6.24] for any partition μ the product p1Mμ equals the linear combination of the
symmetric functions Mλ with the coefficients

i−1∏

j=1

1 − qλj −λi t i−j+1

1 − qλj −λi+1t i−j
·

i−1∏

j=1

1 − qλj −λi+1t i−j−1

1 − qλj −λi t i−j
, (2.27)

where λ ranges over all partitions such that the sequence λ1, λ2, . . . is obtained from
μ1,μ2, . . . by increasing one of its terms by 1 and i is the index of the term.

Further, by [VI.6.19] the above stated equality implies that for any partition λ the
symmetric function ∂Mλ/∂p1 = p∗

1Mλ(1 − t)/(1 − q) is equal to the linear combi-
nation of the Mμ with the coefficients

λi−1∏

j=1

1 − qλi−j−1t
λ′

j −i+1

1 − qλi−j t
λ′

j −i
·
λi−1∏

j=1

1 − qλi−j+1t
λ′

j −i

1 − qλi−j t
λ′

j −i+1
, (2.28)

where μ ranges over all partitions such that the sequence μ1,μ2, . . . is obtained from
λ1, λ2, . . . by decreasing one of its terms by 1 and i is the index of the term. As usual,
here λ′ = (λ′

1, λ
′
2, . . .) is the partition conjugate to λ.

Let us now define the linear operators B(1),B(2), . . . acting on Λ by setting

[
p1,A(u)

]
q

= −uB(u)(1 − q)/(1 − t), (2.29)

where

B(u) = B(1)/
(
u; t−1)

1 + B(2)/
(
u; t−1)

2 + · · · .

At the left-hand side of (2.29) we have the q-commutator p1A(u) − qA(u)p1.
Further, define the linear operators C(1),C(2), . . . acting on Λ by setting

[
A(u), ∂/∂p1

]
q

= −uC(u), (2.30)
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where

C(u) = C(1)/
(
u; t−1)

1 + C(2)/
(
u; t−1)

2 + · · · .

Then by the definitions of B(u) and C(u) and by (2.23) we have the relation

B(u)∗ = C(u). (2.31)

Our theorem provides explicit expressions for the operators B(1),B(2), . . . and
C(1),C(2), . . . which we state as the following corollary. The corollary will allow to
explicitly construct the elementary step operators for Macdonald symmetric func-
tions, see the equalities (2.40) and (2.42) below.

Corollary For every k = 0,1,2, . . . we have the equalities

B(k+1) = t−k
∑

�(μ)=k

q−μ1−μ2−···Qμ1P
∗
μ, (2.32)

C(k+1) = t−k
∑

�(μ)=k

q−μ1−μ2−···PμQ∗
μ1, (2.33)

where μ ranges over all partitions of length k and μ1 denotes the partition obtained
from μ by appending one extra part 1.

Proof The stated equalities (2.32) and (2.33) follow from each other due to the rela-
tion (2.31). We shall derive the first of the two equalities from our theorem.

Recall that at q = 0 the Macdonald symmetric function Mλ specializes to the Hall–
Littlewood symmetric function Pλ. Hence the expression for ∂Mλ/∂p1 given above
implies

∂Pλ/∂p1 =
∑

μ

ψλμ(t)Pμ, (2.34)

where μ ranges over all partitions such that the sequence μ1,μ2, . . . is obtained from
λ1, λ2, . . . by decreasing one of its terms by 1. Let i is the index of that term. If
λi = 1 then the coefficient (2.28) is 1. Then ψλμ(t) = 1 in particular. If λi > 1 and
q = 0 then the only factor in the two products over the indices j in (2.28) comes from
the first product and corresponds to j = λi − 1 = μi . Then ψλμ(t) = 1 − tm where
m = λ′

j − i + 1 is the multiplicity of the part μi in μ. But we will not use any explicit
expression for the coefficient ψλμ(t) with λi > 1.

