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Abstract We give closed combinatorial product formulas for Kazhdan–Lusztig poly-
nomials and their parabolic analogue of type q in the case of boolean elements, intro-
duced in (Marietti in J. Algebra 295:1–26, 2006), in Coxeter groups whose Coxeter
graph is a tree. Such formulas involve Catalan numbers and use a combinatorial in-
terpretation of the Coxeter graph of the group. In the case of classical Weyl groups,
this combinatorial interpretation can be restated in terms of statistics of (signed) per-
mutations. As an application of the formulas, we compute the intersection homology
Poincaré polynomials of the Schubert varieties of boolean elements.

Keywords Coxeter groups · Kazhdan–Lusztig polynomials · Boolean elements ·
Poincaré polynomials

1 Introduction

In their fundamental paper [16] Kazhdan and Lusztig defined, for every Coxeter
group W , a family of polynomials, indexed by pairs of elements of W , which have
become known as the Kazhdan–Lusztig polynomials of W (see, e.g., [13, Chap. 7]
or [2, Chap. 5]). These polynomials play an important role in several areas of math-
ematics, including the algebraic geometry and topology of Schubert varieties and
representation theory (see, e.g., [2, Chap. 5], and the references therein). In partic-
ular, their coefficients give the dimensions of the intersection cohomology modules
for Schubert varieties (see, e.g., [17]).
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In order to find a method for the computation of the dimensions of the intersec-
tion cohomology modules corresponding to Schubert varieties in G/P , where P is
a parabolic subgroup of the Kac–Moody group G, in 1987 Deodhar [9] introduced
two parabolic analogues of these polynomials which correspond to the roots x = q

and x = −1 of the equation x2 = q + (q − 1)x. These parabolic Kazhdan–Lusztig
polynomials reduce to the ordinary ones for the trivial parabolic subgroup and are
also related to them in other ways (see, e.g., Proposition 2.3 below). Besides these
connections, the parabolic polynomials also play a direct role in several areas in-
cluding the theories of generalized Verma modules [7], tilting modules [24, 25] and
Macdonald polynomials [11, 12].

The purpose of this work is to give explicit combinatorial product formulas for all
(parabolic and ordinary) Kazhdan–Lusztig polynomials indexed by pairs of boolean
elements (see Sect. 2 for the definition) in all Coxeter groups whose Coxeter graph is
a tree. Our results show that all such polynomials have nonnegative coefficients, con-
jectured by Kazhdan and Lusztig [16] and recently proved by Elias and Williamson
[10], and give a combinatorial interpretation of them in terms of Catalan numbers and
the Coxeter graph of the group.

In the case of classical Weyl groups, this combinatorial interpretation can be re-
stated in terms of exceedances and other statistics of (signed) permutations. Our re-
sults also confirm, only for boolean elements, a conjecture of Brenti on the parabolic
Kazhdan–Lusztig polynomials of type q: the Kazhdan–Lusztig polynomials com-
puted on two elements of a parabolic quotient are greater (in coefficient-wise com-
parison) than the polynomial computed on the same elements in a quotient included
in the first (as set).

In literature there are many works which give methods to compute Kazhdan–
Lusztig polynomials in special contests: for example, there are formulas for ordinary
Kazhdan–Lusztig polynomials for covexillary permutations of type A due to Lascoux
[18], for cominuscule elements in types B and D due to Boe [3] and for Hermitian
symmetric pairs due to Brenti [4, 6]. The previous works give a combinatorial for-
mula for all Kazhdan–Lusztig polynomials in special Coxeter groups; in this work,
instead, we give a formula that could be applied to a special class of elements in a
greater family of Coxeter groups. In some cases, the results overlap but the formula
are obviously different.

The organization of the paper is as follows. In the next section we recall defini-
tions, notation and results that are used in the rest of this work. In Sect. 3 we give
some lemmas about the computation of parabolic Kazhdan–Lusztig polynomials in-
dexed by boolean elements and introduce and illustrate some properties of “Catalan
triangle” which will appear in the main result. In Sect. 4 we state and prove our main
result, namely, an explicit closed combinatorial formula for all (parabolic and ordi-
nary) Kazhdan–Lusztig polynomials of boolean elements of Coxeter group whose
Coxeter graph is a tree. In Sect. 5 we restate the formulas using statistics associated
with (signed) permutations for the classical Weyl groups. Finally, in Sect. 7 we use
our main result to compute the intersection homology Poincaré polynomials indexed
by boolean elements in all Coxeter groups whose Coxeter graphs have at most one
vertex with more than two adjacent vertices.
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2 Definitions, notation and preliminaries

We let P := {1,2,3, . . .}, N := P ∪ {0}, Z := N ∪ {−1,−2, . . .}. For all m,n ∈ Z,
m ≤ n, we set [m,n] := {m,m+ 1, . . . , n} and [n] := [1, n]. Given a set A we denote
by #A its cardinality.

We follow [26, Chap. 3] for poset notation and terminology. In particular, given
a poset (P,≤) and u,v ∈ P we let [u,v] := {w ∈ P |u ≤ w ≤ v} and call this an
interval of P . We say that v covers u, denoted u�v (or, equivalently, that u is covered
by v) if #[u,v] = 2.

We follow [13] for general Coxeter groups notation and terminology. Given a Cox-
eter system (W,S) and u ∈ W we denote by l(u) the length of u in W , with respect
to S, i.e. the minimal length of words si1 · · · sik = u whose alphabet is S (such min-
imal words are called reduced). Given u,v ∈ W we denote by l(u, v) = l(v) − l(u).
We let DR(u) := {s ∈ S|l(us) < l(u)} the set of the right descents of u, DL(u) :=
{s ∈ S|l(su) < l(u)} the set of the left descents of u and we denote by ε the identity
of W .

Let s, s′ ∈ S and define αs,s′ := ss′ss′ss′ · · · the alternating word of length
m(s, s′). Given a word w in the alphabet S let us call a nil-move the deletion of a
subword of the form ss, and a braid-move the replacement of a factor αs,s′ by αs′,s .
The following result can be found in [2, Theorem 3.3.1].

Theorem 2.1 (Word property) Let (W,S) be a Coxeter system and w ∈ W .

– Any expression s1s2 · · · sq for w can be transformed into a reduced expression for
w by a sequence of nil-moves and braid-moves;

– every two reduced expressions for w can be connected via a sequence of braid-
moves.

Given J ⊆ S we let WJ the parabolic subgroup generated by J and

WJ := {
u ∈ W |l(su) > l(u) for all s ∈ J

}
. (1)

Note that W∅ = W (here we use a different notation from that given in [2], in which
the same set is denoted by J W ). If WJ is finite, then we denote by w0(J ) its longest
element. We will always assume that WJ is partially ordered by Bruhat order. Recall
(see e.g. [13, Chaps. 5.9 and 5.10]) that this means that x ≤ y if and only if for one
reduced word of y (equivalently for all) there exists a subword that is a reduced word
of x. Given u,v ∈ WJ , u ≤ v, we let

[u,v]J := {
w ∈ WJ |u ≤ w ≤ v

}
,

and [u,v] := [u,v]∅.
For J ⊆ S, x ∈ {−1, q}, and u,v ∈ WJ we denote by P

J,x
u,v (q) the parabolic

Kazhdan–Lusztig polynomials in WJ of type x (we refer the reader to [9] for the def-
initions of these polynomials; see also Proposition 2.3 below). We denote by Pu,v(q)

the ordinary Kazhdan–Lusztig polynomials.

For u,v ∈ WJ let μJ,q(u, v) be the coefficient of q
1
2 (l(u,v)−1) in P

J,q
u,v (q) (so

μJ,q(u, v) = 0 when l(v) − l(u) is even). It is well known that if u,v ∈ WJ then
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μJ,q(u, v) = μ(u, v), the coefficient of q
1
2 (l(u,v)−1) in Pu,v(q) (see Corollary 2.4 be-

low). The following result is due to Deodhar, and we refer the reader to [9] for its
proof.

Proposition 2.2 Let (W,S) be a Coxeter system, J ⊆ S, and u,v ∈ WJ ,u ≤ v. Then
for each s ∈ DR(v) we have that

P
J,q
u,v (q) = P̃u,v − M̃u,v, (2)

where

P̃u,v =

⎧
⎪⎨

⎪⎩

P
J,q
us,vs + qP

J,q
u,vs if us < u;

qP
J,q
us,vs + P

J,q
u,vs if u < us ∈ WJ ;

0 if u < us /∈ WJ ,

and

M̃u,v =
∑

u≤w<vs|ws<w

μ(w,vs)q
l(w,v)

2 P
J,q
u,w(q).

The parabolic Kazhdan–Lusztig polynomials are related to their ordinary coun-
terparts in several ways, including the following one, which may be taken as their
definition in most cases.

Proposition 2.3 Let (W,S) be a Coxeter system, J ⊆ S and u,v ∈ WJ . Then we
have that

P
J,q
u,v (q) =

∑

w∈WJ

(−1)l(w)Pwu,v(q).

Moreover, if WJ is finite, then

P J,−1
u,v (q) = Pw0(J )u,w0(J )v(q).

A proof of this result can be found in [9] (see Proposition 3.4, and Remark 3.8).
Since for all w ∈ WJ and u ∈ WJ we have l(wu) = l(w) + l(u) by [2, Proposi-
tion 2.4.4], then the degree of Pwu,v(q) in Proposition 2.3 is less than 1

2 (l(u, v) − 1)

except when w = ε. Therefore we have

Corollary 2.4 For any J ⊆ S and u,v ∈ WJ we have

μJ,q(u, v) = μ(u, v).

A proof of the following result can be found in [22, Corollary 2.9 and the previous
remark].

Proposition 2.5 Let (W,S) a Coxeter system and J ⊆ S. Let u,v ∈ WJ and s ∈
DR(v).
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(a) If us /∈ WJ then P
J,q
u,v (q) = 0;

(b) if us ∈ WJ then P
J,q
us,v(q) = P

J,q
u,v (q);

(c) if μ(u, v) 	= 0 then DR(v) ⊆ DR(u) and DL(v) ⊆ DL(u).

In the rest of the paper we will consider parabolic Kazhdan–Lusztig polynomials
of type q . Therefore we will write P J

u,v instead of P
J,q
u,v .

Let (W,S) be any Coxeter system and t be a reflection in W . Following Marietti
[20–22], we say that t is a boolean reflection if it admits a boolean expression, which
is, by definition, a reduced expression of the form s1 · · · sn−1snsn−1 · · · s1 with sk ∈ S,
for all k ∈ {1, . . . , n} and si 	= sj if i 	= j . We say that u ∈ W is a boolean element if
u is smaller than a boolean reflection in the Bruhat order. Let v be a reduced word of
a boolean element and s ∈ S; we denote by v(s) the number of occurrences of s in v.

Given a Coxeter system (W,S), the Coxeter graph of W is a graph whose vertex
set is S and two vertices s, s′ are joined by an edge if ss′ 	= s′s. We label this edge with
m(s, s′), the smallest positive integer such that (ss′)m(s,s′) = ε (m(s, s′) = ∞ if there
is no such integer). We say that W is a tree-Coxeter group if its Coxeter graph is a tree.

3 Preliminary results

In this section we give some preliminary lemmas which are needed to prove the main
theorem in the next section. For any generator si ∈ S we set Si := S \ {si} and we
denote by C(si) the subset of Si of all elements commuting with si .

Lemma 3.1 Let u,v ∈ WJ such that siu, siv ∈ WJ
Si (in particular, there exist reduced

words for u,v starting with si and with no other occurrences of si ). Then

P J
u,v = P J∩C(si )

siu,siv
.

Proof The statement is trivial if l(v) = 1. Suppose that l(v) > 1. Then there exists
sj ∈ DR(v), j 	= i. Note that for any w ∈ W with siw ∈ WSi we have that DL(w) ⊆
{si}∪C(si), more precisely DL(w) = {si}∪ (DL(siw)∩C(si)). Therefore usj ∈ WJ

if and only if siusj ∈ WJ∩C(si ). In this case, by Proposition 2.2 we have

P J
u,v = qcP J

usj ,vsj
+ q1−cP J

u,vsj
−

∑

u≤w≤vsj
wsj <w

μ(w,vsj )q
l(w,vsj )

2 P J
u,w

= qcP J∩C(si )
siusj ,sivsj

+ q1−cP J∩C(si )
siu,sivsj

−
∑

si u≤siw≤si vsj
siwsj <siw

μ(siw, sivsj )q
l(siw,si vsj )

2 P J∩C(si )
siu,siw

= P J∩C(si )
siu,siv

by induction, where c is 0 or 1. The equalities hold since the map from [u,v]J to
[siu, siv]J∩C(si ) given by left-multiplication by si is an isomorphism of posets. �



502 J Algebr Comb (2014) 39:497–525

Lemma 3.2 Let u,v ∈ WJ be such that u, siv ∈ WSi (in particular, there are no
occurrences of si in any reduced expression of u and siv). Then

P J
u,v =

{
P J

u,siv
if siv ∈ WJ ,

0 otherwise.

Proof If l(v) = 1, there is nothing to prove. Let we suppose l(v) > 1 and let sj ∈
DR(v), sj 	= si . If usj /∈ WJ the claim is trivial by Proposition 2.5. Therefore we
may assume usj ∈ WJ .

Suppose that siv ∈ WJ and proceed by induction on l(v). Then by Proposition 2.2
we get

P J
u,v = qcP J

usj ,vsj
+ q1−cP J

u,vsj
−

∑

u≤w≤vsj
wsj <w

μ(w,vsj )q
l(w,vsj )

2 P J
u,w

= qcP J
usj ,sivsj

+ q1−cP J
u,sivsj

−
∑

u≤siw≤si vsj
siwsj <siw

μ(siw, sivsj )q
l(siw,si vsj )

2 P J
u,siw

= P J
u,siv

,

where c is 0 or 1. The equalities hold by induction on l(vsj ): if w ∈ WSi then
μ(w,vsj ) is 0 since by induction either P J

w,vsj
= 0 or P J

w,vsj
= P J

w,sivsj
and therefore

P J
w,vsj

does not have the maximum degree. Otherwise, if siw /∈ WJ then P J
u,w = 0

by induction, else P J
u,w = P J

u,siw
and μ(w,vsj ) = μ(siw, sivsj ) by Lemma 3.1 and

Corollary 2.4.
Finally, if siv /∈ WJ we may assume that sivsj /∈ WJ (for this, choose a suitable

right descent sj ) except in the case v = sisj and u = ε which is trivial. Then by
induction

P J
u,v = −

∑

u≤w≤vsj
wsj <w

μ(w,vsj )q
l(w,vsj )

2 P J
u,w.

Fix w ∈ WJ with u ≤ w ≤ vsj and wsj < w. We prove that μ(w,vsj )P
J
u,w = 0.

If w ∈ WSi then μ(w,vsj ) = 0 by induction. Otherwise, if siw ∈ WSi then by
Lemma 3.1 we have μ(w,vsj ) = μ(siw, sivsj ). Now, if siw /∈ WJ then by induction
P J

u,w = 0, else both sivsj /∈ WJ and siw ∈ WJ imply that DL(sivsj ) � DL(siw) and
by (c) of Proposition 2.5 we have μ(siw, sivsj ) = 0. �

We now introduce a family of numbers which are used in the next section. The
Catalan triangle is a triangle of numbers formed in the same manner as Pascal’s
triangle, except that no number may appear on the left of the first element (see [23,
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sequence A008313]).

1
1

1 1
2 1

2 3 1
5 4 1

5 9 5 1
14 14 6 1

14 28 20 7 1
42 48 27 8 1

Let h ≥ 1. We set

fh(q) =
[ h

2 ]∑

i=0

C(h, i)q[ h
2 ]−i ,

where [h] denotes the integer part of h and C(h, i) is the ith number in the hth
row (here we start the enumeration from 0). For example, f4(q) = 2q2 + 3q + 1;

f7(q) = 14q3 + 14q2 + 6q + 1. We denote by μ(fh(q)) the coefficient of q
h
2 in

fh(q). Therefore μ(fh(q)) = 0 if h is odd. Then we have the following easy result,
whose proof we omit.

Lemma 3.3 For all h ≥ 0,

fh(q)(1 + q) − μ
(
fh(q)

)
q

h
2 +1 = fh+1(q).

Note that in the first column we find the classical Catalan numbers (see [23, se-
quence A008313] for details).