By [III.4.9] the equality (2.34) established above is equivalent to the equality

(1 − t)p1Qμ =
∑

λ

ψλμ(t)Qλ, (2.35)

where λ ranges over all partitions such that the sequence λ1, λ2, . . . is obtained from
μ1,μ2, . . . by increasing one of its terms by 1. The latter equality can also be derived
from the multiplication formula (3.7) below, by setting n = 1 there.



34 J Algebr Comb (2014) 40:23–44

Now for any k ≥ 1 consider the q-commutator [p1,A(u)]q . By (2.26),

p1A
(k)(1 − t) =

∑

�(μ)=k

q−μ1−μ2−···(1 − t)p1QμP ∗
μ

=
∑

�(μ)=k

∑

λ

q−μ1−μ2−···ψλμ(t)QλP
∗
μ,

where we use the notation of (2.35). Further, by (2.26) and (2.34),

q
[
A(k),p1

]
(1 − t)/(1 − q) =

∑

�(λ)=k

q1−λ1−λ2−···Qλ

[
P ∗

λ ,p1
]
(1 − t)/(1 − q)

=
∑

�(λ)=k

q1−λ1−λ2−···Qλ

[
p∗

1,Pλ

]∗
(1 − t)/(1 − q)

=
∑

�(λ)=k

q1−λ1−λ2−···Qλ(∂Pλ/∂p1)
∗

=
∑

�(λ)=k

∑

μ

q−μ1−μ2−···ψλμ(t)QλP
∗
μ, (2.36)

where the square brackets stand for the usual operator commutator. Hence
[
p1,A(u)

]
q
(1 − t)/(1 − q) = p1A

(k)(1 − t) − q
[
A(k),p1

]
(1 − t)/(1 − q)

=
∑

�(μ)=k

q−μ1−μ2−···Qμ1P
∗
μ −

∑

�(μ)=k−1

q−μ1−μ2−···Qμ1P
∗
μ,

where we use the equality ϕμ1,μ(t) = 1. The definition (2.29) now implies that

−uB(u) = (1 − t)p1 +
∞∑

k=1

∑

�(μ)=k

q−μ1−μ2−···Qμ1P
∗
μ/

(
u; t−1)

k

−
∞∑

k=1

∑

�(μ)=k−1

q−μ1−μ2−···Qμ1P
∗
μ/

(
u; t−1)

k

=
∞∑

k=0

∑

�(μ)=k

q−μ1−μ2−···Qμ1P
∗
μ/

(
u; t−1)

k

−
∞∑

k=0

∑

�(μ)=k

q−μ1−μ2−···Qμ1P
∗
μ/

(
u; t−1)

k+1.

The required equality (2.32) now follows from the relation

(
u; t−1)−1

k
− (

u; t−1)−1
k+1 = −ut−k

(
u; t−1)−1

k+1. �

Note that in the infinite product over the indices i at the right-hand side of
the equality (2.25) the only factors different from 1 are those corresponding to
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i = 1, . . . , �(λ). For any such index i consider the product

t1−i

1 − ut1−i

�(λ)∏

j=1
j 
=i

q−λj − ut1−j

1 − ut1−j
. (2.37)

It follows from (2.25) and from the definition (2.29) that, for any given partition μ,

B(u)Mμ =
∑

λ

Bλμ(u)Mλ, (2.38)

where Bλμ(u) equals the product of (2.27) by (2.37) and by 1 − t , while λ ranges
over all partitions such that the sequence λ1, λ2, . . . is obtained from μ1,μ2, . . . by
increasing one of its terms by 1 and i is the index of the term.

Similarly, (2.25) and (2.30) imply that for any given λ,

C(u)Mλ =
∑

μ

Cμλ(u)Mμ, (2.39)

where Cμλ(u) equals the product of (2.28) by (2.37) and by 1 − q , while μ ranges
over all partitions such that the sequence μ1,μ2, . . . is obtained from λ1, λ2, . . . by
decreasing one of its terms by 1 and i is the index of the term.