4 Parabolic Kazhdan–Lusztig polynomials

Let (W,S) be a tree-Coxeter group. Let t = si1 · · · sik−1sik sik−1 · · · si1 be a boolean
reflection, ij 	= ih for j 	= h. Consider the Coxeter graph G and represent it as a
rooted tree with root the vertex corresponding to the generator sn. In this paper all
the roots will be depicted on the right of their graphs. In Fig. 1 we give the Coxeter
graph of the affine Weyl group D̃11.

According to such rooted graph we say that sj is on the right (respectively on
the left) of si if and only if there exists an edge joining both corresponding vertices
and, in addition, the only path joining si (respectively sj ) to sn crosses the node sj
(respectively si ).

Let w be a word in the alphabet si1 , . . . , sik . In the following we denote by w(sij )

the number of all occurrences of the element sij in the word w. Let u,v ∈ W be such
that u,v ≤ t . As defined in [22] for linear Coxeter group, we denote by u,v the only
reduced expressions of u,v satisfying the following properties:
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– v is a subword of si1 · · · sik−1sik sik−1 · · · si1 and if ij is such that v(sij ) = 1 and
v(sih) = 0, where sih is the only element on the right of sij , then v has sij in the
leftmost admissible position;

– u is a subword of v and if ij is such that u(sij ) = 1 and u(sih) = 0, we apply the
same above rule.

Here we give an example. Let t = s1s2 · · · s5s10s11s9s8s7s6s7s8s9s11s10s5 · · · s2s1

in D̃11, see Fig. 1. Let v = s4s5s10s11s6s7s8s9s5s4s2s1 and u = s8s6s1 then v =
s1s2s4s5s10s11s6s7s8s9s5s4 and u = s1s6s8.

Now we give a graphical representation of the pair (u, v). We start from the rooted
tree of the Coxeter graph and we substitute for each vertex a table with one column
and two rows. In the first row we write v(sj ) (sj is the element associated with the
vertex); in the second row we write u(sj ). In the case v(sj ) = 1, it is possible that sj
is on the left or on the right of sn (the root) as subword of t . We distinguish the two
cases by writing 1l if sj is on the left of sn, and 1r otherwise. By convention we write
1l in the root sn if v(sn) 	= 0. We apply the same rule to the second row. Moreover, in

Fig. 1 The Coxeter graph of
D̃11 with root s6, corresponding
to the reflection
t = s1s2 · · · s5s10s11s9s8s7
s6s7s8s9s11s10s5 . . . s2s1

Fig. 2 Diagram of
(u = s1s6s8, v = s1s2s4s5s11
s10s6s7s8s9s5s4) in D̃11
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the first row, we use capital letter R instead of r if the second row of the column to
the right does not contain 0.

We mark the column corresponding to sj with ◦ if j ∈ J and with × if j /∈ J .
Finally, if a vertex sj has only one vertex on the left then we write the two corre-
sponding columns in the same table. In Fig. 2 we give the graphical representation of
the pair (u, v) in D̃11, with J = {s5, s7}.

In the sequel a symbol ∗ denotes the possibility to have arbitrary entries in the
cell. A symbol such as 	 1l , 	 0, etc. means that the value in the cell is not 1l , 0, etc.
Moreover we will be interested in subdiagrams of such representations, i.e. diagrams
obtained by deleting one or more columns. Since the order of the tables from top to
bottom is not important (while the order from left to right is fundamental), we use the
following notation:

⎛

⎝
∗
a
b

⎞

⎠

n

∗
c

d

∗
a

b

∗
e

f

to mean
...

...

∗
a

b

∗
c

d

,

∗
e

f

...

(3)

where the column with entries a, b is repeated n times. Now we give all the definitions
necessary to Theorem 4.1.

Given a pair (u, v) in W , we let ah(u, v) be the number of subdiagrams in the
diagram of (u, v) of one of the following types:

⎛

⎝
∗
	 2
∗

⎞

⎠

n

×
1∗
0

⎛

⎝
∗
2
	 2

⎞

⎠

h+1

;

⎛

⎝
∗
	 2
∗

⎞

⎠

n

×
2
0

⎛

⎝
∗
2
	 2

⎞

⎠

h

;

⎛

⎝
∗
x

y

⎞

⎠

n

◦
1R
0

⎛

⎝
∗
2
	 2

⎞

⎠

h+1

;



506 J Algebr Comb (2014) 39:497–525

⎛

⎝
∗
	 2
∗

⎞

⎠

n

∗
1l
1l

◦
1∗
0

⎛

⎝
∗
2
	 2

⎞

⎠

h+1

;

⎛

⎝
∗
	 2
∗

⎞

⎠

n

∗
1l
1l

◦
2
0

⎛

⎝
∗
2
	 2

⎞

⎠

h

.

In the previous diagrams (and the same is true for the next diagrams) we consider only
the subdiagram with n and h taken as biggest as possible, i.e. we have to consider all
left neighbor columns of the column on the right of each diagram.

We define bh(u, v) be the number of subdiagrams in the diagram of (u, v) of one
of the following types:

⎛

⎝
∗
x

y

⎞

⎠

n

◦
1l/r

0⎛

⎝
∗
2
	 2

⎞

⎠

h+1

;

⎛

⎝
∗
x

y

⎞

⎠

n

◦
2
0⎛

⎝
∗
2
	 2

⎞

⎠

h

.

We set c(u, v) be the number of subdiagrams in the diagram of (u, v) of one of the
following types:

⎛

⎝
∗
x

y

⎞

⎠

n ◦
2
0

;

⎛

⎝
∗
x

y

⎞

⎠

n

◦
1l

0
∗
∗
0

;

⎛

⎝
∗
x

y

⎞

⎠

n

◦
1r

0
∗
2
	 2

;



J Algebr Comb (2014) 39:497–525 507

⎛

⎝
∗
x

y

⎞

⎠

n ◦
1r

0
;

⎛

⎝
∗
x

y

⎞

⎠

n

◦
1l

0
∗
2
	 2

;

⎛

⎝
∗
x′
y′

⎞

⎠

n ◦
2
1r

;

⎛

⎝
∗
x′
y′

⎞

⎠

n

◦
1l

1l

∗
2
	 2

.

Finally, we set c′(u, v) be the number of subdiagrams of the diagram of (u, v) of the
following type:

⎛

⎝
∗
x′
y′

⎞

⎠

n

◦
∗
1l

∗
2
1l

.
m(s, s′) = 3

In all previous diagrams (x, y) ∈ P1, (x′, y′) ∈ P1 ∪ P2 with P1 = {(1l ,0),

(1r ,0), (1r ,1r ), (2,1r )}, P2 = {(1R,0), (1R,1r ), (2,0)}. In each diagram (x, y),
(x′, y′), (	 2,∗) or (2, 	 2) are not necessarily the same pair for all n ≥ 0 (or h ≥ 0)
columns. We can now state the main result of this work.

Theorem 4.1 Let J ⊆ S, u,v ∈ WJ and set c(u, v) = c(u, v) + c′(u, v). We have

P J
u,v(q) =

{∏
h≥1 f

ah

h+1(fh+1 − 1)bh if c(u, v) = 0,

0 otherwise.

Corollary 4.2 Let J ⊆ S, u,v ∈ WJ with l(v) − l(u) ≥ 3 odd. Then μ(u, v) 	= 0 if
and only if the entries in each column of the diagram of (u, v) are equal except for
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exactly one subdiagram which is

⎛

⎝
∗
2
1l

⎞

⎠

h+1 ∗
	 0
0

or

⎛

⎝
∗
2
1l

⎞

⎠

h ∗ ∗
2 . . . 2
0 . . . 0

In this case μ(u, v) = C([h+1
2 ]), the [h+1

2 ]-th Catalan number.

Proof If in the diagram of (u, v) there are more than one subdiagram with the proper-
ties in the statement, then by Theorem 4.1, P J

u,v is the product of at least two factors.
Since l(v) − l(u) is equal to the sum of the differences between top row and bottom
row entries, we have that the degree of P J

u,v is at most l(v)−l(u)−2
2 . The last part of the

statement follows by properties of fh(q). �

In the case of the classical Kazhdan–Lusztig polynomials, Theorem 4.1 becomes
much simpler.