Now let the partition λ be fixed. Then for the indices i = 1, . . . , �(λ) all the ele-
ments q−λi t i−1 of the field Q(q, t) are pairwise distinct. Therefore by (2.38) for the
partition μ corresponding to any of these indices i we have

B
(
q−λi t i−1)Mμ = Bλμ

(
q−λi t i−1)Mλ, (2.40)

where the coefficient Bλμ(q−λi t i−1) is the product of (2.27) by 1 − t and by

t1−i

�(λ)∏

j=1

1

qλi − t i−j

�(λ)∏

j=1
j 
=i

(
qλi−λj − t i−j

)
. (2.41)

The left-hand side of the equality (2.40) should be understood as the value in Λ of
the rational function B(u)Mμ at the point u = q−λi t i−1. Similarly, by (2.39),

C
(
q−λi t i−1)Mλ = Cμλ

(
q−λi t i−1)Mμ, (2.42)

where Cμλ(q
−λi t i−1) is the product of (2.28) by 1 − q and by (2.41).

Our definitions (2.29) and (2.30) of the series B(u) and C(u) are motivated by
the results from [17, Sect. 1]. But our definitions employ the q-commutators of the
operators p1 and ∂/∂p1 with A(u), while in [17] the usual commutators have been
employed. Our theorem also provides analogues of the equalities (2.32) and (2.33)
for the usual commutators of p1 and ∂/∂p1 with A(u). These analogues however
involve summation over the pairs of partitions λ and μ, see (2.36) above.
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3 Proof of the theorem

3.1 Reduction of the proof

In this section we will reduce the proof of our theorem to a certain determinantal
identity for each N = 1,2, . . . . By the lemma from Sect. 2.5 the theorem is equivalent
to the equality

A(u)(Π)/Π =
∑

λ

q−λ1−λ2−···Qλ(x1, x2, . . .)Pλ(y1, y2, . . .)/
(
u; t−1)

�(λ)
,

where the coefficients of the series A(u) are regarded as operators acting on the sym-
metric functions in the variables x1, x2, . . . . Here we let the λ range over all partitions
of 0,1,2, . . . and assume that (u; t−1)0 = 1.

It suffices to prove for N = 1,2, . . . the restriction of the required functional equal-
ity to

xN+1 = xN+2 = · · · = 0. (3.1)

By the definition of A(u) the restriction of A(u)(Π)/Π to (3.1) as of a function in
x1, x2, . . . equals

AN(u)(ΠN)/ΠN, (3.2)

where we denote

ΠN =
N∏

i=1

∞∏

j=1

(txiyj ;q)∞
(xiyj ;q)∞

.

By the definition of the symmetric function Qλ(x1, x2, . . .) its restriction to (3.1) is
Qλ(x1, . . . , xN) if �(λ) ≤ N and vanishes if �(λ) > N . Hence the restriction of the
right-hand side of the required functional equality to (3.1) is

∑

�(λ)≤N

q−λ1−λ2−···Qλ(x1, . . . , xN)Pλ(y1, y2, . . .)/
(
u; t−1)

�(λ)
. (3.3)

Due to [VI.2.19] to prove the equality between (3.2) and (3.3) it suffices to set

yN+1 = yN+2 = · · · = 0.

However, we will keep working with the infinite collection of variables y1, y2, . . . .
This will simplify the induction argument in the next subsection. Note that by replac-
ing in (3.3) each variable xi with qxi we get a sum independent of q:

∑

�(λ)≤N

Qλ(x1, . . . , xN)Pλ(y1, y2, . . .)/
(
u; t−1)

�(λ)
. (3.4)

Let us compute the function (3.2). This function depends on the variable u ratio-
nally. It is also symmetric in either of the two collections of variables x1, . . . , xN and
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y1, y2, . . . . It can be obtained by applying to the identity function 1 the result of con-
jugating AN(u) by the operator of multiplication by ΠN , see also [9, Sect. 1] for a
similar argument. By the definition (2.16) we have

(T1 · · ·TN)−1DN(u) = Δ(x1, . . . , xN)−1 · det
[
x

N−j
i

(
T −1

i − ut1−j
)]N

i,j=1.

The last determinant is defined as the alternated sum

∑

σ∈SN

(−1)σ
N∏

i=1

(
x

N−σ(i)
i

(
T −1

i − ut1−σ(i)
))

.

Conjugating this sum by ΠN amounts to replacing every T −1
i by its conjugate

∞∏

l=1

1 − q−1txiyl

1 − q−1xiyl

· T −1
i ;

see the definition (2.22). Hence we get the sum

∑

σ∈SN

(−1)σ
N∏

i=1

(
x

N−σ(i)
i

( ∞∏

l=1

1 − q−1txiyl

1 − q−1xiyl

· T −1
i − ut1−σ(i)

))
.

Here in any single summand each of the factors corresponding to i = 1, . . . ,N does
not depend on the variables xj with j 
= i. Therefore applying the latter operator sum
to 1 amounts to simply deleting each T −1

i . Thus we get the function

∑

σ∈SN

(−1)σ
N∏

i=1

(
x

N−σ(i)
i

( ∞∏

l=1

1 − q−1txiyl

1 − q−1xiyl

− ut1−σ(i)

))

= det

[
x

N−j
i

( ∞∏

l=1

1 − q−1txiyl

1 − q−1xiyl

− ut1−j

)]N

i,j=1

.

Dividing by Δ(x1, . . . , xN) and then replacing each variable xi with qxi we get

Δ(x1, . . . , xN)−1 · det

[
x

N−j
i

( ∞∏

l=1

1 − txiyl

1 − xiyl

− ut1−j

)]N

i,j=1

. (3.5)

Thus to prove our theorem it suffices to show that for N = 1,2, . . . the sum (3.4)
is equal to the ratio (3.5) divided by (u; t−1)N , see the definition (2.24). In the next
subsection we will reduce the proof of this equality to a family of certain identities
for symmetric polynomials in the single collection of variables x1, . . . , xN . These
identities will correspond to partitions λ with 0 < �(λ) < N .
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3.2 Further reduction

Let us consider the last determinant in (3.5). We will be proving by induction on
N that this determinant is equal to the sum (3.4) multiplied by the Vandermonde
polynomial Δ(x1, . . . , xN) and by (u; t−1)N .

If N = 0 then there is only one term in the sum (3.4), and this term is 1. The
leading term of the series A(u) is also 1. Hence we can use the case N = 0 as the
induction base. Now take any N ≥ 1 and suppose that the required equality holds for
N − 1 instead of N . For each i = 1, . . . ,N we will for short denote

Δ(i) = Δ(x1, . . . , x̂i , . . . , xN),

where, as usual, the symbol x̂i indicates the omitted variable. Similarly, for any par-
tition μ with �(μ) < N we will for short denote

Q(i)
μ = Qμ(x1, . . . , x̂i , . . . , xN).

Due to (2.9) the infinite product over the index l in (3.5) equals the sum

1 +
∞∑

n=1

Qn(y1, y2, . . .)x
n
i .

Therefore by expanding the last determinant in (3.5) in its first column and then
employing the induction assumption where u and λ are replaced with ut−1 and μ,
respectively, we get the sum

N∑

i=1

(−1)i+1xN−1
i

(
1 − u +

∞∑

n=1

Qn(y1, y2, . . .)x
n
i

)
Δ(i)

×
∑

�(μ)<N

Q(i)
μ Pμ(y1, y2, . . .)

∏

�(μ)<l<N

(
1 − ut−l

)
. (3.6)

Let us open the brackets in the first of the two lines of the display (3.6) and use
the multiplication formula due to Morris [14]:

Qn(y1, y2, . . .)Pμ(y1, y2, . . .) =
∑

λ

ϕλμ(t)Pλ(y1, y2, . . .); (3.7)

see also [III.5.7]. Here ϕλμ(t) 
= 0 only if

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · (3.8)

and

λ1 − μ1 + λ2 − μ2 + · · · = n. (3.9)

Then in the notation (2.1) the coefficient ϕλμ(t) is the product of the differences
1 − tki taken over all the indices i ≥ 1 such that

λ′
i − μ′

i > λ′
i+1 − μ′

i+1,
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where λ′ = (λ′
1, λ

′
2, . . .) and μ′ = (μ′

1,μ
′
2, . . .) are the conjugate partitions.