Corollary 4.3 Let W be a tree-Coxeter group and u,v ∈ W be boolean elements.
Then Pu,v(q) = ∏

h≥1 f
ah

h+1, where ah is defined before Theorem 4.1.

Proof Just note that if J = ∅ then bh(u, v) = c(u, v) = 0, h ≥ 1. �

For example, the Kazhdan–Lusztig polynomial of the pair (u, v) depicted in Fig. 2
is P J

u,v = f2(q) − 1 = q , since ah = 0 for all h ≥ 0, b1 = 1 and bh = 0 for all h 	= 1.

Remark 4.4 Theorem 4.1 implies result in [22, Theorem 5.2].

We give the following easy consequence of Theorem 4.1 which proves, in the case
of boolean elements, a conjecture of Brenti (private communication).

Corollary 4.5 Let I ⊆ J and u,v ∈ WJ . Then

P J
u,v(q) ≤ P I

u,v(q)

in the coefficient-wise comparison.

Proof Let s ∈ J \I . The corresponding column of the diagram of P J
u,v is marked by ◦

and the same column in the diagram associated with P I
u,v is marked by ×. Consider a

subdiagram of type ah: by replacing a × with a ◦, it is possible that we get a diagram
of type bh or c. The vice versa is not possible. The claim follows by Theorem 4.1. �

We now prove Theorem 4.1.

Proof We argue the proof by induction on l(v). The main idea is to consider one
leftmost column of the diagram and compute its contribution in the Kazhdan–Lusztig
polynomial; then delete such column and change the column on its right if necessary.
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Apply then the induction on such diagram (the length of the element v is equal to the
sum of the elements in the top place of all columns).

If l(v) = 1 then P J
u,v = 1, since u ≤ v and the result is trivial. Now suppose

l(v) ≥ 2. Let C be one of the leftmost columns in the diagram. The entries of C

can be filled by several values.
We first consider the case that C contains the pair (1r ,0) or (1R,0). Let s ∈ S be

the element corresponding to C. Then s ∈ DR(v) and us 	≤ vs because s ≤ us but
s 	≤ vs. Moreover, since s 	≤ vs we have that w 	≤ vs and P J

w,vs = 0 for any w such
that ws < w. By Proposition 2.2 we have that M̃u,v = 0 and P J

u,v = P J
u,vs . The state-

ment follows because in all the subdiagrams of type ah (respectively bh, c, c′) we can
delete the column C and have again a subdiagram of type ah (respectively bh, c, c′).

If C contains the pair (1R,1r ) or (1r ,1r ) then u 	≤ vs and therefore P J
u,v = P J

us,vs

by Proposition 2.2. The statement follows.
Now suppose that C contains (1l ,1l ). By Lemma 3.1, P J

u,v = P
J∩C(s)
su,sv . Since C

is a column on the left, |C(s)| = 1. Therefore the Kazhdan–Lusztig polynomial asso-
ciated with the diagram is the same of that associated with the diagram without the
column C and with the column on the right marked with ×. Apply induction hypothe-
ses and note that for any subdiagram of type ah (h ≥ 0) it is possible to remove one
leftmost column with entries (1l ,1l) having again a diagram of type ah. Moreover,
note that this agrees with the assumption (1l ,1l) /∈ P1 ∪ P2.

If C contains (2,2) then u 	≤ vs and by Proposition 2.2 P J
u,v = P J

us,vs . We are in
the case (1l ,1l). As before, it is possible to remove a column with entries (2,2) from
a diagram of type ah without change its type and the assumption (2,2) /∈ P1 ∪ P2
ensures that such entries are not in any subdiagram of type bh, c or c′. The claim
follows by induction.

If C contains (1l ,0) then by Lemma 3.2, P J
u,v = P J

u,sv except in the case sv /∈ WJ .
Then we have to exclude

∗ ◦
1l 1l/2
0 ∗

and

∗
1l

0
◦
1l

∗
.

∗
2
∗

m(s, s′) = 3

These diagrams are included in c′(u, v), and in the elements 1,2,5 and 6 of c(u, v).
If C contains (2,1r ) use the same arguments above to have P J

u,v = P J
us,vs and come

back in the case (1l ,0).
Now suppose that C contains (2,0) and the bottom entry in the column on the

right is non-zero. By Theorem 2.1, this assumption implies s /∈ DL(us). Therefore
us 	≤ vs. Moreover, there is no w ∈ WJ with u ≤ w < vs and ws < w: in fact ws <

w ≤ vs implies that the only occurrence of s in the word w is on the first place (since
the same is for the word vs); therefore s ∈ DL(w) ∩ DR(w) and thus if we denote by
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t the element on the right of s then w(t) = 0 but this implies that u 	≤ w, impossible.
By Proposition 2.2 we have P J

u,v = P J
u,vs . Then, by previous arguments, we are in the

case (1l ,0) and this agrees with the assumption (2,0) ∈ P2.
If C contains (2,1l ) and the second entry in the column on the right is non-zero,

then us /∈ WJ if and only if the diagram is such as in c′(u, v) (it is an easy conse-
quence of Theorem 2.1). Otherwise P J

u,v = P J
u,vs since, as before, there is no w ∈ WJ

with u ≤ w < vs and ws < w. Then we come back to the case (1l ,1l).
Finally we have to consider the cases (2,1l) or (2,0) with the second entry in

the column on the right equal to 0. By Proposition 2.5, they can be treated as the
same case. Note that in the definition of diagrams of type ah, bh, c or c′ there is no
difference in both cases. Therefore we assume that C contains (2,1l ).

For the diagram

⎛

⎝
∗
2
1l

⎞

⎠

h ∗
1∗
0

(4)

the corresponding Kazhdan–Lusztig polynomial is P J
u,v = fh −α, where α = 1 when

there are ◦ and 1l on the rightmost column and α = 0 otherwise. To show this, note
that P J

u,vs is represented by a diagram with a leftmost column having entries equal
to (1l ,1l). By induction, the polynomial is equal to P J

su,svs , whose diagram is as in
(4) but with h − 1 instead of h. The polynomial P J

us,vs is represented by a diagram
with a leftmost column with (1l ,0) and by induction P J

us,vs = P J
us,svs . Finally, by

Corollary 4.2 and by induction μ(w,vs) 	= 0 only if the diagram of w coincides
with the diagram of v in all other columns not depicted in (4). Apply Proposition 2.2

and have P J
u,v = fh−1(q) − α + qfh−1(q) − μ(fh−1(q))q

h−1
2 . By Lemma 3.3 we get

P J
u,v = fh − α (note that if h = 1, f1 − 1 = 0 and this agrees with the 3rd and 5th

elements in c(u, v)).
For the last subcase,

⎛

⎝
∗
2
1l

⎞

⎠

h ∗
2
0

, (5)

the analysis is a bit harder. Let us assume that on the right of this diagram there is a
sequence of m columns

∗ ∗ ∗
2 2 · · · 2
0 0 · · · 0

(6)

ending with a column whose entries are not (2,0) or with a column corresponding
to a vertex of degree greater than 2. Suppose that exactly k of these columns have

a ◦ and the other m − k have a ×. Let P
J

u,v be the Kazhdan–Lusztig polynomial
corresponding to the diagram of (u, v) after deleting the subdiagrams depicted in (5)
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and (6). Using the same techniques as above and by induction we have

P J
u,v = (

fh(q) − α
)
qk(1 + q)m−kP

J

u,v + fh(q)qk+1(1 + q)m−kP
J

u,v − M̃u,v,

where α = 1 if there is a ◦ on the rightmost column of (5) and α = 0 otherwise,
and M̃u,v is the sum in Proposition 2.2. Note that by induction and Corollary 4.2,
μ(w,vs) 	= 0 only if the diagram of w coincides with that of v in all the columns not
depicted in (5) and (6). More precisely, for any such w, the diagram of (w,vs) is of
the form

⎛

⎝
∗
2
1l

⎞

⎠

h−1

∗ ∗ × ∗
2 2 2 2 2 2
0 · · · 0 2 · · · 2

∗
1l

1l

and in all other columns the top entries are equal to the bottom entries. Therefore
M̃u,v is

P
J

u,vμ
(
fh(q)

)(
q

h−2
2 +k(q + 1)m−k−1 + q

h−2
2 +k+1(q + 1)m−k−2 + · · ·

+ q
h−2

2 +m−1 + q
h−2

2 +m
)

if h is even and 0 if h is odd. In this formula the powers of q include both the contri-

butions of q
l(w,vs)

2 and of P J
u,w . In the case h even, h ≥ 4, we have

M̃u,v = P
J

u,vμ
(
fh(q)

)(
q

h−2
2 +k

(
(q + 1)m−k − qm−k

) + q
h−2

2 +m
)

= P
J

u,vμ
(
fh(q)

)
(q + 1)m−kq

h−2
2 +k

and therefore

P J
u,v = P

J

u,vq
k(1 + q)m−k

(
fh(q) − α + qfh(q) − μ

(
fh(q)

)
q

h−2
2

)

= P J
u,vq

k(1 + q)m−k
(
fh+1(q) − α

)

by Lemma 3.3. Analogously, if h is odd, h ≥ 3, we have

P J
u,v = P u,vq

k(1 + q)m−k
(
fh(q)−α + qfh(q)

) = P u,vq
k(1 + q)m−k

(
fh+1(q)−α

)
.