In the proof of our theorem we will not use this explicit expression for the coeffi-
cient ϕλμ(t). We have reproduced it here for the sake of completeness. We will use
only the fact that the inequality ϕλμ(t) 
= 0 implies (3.8) and (3.9). We also note that
for any fixed partition λ with �(λ) ≤ N and any index i = 1, . . . ,N the multiplication
formula (3.7) implies the decomposition formula

Qλ(x1, . . . , xN) =
∑

�(μ)<N

ϕλμ(t)xn
i Q(i)

μ , (3.10)

where the sum is taken over all partitions μ with �(μ) < N while n is determined by
the equality (3.9), see for instance [III.5.5] and [III.5.14].

Using the multiplication formula (3.7), the sum (3.6) equals

N∑

i=1

∑

�(μ)<N

(−1)i+1xN−1
i Δ(i)Q(i)

μ Pμ(y1, y2, . . .)(1 − u)
∏

�(μ)<l<N

(
1 − ut−l

)

+
N∑

i=1

∑

�(μ)<N

∞∑

n=1

(−1)i+1xN−1+n
i Δ(i)Q(i)

μ

∏

�(μ)<l<N

(
1 − ut−l

)

×
∑

λ

ϕλμ(t)Pλ(y1, y2, . . .). (3.11)

Note that under the condition (3.8) the inequality n ≥ 1 is equivalent to λ 
= μ. Also
note that under the condition (3.8) the length �(λ) is equal to �(μ) or to �(μ) + 1. In
particular, if ϕλμ(t) 
= 0 in (3.11) then �(λ) ≤ N .

Let us now fix any partition λ with �(λ) ≤ N and compare the coefficients at
Pλ(y1, y2, . . .) in the sum displayed in the three lines (3.11), and in the sum (3.4)
multiplied by Δ(x1, . . . , xN) and (u; t−1)N . The latter coefficient always equals

Δ(x1, . . . , xN)Qλ(x1, . . . , xN)
∏

�(λ)≤l<N

(
1 − ut−l

)
. (3.12)

But when taking the coefficient in (3.11) we will separately consider three cases.
First suppose that �(λ) = 0. In this case there is no partition μ satisfying the con-

dition (3.9) with n ≥ 1. By setting �(μ) = 0 in the first line of (3.11) we get

N∑

i=1

(−1)i+1xN−1
i Δ(i)

∏

0≤l<N

(
1 − ut−l

)
,

which equals (3.12) with �(λ) = 0. Hence the two coefficients are the same here.
Next suppose that �(λ) = N . Then the first line of (3.11) does not contribute to the
coefficient at Pλ(y1, y2, . . .) since �(μ) < N in that line. Consider the last two lines
of (3.11). If ϕλμ(t) 
= 0 there then �(μ) = N − 1 by the condition (3.8), so that the
product over l is actually 1. Then the inequality n ≥ 1 holds since �(μ) < �(λ). Thus
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the coefficient at Pλ(y1, y2, . . .) with �(λ) = N in (3.11) equals

N∑

i=1

∑

�(μ)<N

(−1)i+1xN−1+n
i Δ(i)Q(i)

μ ϕλμ(t). (3.13)

Using the decomposition formula (3.10), the last displayed sum equals

Δ(x1, . . . , xN)Qλ(x1, . . . , xN)

and hence coincides with (3.12) in the case �(λ) = N under our consideration.
Finally let 0 < �(λ) < N . Then the coefficient at Pλ(y1, y2, . . .) in (3.11) is

N∑

i=1

(−1)i+1xN−1
i Δ(i)Q

(i)
λ (1 − u)

∏

�(λ)<l<N

(
1 − ut−l

)

+
N∑

i=1

∑

�(μ)<N
n≥1

(−1)i+1xN−1+n
i Δ(i)Q(i)