The cases h = 1 and h = 2 are similar (note that f1(q) − α = 0 if α = 1). Thus the
proof is completed. �
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Fig. 3 Diagram of
(u = s0s4, v = s0s2s3s4s3s2s0)

in Ã4, with boolean reflection
t = s0s1s2s3s4s3s2s1s0 and
J = {s3}

Now we consider the case of Ãn for n ≥ 2 (Ã1 is a tree-Coxeter group). The
Coxeter diagram of Ãn is a cycle, therefore we cannot apply Theorem 4.1. How-
ever, we use the same arguments of its proof to have an analogue result. Con-
sider a boolean reflection t in Ãn of length 2n + 1. Then it is easy to check that
t = si+1si+2 · · · sns0 · · · si−1sisi−1 · · · s0sn · · · si+2si+1 for some i ∈ [0, n] (the in-
dices are modulo n + 1). For any pair (u, v) ∈ W 2, u ≤ v ≤ t we depict a dia-
gram whose rightmost column contains (u(si), v(si)). The leftmost column contains
(u(si+1), v(si+1)) and the other columns are defined by following the cyclic Coxeter
diagram of Ãn. See Fig. 3 for an example.

In what follows we assume that v(sj ) 	= 0 for all j = 0, . . . , n. In fact, otherwise
v can be identified as an element in An and we can apply Theorem 4.1.

We define a(u, v) to be the number of subdiagrams of the type

∗ ×
2 2
∗ 0

;

×
2
∗

×
1l

0
.

×
	 0 · · ·
0 · · ·

We set b(u, v) to be the number of subdiagrams of the type

∗ ◦
2 2
∗ 0

;

×
2
∗

◦
1l

0

;

∗
	 0 · · ·
0 · · ·

×
2
∗

×
1l

0

◦
	 0 · · ·
0 · · ·

.
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Finally, we set c′′(u, v) to be the number of the subdiagrams of the type

×
x′
y′

∗
1l

∗

◦
	 0 · · ·
∗ · · ·

;

×
x′
y′

◦
1l

0

∗
	 0 · · ·
0 · · ·

;

×
x′
y′

◦
1l

∗

∗
2 · · ·
∗ · · ·

,

where (x, y), (x′, y′) ∈ {(1l ,0), (1r ,0), (1r ,1r ), (2,1r )}. Moreover, (x′, y′) could be
(2,0) (respectively (2,1l)) if there were a non-zero entry (resp. exactly one non-zero
entry with a ◦) in the second row of one of the two columns on the right of the first
column.

Theorem 4.6 Let u,v ∈ Ãn boolean elements. Then

P J
u,v =

{
qb(u,v)(1 + q)a(u,v) if c(u, v) + c′′(u, v) = 0,

0 otherwise.

The proof is the same as in Theorem 4.1. Delete the leftmost column if it contains
(1∗,0), (1∗,1∗), (2,2) by using Lemmas 3.2 and 3.1. If it contains the pair (2, 	 2)

then consider the cases with the second entries of both column on the right to be zero
and non-zero. In the first case apply Proposition 2.2 and note that M̃u,v = 0. We left
to the reader all the details. Note that c′(u, v) does not appear in the statement.

Remark 4.7 For the classical Kazhdan–Lusztig polynomials, Theorem 4.6 reduces to
[21, Theorem 4.4].

Corollary 4.3 has another combinatorial reformulation. Let W be a Coxeter group
and v ∈ W . Define the maximal singular locus for v to be the set

RS(v) = {
u ∈ W |Pu,v(q) > 1,Pw,v(q) = 1 ∀w,u < w < v

}
. (7)
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Equivalently, it is the set of u which are maximal in Bruhat order among permu-
tations with Pu,v(q) > 1. For type A the set RS(v) has a combinatorial interpreta-
tion due to Billey–Warrington [1], Cortez [8], Kassel–Lascoux–Reutenauer [15] and
Manivel [19].

Corollary 4.8 Let W be a tree-Coxeter group and let v ∈ W be a boolean element.
Then

Pu,v(q) =
∏

w≥u,w∈RS(v)

Pw,v(q).

Proof By Corollary 4.3 it is not hard to see that for any boolean element v ∈ W the
set RS(v) contains all elements u ≤ v such that the diagram of (u, v) has exactly one
occurrence of

⎛

⎝
×
	 2
=

⎞

⎠

n

×
1∗
0⎛

⎝
×
2
1l

⎞

⎠

h+1

or

⎛

⎝
×
	 2
=

⎞

⎠

n

×
2
0⎛

⎝
×
2
1l

⎞

⎠

h

and all entries in each other column of the diagram are equal (in the previous subdia-
gram the symbol = denotes the same value of the above entry). The claim follows. �

Note that the previous result is not true for parabolic case. Let u,v ∈ AJ
4 be given

by the following diagram
× × ◦ ×
2 2 2 2
0 0 0 0

.

By Theorem 4.1, P J
u,v(q) = q(1 + q). Let RSJ (v) be given with the same rules in

(7). Then it is easy to check that RSJ (v) = {w} where w is the element such that the
diagram of (w,v) is

× × ◦ ×
2 2 2 2
2 1 0 1

.

But P J
w,v(q) = q 	= P J

u,v(q).

5 Kazhdan–Lusztig polynomials of boolean signed permutation

In this section we consider the combinatorial interpretation of the finite Coxeter
groups An, Bn and Dn as (signed) permutations and restate Theorem 4.1 by us-
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ing statistics of such permutations. We recall (see e.g. [2, Chaps. 1, 8]) that An

is the group of permutations of the set {1, . . . , n + 1}, Bn is the set of permu-
tations π of {−n,−n + 1, . . . ,−1,1, . . . , n − 1, n} such that π(−i) = −π(i) for
all i ≤ n, and Dn is the subset of permutations π ∈ Bn such that the cardinality
#({π(1), . . . , π(n)} ∩ {−1, . . . ,−n}) is even. Note that each permutation π of An,
Bn and Dn is uniquely determined by [π(1), . . . , π(n)]. We call this sequence the
window notation of π .

Given a (signed) permutation π , if π(i) > i we say that π(i) is a top exceedance
and i is a bottom exceedance of π .

It is well known that the set of all reflections in An is given by transpositions (i, j),
with i < j ≤ n + 1. Any such transposition admits sisi+1 · · · sj−2sj−1sj−2 · · · si+1si
as reduced expression. So every reflection in the symmetric group is boolean and an
element π is boolean if and only if it is smaller than the top transposition (1, n + 1),
i.e. π admits a reduced expression which is a subword of s1 · · · sn−1snsn−1 · · · s1.

Lemma 5.1 Let π ∈ An. Then π is a boolean element if and only if #(π({1, . . . , i})∩
{1, . . . , i}) ≥ i − 1 for all i ≤ n.

Moreover, if π is the reduced expression of π (as defined at the beginning of
Sect. 4), subword of s1 · · · sn · · · s1, then π(si) = 1l if i + 1 is a top exceedance of π ;
π(si) = 1r if i+1 is a top exceedance of π−1; π(si) = 2 if and only if π(i+1) = i+1
and π({1, . . . , i}) 	= {1, . . . , i}; π(si) = 0 if and only if π({1, . . . , i}) = {1, . . . , i}.

Proof The first part is an immediate consequence of the Tableau Criterion for the
Bruhat order (see e.g. [2, Theorem 2.6.3]).

We prove the second part. Fix an index i ≤ n. Let π ′ be the subword of π with
only letters si+1, . . . , sn. Then siπ

′(i) = i + 1. If we multiply siπ
′ by sj , j < i,

on the left or on the right, then the element i + 1 may be moved on the left in the
windows notation. Therefore i + 1 is a top exceedance of π if π(si) = 1l . Since for
any element whose expression is sj1, . . . , sjn the inverse is given by sjn , . . . , sj1 , then
it follows that i +1 is a top exceedance of π−1, if π(si) = 1r . The third case is similar
since siπ

′si(i + 1) = i + 1. The last case is trivial. �

Given π ∈ An, we define the following sets.

TExc(π) = {
i ∈ [n]|i + 1 is a top exceedance for π

};
Fix(π) = {

i ∈ [n]|π([i]) = [i]};
NFix(π) = {

i ∈ [n] \ Fix(π)|π(i + 1) = i + 1
}
.

Then by Theorem 4.1 and Lemma 5.1 we have

Corollary 5.2 Let π,ρ ∈ AJ
n be two boolean permutations of [n+1] such that π ≤ ρ

in the Bruhat order. Then the Kazhdan–Lusztig polynomial P J
π,ρ is zero if and only if

there exists an index i ≤ n such that one of the following conditions is satisfied (we
identify each si ∈ J with i):
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– i ∈ TExc(ρ) ∩ Fix(π) and i + 1 ∈ J ∩ NFix(ρ);
– i, i + 1 ∈ TExc(ρ) ∩ Fix(π) and i + 1 ∈ J ;
– i ∈ TExc(ρ−1) ∩ J , i, i + 1 ∈ Fix(π), and i − 1 /∈ TExc(π) ∩ TExc(ρ);
– i, i + 1 ∈ NFix(ρ) ∩ TExc(π−1) or i, i + 1 ∈ NFix(ρ) ∩ TExc(π) and i + 1 ∈ J ;
– i, i + 1 ∈ NFix(ρ), #({i, i + 1} ∩ TExc(π−1)) = 1, #({i, i + 1} ∩ Fix(π)) = 1 and

i + 1 ∈ J .

In all other cases, let

Aπ,ρ = {
i ∈ [n]|i, i + 1 ∈ NFix(ρ), i + 1 ∈ Fix(π)

}
. (8)

Then

P J
π,ρ = q#(Aπ,ρ∩J )(1 + q)#(Aπ,ρ∩(S\J )).

For example, let π,ρ ∈ A9 defined by π = [2,1,3,6,4,7,5,8,9,10] and ρ =
[4,2,3,10,5,6,7,8,1,9]. By Lemma 5.1 we have that π,ρ are boolean elements.
Since the descents of π−1 = [2,1,3,5,7,4,6,8,9,10] are 1,5 and the descents
of ρ−1 = [9,2,3,1,5,6,7,8,10,4] are 1,3,9, then π,ρ are both in AJ

n for all J

such that J ∩ {s1, s3, s5, s9} = ∅. By [2, Theorem 2.1.5] we get π ≤ ρ and finally
by Corollary 5.2 we have P J

π,ρ = 0, if and only if J ∩ {s4, s6, s8} 	= ∅. In fact,
TExc(π) = {1,5}, TExc(π−1) = {1,4,6}, TExc(ρ) = {3,9}, TExc(ρ−1) = {8,9},
Fix(π) = {2,3,7,8,9}, Fix(ρ) = ∅, NFix(π) = ∅ and NFix(ρ) = {2,3,5,6,7,8}.
For J = {s2, s4} ≡ {2,4} we have P J

π,ρ = q(q + 1).
For the ordinary Kazhdan–Lusztig polynomials Corollary 5.2 becomes

Corollary 5.3 Let π,ρ ∈ An be two boolean permutations of [n+1] such that π ≤ ρ

in the Bruhat order. Then Pπ,ρ = (1 + q)#Aπ,ρ , where Aπ,ρ is defined in (8).

Now we consider the Coxeter group Bn. It is easy to check that there are
two boolean reflections in Bn which are maximal in the Bruhat order: they are
s0s1 · · · sn−1 · · · s1s0 and sn−1 · · · s1s0s1 · · · sn−1, where s0 is the transposition (1,−1)

and si is the product (i, i + 1)(−i,−i + 1) in disjoint cycle notation (equivalently
(s0s1)

4 = ε and (sisi+1)
3 = ε for i > 0). In fact, given any boolean word t , if there

is a letter s1 between two occurrences of s0 then move both elements s0 to the be-
ginning and to the end of t (it is possible since s0 commutes with all other elements)
and then manipulate the remaining letters as a subword in An−1; if s0 is between
two occurrences of s1 (and therefore there is exact one s0) then necessarily there are
no occurrences of si+1 between the two letters si for all i ≥ 1, otherwise t is not a
reduced word.

Lemma 5.4 Let t1, t2 ∈ Bn, t1 = s0 · · · sn−1 · · · s0, t2 = sn−1 · · · s0 · · · sn−1. Let
π ∈ Bn. Then π is a boolean element π ≤ t1 if and only if #(|π([i])| ∩ [i]) ≥ i − 1
for all i ≤ n and the only negative elements in the window notation of π may be the
first entry or the element −1.

Moreover, in this case, if π is the reduced word of π , which is a subword of t1,
then π(si) = 1l if i + 1 is a top exceedance of π (if i = 0 then the window notation of
π has only one negative entry which is −1); π(si) = 1r if i + 1 is a top exceedance



J Algebr Comb (2014) 39:497–525 517

of π−1 (if i = 0 then the window notation of π has only one negative entry in the first
place); π(si) = 2 if and only if π(i + 1) = π(i + 1) and π([i + 1, n]) 	= [i + 1, n]
(if i = 0 then there are exactly two negative entries in the window notation of π );
π(si) = 0 if and only if π([i + 1, n]) = [i + 1, n] (if i = 0 then there is no negative
element in the window notation of π ).

The permutation π is a boolean element π ≤ t2 if and only if #(|π([i])| ∩ [i]) ≥
i − 1 and the only negative entry in the window notation of π (if it exists) is the
element −m − 1 or the element in the (m + 1)th entry, if π(i) = i for all i ≤ m and
π(m + 1) 	= m + 1.

Moreover, in this case, if π is a reduced word of π , which is a subword of t2 then for
all i ≥ 1, π(si) = 1l if i is a bottom exceedance of π−1; π(si) = 1r if i +1 is a bottom
exceedance of π ; π(si) = 2 if and only if π(i) = π(i) and π([i + 1, n]) 	= [i + 1, n];
π(si) = 0 if and only if π([i + 1, n]) = [i + 1, n].

The proof is essentially the same as that of Lemma 5.1. We give the Corollary
of Theorem 4.1 only for ordinary Kazhdan–Lusztig polynomials. The parabolic case
could be done as in Corollary 5.2.

Let π ∈ Bn. We set

Fix(π) = {
i ∈ [0, n − 1]|π([i + 1, n]) = [i + 1, n]},

NFix(π) = {
i ∈ [n − 1] \ Fix(π)|π(i) = i

} ∪ {
0 if #{π(i) < 0} = 2

}
.

Corollary 5.5 Let π,ρ ∈ Bn two boolean elements in Bn such that π ≤ ρ in the
Bruhat order. Then the Kazhdan–Lusztig polynomial Pπ,ρ is given by

Pπ,ρ =
{

(1 + q)Bπ,ρ if π ≤ ρ ≤ t1,

(1 + q)B
′
π,ρ if π ≤ ρ ≤ t2,

where Bπ,ρ = {i ∈ [0, n − 1]|i, i + 1 ∈ NFix(ρ), i + 1 ∈ Fix(π)}, B ′
π,ρ = {i ∈ [0,

n − 1]|i, i + 1 ∈ NFix(ρ), i ∈ Fix(π)}.

Note that intervals from the identity to t1 and from the identity to t2 are isomor-
phic to the interval from the identity to the maximal transposition in type A. The
ordinary Kazhdan–Lusztig polynomial indexed by u and v depends only on the inter-
val from the identity to v (see [5]). The Kazhdan–Lusztig polynomials of type B can
be computed identifying the indexing boolean elements with boolean elements in the
symmetric group (and we may apply Corollary 5.3).