μ ϕλμ(t)
∏

�(μ)<l<N

(
1 − ut−l

)
. (3.14)

The sum displayed in the first of the above two lines can be rewritten as

N∑

i=1

(−1)i+1xN−1
i Δ(i)Q

(i)
λ

∏

�(λ)≤l<N

(
1 − ut−l

)

+
N∑

i=1

(−1)i+1xN−1
i Δ(i)Q

(i)
λ

(
ut−�(λ) − u

) ∏

�(λ)<l<N

(
1 − ut−l

)
. (3.15)

Further, in the second line of the display (3.14) we may have ϕλμ(t) 
= 0 only if �(μ)

equals �(λ) or �(λ) − 1. Therefore the sum in that line can be rewritten as

N∑

i=1

∑

�(μ)=�(λ)
μ 
=λ

(−1)i+1xN−1+n
i Δ(i)Q(i)

μ ϕλμ(t)
∏

�(λ)≤l<N

(
1 − ut−l

)

+
N∑

i=1

∑

�(μ)=�(λ)
μ 
=λ

(−1)i+1xN−1+n
i Δ(i)Q(i)

μ ϕλμ(t)ut−�(λ)
∏

�(λ)<l<N

(
1 − ut−l

)

+
N∑

i=1

∑

�(μ)<�(λ)

(−1)i+1xN−1+n
i Δ(i)Q(i)

μ ϕλμ(t)
∏

�(λ)≤l<N

(
1 − ut−l

)
. (3.16)

Using the decomposition formula (3.10), the sums displayed in the first line
of (3.15) and in the first and the third lines of (3.16) add up to the product (3.12).
This product is the coefficient at Pλ(y1, y2, . . .) in the sum (3.4) multiplied by
Δ(x1, . . . , xN) and (u; t−1)N . The sums displayed in the second line of (3.15) and
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in the second line of (3.16) should add up to zero. Let us multiply each of these two
sums by t�(λ) and divide them by their common factors u and

1 − ut−l where 1�(λ) < l < N.

The proof of our theorem thus reduces to the next combinatorial proposition.

Proposition For any fixed partition λ with 0 < �(λ) < N we have the identity

N∑

i=1

(−1)i+1xN−1
i Δ(i)

(
Q

(i)
λ

(
1 − t�(λ)

) +
∑

�(μ)=�(λ)
μ 
=λ

xn
i Q(i)

μ ϕλμ(t)

)
= 0,

where n is determined by the partitions λ and μ via the equality (3.9).

Note that at the left-hand side of the above identity we have a skew-symmetric
polynomial in the variables x1, . . . , xN with the coefficients from Z[t]. Dividing it
by the Vandermonde polynomial Δ(x1, . . . , xN) we get a symmetric polynomial in
x1, . . . , xN . Our proposition states that the latter polynomial is actually zero.

3.3 Finishing the proof

For any non-negative integer n and for any partition μ with �(μ) < N consider the
sum

N∑

i=1

(−1)i+1xN−1+n
i Δ(i)Q(i)

μ . (3.17)

If n is determined by the equality (3.9) for any fixed partition λ with �(λ) < N , then
the left-hand side of the identity in our proposition is a linear combination of the
sums (3.17) with the coefficients 1 − t�(λ) or ϕλμ(t) if respectively μ = λ or μ 
= λ

but �(μ) = �(λ). Note that ϕλλ(t) = 1. In particular, ϕλλ(t) 
= 1 − t�(λ).
Denote by Fμ,n(x1, . . . , xN) the alternated sum of N ! products obtained from

x
μ1
1 · · ·xμN−1

N−1 xN−1+n
N

∏

1≤i<j<N

(xi − txj ) (3.18)

by permuting x1, . . . , xN . Here we use the signs of permutations for alternation. This
sum is a skew-symmetric polynomial in x1, . . . , xN with coefficients from Z[t]. By
performing the summation first over the permutations which map xN to xi and then
over the indices i = 1, . . . ,N one shows that the product