Now we consider the Coxeter group Dn. It is easy to check that the only boolean
reflection of length 2n − 1 is s0s1s2 · · · sn−1sn−2 · · · s2s1s0, where s0 is the transpo-
sition (1,−2)(−1,2) and si is the product (i, i + 1)(−i,−i + 1) in disjoint cycle
notation (equivalently (s0s1)

2 = ε, (s0s2)
3 = ε and (sisi+1)

3 = ε for i > 0): in fact,
let t any boolean reflection with the same length. Then any reduced word of t contain
both occurrences of s0 or s1 outside the occurrences (maybe only one) of s2. Then
move, by commutativity, these occurrences to the leftmost and rightmost place. The
central part can be identified with an element of An−1 and we can conclude easily.
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Lemma 5.6 Let π ∈ Dn. Then π is a boolean element if and only if #(|π([i])|∩[i]) ≥
i − 1 for all i ≤ n and the only negative elements in the window notation are in the
first two columns and in the entries containing −1,−2 (if the first two entries are not
±1,±2 then these have the same sign).

Let π be a reduced word of π , subword of s0s1 · · · sn−1 · · · s1s0, and let i ≥ 2. Then
π(si) = 1l if i + 1 is a top exceedance of π ; π(si) = 1r if i + 1 is a top exceedance
of π−1; π(si) = 2 if π(i + 1) = i + 1 and π([i + 1, n]) 	= [i + 1, n]; π(si) = 0 if
π([i + 1, n]) = [i + 1, n]. If i ≤ 1 then there is an occurrence of s1 on the right
if π(1) ≥ 3 or π(2) ≤ −3; there is an occurrence of s1 on the left if π−1(1) ≥ 3 or
π−1(2) ≤ −3 or π(1,2) ∈ {(2,1), (−1,−2)}; there is an occurrence of s0 on the right
if π(1) ≤ −3 or π(2) ≤ −3; there is an occurrence of s0 on the left if π−1(1) ≤ −3
or π−1(2) ≤ −3 or π(1,2) ∈ {(−2,−1), (−1,−2)}.

Corollary 5.7 Let π,ρ ∈ Dn be two boolean elements such that π ≤ ρ. Then the
Kazhdan–Lusztig polynomial Pπ,ρ is given by

Pπ,ρ(q) = (1 + q)Dπ,ρ (1 + 2q)D
′
π,ρ ,

where Dπ,ρ is the number of indices i such that ρ(i) = i, ρ(i + 1) = i + 1,
ρ([i + 2, n]) 	= [i + 2, n] and π([i + 2, n]) = [i + 2, n] incremented by 1 if ρ(1) = 1,
ρ(2) < 2, ρ(3) 	= 3 and π((1,2)) 	= (−1,−2) or ρ−1(2) < −2, |ρ−1(1)| = 2 and
π([3, n]) = [3, n] or |ρ−1(1)| > 2, ρ(2) ∈ {−n, . . . ,−3,−1,1} and π([3, n]) =
[3, n]; D′

π,ρ is 1 if ρ(1) = 1, ρ(2) < 2, ρ(3) = 3 and π([3, n]) = [3, n] and D′
π,ρ = 0

in all other cases.

Note that interval from the identity to s0 · · · sn−2sn−1sn−2 · · · s0 in Dn is isomor-
phic to the interval from the identity to the maximal transposition in type A. We can
apply the same considerations immediately below Corollary 5.5.

6 Comparison with maximally-clustered permutations

In a recent paper [14] Jones applied the Deodhar rule to the case of a maximally-
clustered hexagon-avoiding permutations in Sn. Here we recall the definitions and
the results necessary to show that a boolean element in Sn is a maximally-clustered
hexagon-avoiding permutations and have a comparison between Jones’s results and
Theorem 4.1.

Suppose that σ = [σ1, . . . , σn] ∈ Sn and ρ = [ρ1, . . . , ρk] ∈ Sk for k ≤ n. We say
that σ contains the permutation pattern ρ whenever there exists a subsequence 1 ≤
i1 < i2 < · · · < ik ≤ n such that

σia < σib if and only if ρa < ρb

for all 1 ≤ a < b ≤ k. For example, [45312] contains the pattern [321] in several
ways, including the underlined subsequence. If σ does not contain the pattern ρ, we
say that σ avoids ρ.
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Let w an element of a Coxeter group W and fix a reduced expression w =
w1w2 · · ·wk . Define a mask α associated with the reduced expression w to be any
binary vector (α1, . . . , αk) of length k = l(w). Every mask corresponds to a subex-
pression of w defined by wα = w

α1
1 · · ·wαk

k where

w
αj

j =
{

wj if αj = 1,

ε if αj = 0.

We say that a position j (for 2 ≤ j ≤ k) of the fixed reduced expression w is a defect
with respect to the mask α if

l
(
w

α1
1 · · ·wαj−1

j−1 wj

)
< l

(
w

α1
1 · · ·wαj−1

j−1

)
.

Note that the defect status of position j does not depend on the value of αj . We
denote the number of all defects of the mask α by d(α).

Definition 6.1 Let s1, . . . , sn−1 be the canonical generators of Sn. A braid cluster is
an expression of the form

si1si2 · · · sik sik+1sik · · · si2si1,
where each sip for 1 ≤ p ≤ k has only one siq with p < q ≤ k + 1 such that
|ip − iq | = 1.

Let σ be a permutation and let N(σ) denote the number of [321] pattern instances
in σ . We say that σ is maximally clustered if there is a reduced expression for σ of
the form

a0c1a1c2a2 · · · cMaM,

where each ai is a reduced expression, each ci is a braid cluster with length 2ni + 1
and N(σ) = ∑M

i=1 ni . Such an expression is called contracted.
The maximally clustered permutations are characterized by avoiding the permuta-

tion patterns

[3421], [4321] and [4321].
By Lemma 5.1 it follows that all boolean elements are maximally clustered.
Let σ be a contracted expression for a maximally clustered permutation, where

each braid cluster has the form sm+1sm+2 · · · sm+ksm+k+1sm+k · · · sm+1 (in [14,
Lemma 6] it is shown that it is always possible to find any such decomposition).
We say that a mask is 10∗-avoiding if it never has the values 1 and 0 (respectively)
on the first two entries in any central braid. If αm+k = 1 and αm+k+1 = 0 on some
central braid instance sm+ksm+k+1sm+k . Otherwise we say that σ is a 10∗-avoiding
mask for σ .

Let ρi = si+3si+2si+1si+5si+6si+7si+4si+3si+2si+5si+6si+4si+3si+5 ∈ Sk , with
k ≥ i + 7. We say that a permutation σ ∈ Sn is hexagon-avoiding if ρi 	≤ σ for any i

(this is not the original definition, see e.g. [14] and references cited there for a general
definition, including other Coxeter groups).
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Note that l(ρi) = 14 for all i and that any subword with length 14 of a boolean
element has necessarily at least 8 distinct elements. Therefore all boolean elements
of type A are hexagon-avoiding.

The following result was proved in [14, Corollary 9].

Theorem 6.2 Let σ be a contracted expression for a maximally-clustered hexagon-
avoiding permutation in Sn, and let Eσ be the set of 10∗-avoiding mask on σ . Then
for any ρ ∈ Sn,

Pρ,σ (q) =
∑

α∈Eσ ,σα=ρ

qd(α).

Since all boolean elements of type A are maximally-clustered and hexagon-
avoiding, it is possible to apply Theorem 6.2 to them.

Theorem 4.1 asserts that in type A (non-parabolic case) the only non-constant
factors in the Kazhdan–Lusztig polynomials of two elements are given by all subdia-
grams of the form

× ×
2 2
∗ 0

. (9)

We assume that s1 and s2 are the elements associated with the two columns of
the diagram. Let s1σ

′s1 be a reduced expression of a boolean permutation σ with
l(σ ) = k. For any mask α ∈ Eσ we denote by α′ the submask of α given by α′

i = αi+1

for i ≤ k−1. Let π be a permutation, π ≤ σ and denote by π ′ be the greatest element
such that π ′ ≤ π and π ′ ≤ σ ′. Then it is clear that if α ∈ Eσ is such that σα = π then
σ ′α′ = π ′.