(−1)N+1Fμ,n(x1, . . . , xN) · bμ(t)/vμ(t) (3.19)

equals the sum (3.17). Here one uses only the definition of the polynomial Q
(i)
μ , see

the beginning of Sect. 2.2.
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Below we shall prove that if μ satisfies the conditions �(μ) = �(λ) and (3.8) while
n is determined by (3.9) then Fμ,n(x1, . . . , xN) is a linear combination of the products

Δ(x1, . . . , xN)Pν(x1, . . . , xN), (3.20)

where ν is a partition, �(ν) ≤ N and ν < λ in the natural ordering. Hence the argu-
ments from the previous two subsections imply that the difference between the left-
and right-hand sides of the required equality (2.26) is a linear combination of the op-
erators PνP

∗
λ where ν < λ. However, this difference must be self-adjoint relative to

the bilinear form (2.15) on the vector space Λ. Indeed, the left-hand side of (2.26) is
self-adjoint by definition, while the right-hand side is self-adjoint due to (2.5). There-
fore the difference equals zero.

Now fix any μ satisfying the conditions �(μ) = �(λ) and (3.8). Determine the
integer n by (3.9). Take any monomial in the variables x1, . . . , xN resulting from
opening the brackets in (3.18). Due to the alternation it suffices to consider only
those monomials where x1, . . . , xN occur with distinct degrees. By rearranging these
degrees in the descending order we get a monomial

x
ν1+N−1
1 · · ·xνN−1+1

N−1 x
νN

N , (3.21)

where ν1 ≥ · · · ≥ νN ≥ 0. For any k = 1, . . . ,N − 1 the sum of the first k degrees

(ν1 + N − 1) + · · · + (νk + N − k)

does not exceed the maximum of the following two sums:

(μ1 + N − 2) + · · · + (μk + N − k − 1) (3.22)

and

(μ1 + N − 2) + · · · + (μk−1 + N − k) + (N − 1 + n); (3.23)

see the proof of the property [III.2.6] of Hall–Littlewood polynomials for a similar
argument. Hence if (3.22) is the maximum of the two sums then due to (3.8),

ν1 + · · · + νk ≤ μ1 + · · · + μk − k < λ1 + · · · + λk.

If (3.23) is the maximum then due to (3.8) and (3.9),

ν1 + · · · + νk ≤ μ1 + · · · + μk−1 + n

= (λ1 + · · · + λk) − (μk − λk+1) − · · · − (μN−1 − λN)

≤ λ1 + · · · + λk.

For any k ≤ �(λ) the last inequality is strict because �(μ) = �(λ). Thus ν < λ.
By the definition of the Schur symmetric polynomial corresponding to the partition

ν = (ν1, . . . , νN ,0,0, . . .) the alternated sum of N ! products obtained by permuting
x1, . . . , xN in the monomial (3.21) is equal to the product

Δ(x1, . . . , xN)sν(x1, . . . , xN). (3.24)
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Hence we have now proved that Fμ,n(x1, . . . , xN) is a linear combination of the prod-
ucts (3.24) where ν < λ. In the latter statement, the products (3.24) can be replaced
with the respective products (3.20) by using the property [III.2.6].

Thus we have completed the proof of our theorem. Further, by the definitions (2.4)
and (2.6) the factor bμ(t)/vμ(t) appearing in the product (3.19) equals

(1 − t)N
N−�(μ)∏

j=1

(
1 − tj

)−1
.

In particular, this factor is the same for all products (3.19) such that �(μ) = �(λ).
Dividing the identity in our proposition by this factor and by (−1)N+1 we get

(
1 − t�(λ)

)
Fλ,0(x1, . . . , xN) +

∑

�(μ)=�(λ)
μ 
=λ

ϕλμ(t)Fμ,n(x1, . . . , xN) = 0

for any fixed partition λ such that 0 < �(λ) < N . Here the positive integer n is deter-
mined by the partitions λ and μ via the equality (3.9).

It would be interesting to prove this identity without using any properties of Mac-
donald operators, for instance by employing the methods of [12, Chap. 7]. It would
be also interesting to find a link between this identity and that from [8].
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