Now, if s1 	≤ π then any such α is of the form (0, α′,0) (in this case d(α) = d(α′))
and (1, α′,1) (in this case d(α) = 1 + d(α′)): the second case is possible only if
s2 	≤ π . If s1 ≤ π and s2 	≤ π then a mask α with σα = π is of the form (1, α′,0) (in
this case d(α) = d(α′) + 1) and (0, α′,1) (in this case d(α) = d(α′)).

Therefore, a diagram such as in (9) contributes in the computation of the Kazhdan–
Lusztig polynomial with a factor (1 + q). In all other cases the mask α is uniquely
determined by its submask α′ and d(α) = d(α′). This concludes the comparison be-
tween Theorems 4.1 and 6.2 for boolean elements in type A.

7 Poincaré polynomials

Given v ∈ W , let Fv(q) = ∑
u≤v ql(u)Pu,v . It is well known that, if W is any Weyl

or affine Weyl group, Fv(q) is the intersection homology Poincaré polynomial of the
Schubert variety indexed by v (see [17]). In this section we compute the Poincaré
polynomial for any boolean element in a Coxeter group whose Coxeter graph is a
tree with at most one vertex having more than two adjacent vertices (such groups
include all classical finite Coxeter and affine Weyl groups except Ãn and D̃n).
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Fig. 4 An example of diagram
and its three essential
components. It is depicted with
the same rules used for all
elements in the first rows of a
diagram like in Fig. 2

Let v ∈ W be a boolean element and consider the diagram of (εW , v). For conve-
nience we will not depict the second row of each column which is always 0 and we
omit all symbols ×. We will call it the diagram of v.

Let v be a boolean element and let s be the element of S associated with one of
the leftmost vertices in the diagram of v. We set F

\
v,s = ∑

ql(v)Pu,v where the sum
runs over all elements u ≤ v such that u(s) 	= 0 and F 0

v,s = ∑
ql(v)Pu,v where the

sum runs over all elements u ≤ v such that u(s) = 0.
Now consider a diagram d . Delete all entries equal to 0 and delete all edges whose

left vertex is not a cell containing 2. Let d1, . . . , dk be the remaining connected com-
ponents. We refer to them as the essential components of d . In Fig. 4 there is an
example of essential components of a diagram.

Lemma 7.1 Let v ∈ W be a boolean element and let d be the diagram of v. Let
d1, . . . , dk be the essential components of the diagram d and v1, . . . , vk be the
boolean reflections corresponding to d1, . . . , dk . Then

Fv(q) =
k∏

i=1

Fvi
(q).

Proof We use induction on l(v). If l(v) = 1, there is nothing to prove. Now let
l(v) > 1 and let d1, . . . , dk be the essential components of d associated with v. Let
s be the element associated with one of the leftmost vertices of v and let d1 be the
essential component containing such vertex. In this proof we denote by Fv(q) the
polynomial corresponding to the diagram d \ d1 (known by induction) and by F̂v(q)

the polynomial corresponding to d1. If v(s) = 1 then by Theorem 4.1 or by Lem-
mas 3.2 and 3.1 and recursion in Proposition 2.2 we have that

Fv(q) = (1 + q)F v(q), F
\
v,s(q) = qFv(q), F 0

v,s(q) = Fv(q).

If v(s) = 2 then we can assume that d1 starts with

(2)h ∗,
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for h ≥ 1 (otherwise choose another element in S). The previous diagram is depicted
according to the same conventions used for example in (3).

Denote by s′ the only element on the right of s. By Theorem 4.1 and by induction
we have

Fv(q) = (1 + q)2hF ′\
v,s′(q) + (1 + q)hfh−δF

′0
v,s′(q)

= (1 + q)2hF̂ ′\
v,s′(q)F v(q) + (1 + q)hfh−δF̂ ′0

v,s′(q)F v(q)

= F̂ ′
v(q)F v(q),

where F ′
v is the polynomial associated with d after deleting all the vertices (2)h, and

δ is determined uniquely by v (and Theorem 4.1). The first factor (1 + q)2h denotes
the possibility to have all pairs (2,0), (2,1l), (2,1r ) and (2,2) in the diagram of
(u, v) in all h leftmost columns; the second factor (1 + q)h denotes the possibility to
have only the pairs (2,0) and (2,1l). Similar formulas can be computed for F

\
v,s(q)

and F 0
v,s . Therefore we can apply the induction (it is possible that more superscripts

\ or 0 are necessary; the proof does not change). �

Lemma 7.1 shows that it is simple to compute Fv(q) for any boolean elements v

by knowing Ft(q) for all boolean reflection t .

Lemma 7.2 Let v ∈ W be a boolean reflection and suppose that its diagram d has
one leftmost vertex s such that if

(2)h ∗

is a subdiagram of d containing s, then necessarily h = 1. Then

Fv(q) = (1 + q)2F ′
v(q),

where F ′
v(q) is the polynomial associated with diagram d after deleting the vertex s.

Proof By Proposition 2.2, it is easy to check that

Fv(q) = (1 + q)2F ′\
v,s + (1 + q)F ′0

v,s(q)(1 + q) = (1 + q)2F ′
v(q),

where the last factor (1 + q) is due to the contribution of 2 2
∗ 0

in the Kazhdan–

Lusztig polynomial Pu,v(q) according to Theorem 4.1. �

As corollary of Lemmas 7.1 and 7.2 we have the following result due to Marietti
[21, Theorem 8.1]

Corollary 7.3 Let v ∈ Sn+1 be a boolean element. Let t be the boolean reflection
s1 · · · sn · · · s1 with si be the transposition (i, i + 1). Let v be the reduced word of v

subword of t . Then

Fv(q) = (1 + q)l(v)−2a(v)
(
1 + q + q2)a(v)

,

where a(v) is the number of patterns (2,1∗) in v.
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By Lemmas 7.1 and 7.2 its proof reduces to compute Fs1s2s1(q) = (q2 + q + 1) ×
(1 + q) and Fs1 = (1 + q) in S3.

To prove the next result we have to compute the polynomials F
\
v,s(q) and F 0

v,s(q)

with v associated with the diagram 2 2 · · · 1 with i ver-

tices. Let s ∈ S be the element corresponding to the first vertex and let s′ ∈ S be the
element associated with the second vertex. If i = 2 then by direct computation we
have

F
\
v,s(q) = q(1 + q)2 F 0

v,s(q) = (1 + q).

By induction it is easy to compute that

F
\
v,s = (

2q + q2)F ′\
v,s′(q) + qF ′0

v,s′(q)(1 + q) = q(1 + q)2i−2,

F 0
v,s = F ′\

v,s′(q) + F ′0
v,s′(q)(1 + q) = (1 + q)2i−3,

(10)

where F ′
v(q) denotes, as usual, the polynomial associated with the diagram without

the first vertex. Similarly, let v be the boolean reflection corresponding to the diagram

2 2 · · · 2

1

2

with i + 1 vertices. Then

F
\
v,s = q(1 + q)2i and F 0

v,s = (1 + q)2i−1. (11)

Proposition 7.4 Let W be a Coxeter group such that its Coxeter graph is a tree
and all vertices except at most one have degree less than 3. Denote by w such an
exceptional vertex. Let v ∈ W be a boolean element. Then

Fv(q) = (
1 + q + q2)k−1(

q(1 + q)h+1 + fh(q)
)
(1 + q)l(v)−2k−h−2,

where k is the number of essential components of the diagram d of v with at least
two vertices and h is the number of entries equal to 2 in the adjacent cells of w (also
consider the cell on the right).

The formula is also true when there is no vertex of degree greater than 2: in this
case let w be any vertex of degree 2.

Proof By Lemma 7.1 it suffices to compute the polynomial associated with the only
non-trivial component. By Lemma 7.2 it suffices to consider only the following two
cases.
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(2)h
′ · · · 1,

(2)h
′ · · ·

1.

2

In the first case we compute

Fv(q) = (1 + q)2h′
F ′\

v,s′(q) + (1 + q)h
′
fhF

′0
v,s′(q)

= (1 + q)h
′+2i−3(q(1 + q)h+1 + fh

)
by (10),

where F ′
v(q) is the polynomial associated with the diagram without the h′ leftmost

cells and i is an integer. The second case is similar; use (11). �
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