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Abstract The critical group of a graph is a finite Abelian group whose order is the
number of spanning forests of the graph. For a graph G with a certain reflective
symmetry, we generalize a result of Ciucu–Yan–Zhang factorizing the spanning tree
number of G by interpreting this as a result about the critical group of G. Our result
takes the form of an exact sequence, and explicit connections to bicycle spaces are
made.
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1 Introduction and statement of results

A graph with reflective symmetry is a graph G = (V ,E) with a distinguished, non-
degenerate drawing in R2 such that

(1) reflection about a line � takes the drawing into itself, and
(2) every edge that is fixed by this reflection about � is fixed point-wise.

For a graph with reflective symmetry, the reflection of the distinguished drawing gives
rise to an involution. This involution will always be denoted φ, and is a map V → V

that induces a map E → E.
Condition (2) above means that no edge of G crosses the axis of symmetry. As-

suming that the line of reflection is vertical, the drawing of G gives rise to a partition
of the edges E of G into three blocks: E = EL ∪ Eφ ∪ ER . The sets EL and ER

denote the edges on the left and right sides of the reflection line �, respectively. The
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set Eφ denotes the set of φ-fixed edges. Similarly, there is a partition of the vertices
of G as V = VL ∪ V φ ∪ VR .

A subgraph of G is specified by the edges of G it contains, its vertices being the
endpoints of the specified edges. A graph G+ = (V+,E+) is obtained from EL ∪ Eφ

by subdividing each φ-fixed edge (i.e., the edges in Eφ). A graph G− = (V−,E−) is
obtained from ER by identifying its φ-fixed vertices to a single vertex.

Example 1.1 Below we have a graph G with reflective symmetry, along with G+
and G− (shown left-to-right). The shaded vertex is the one obtained by subdividing
the φ-fixed edge of G.

This paper will be concerned with the critical group of a graph possessing re-
flective symmetry. The critical group of a graph G is a finite Abelian group, de-
noted K(G), whose order is the number of spanning forests of G. The number of
spanning forests of a graph G will be denoted κ(G).

The critical groups is also known as the Jacobian group or Picard group of the
graph, and is intimately connected with the Abelian sandpile model and a chip firing
game played on the vertices of G. We will define K(G) formally in Sect. 2, and
discuss functorial properties in some depth in the appendix. We will not discuss any
connections to chip firing games.

A theorem of Ciucu, Yan and Zhang [3] motivates our work.

Theorem 1.2 (Ciucu–Yan–Zhang) Let G be a planar graph with reflective symmetry,
with axis of symmetry �. Then

κ(G) = 2ω(G)κ(G+)κ(G−),

where ω(G) is the number of bounded regions intersected by �.

We offer a generalization of their result at the level of critical groups.

Main Theorem Let G be a graph with reflective symmetry, and G+, G− the two
graphs this symmetry gives rise to. There is a group homomorphism

f ∗ : K(G+) ⊕ K(G−) → K(G),

such that ker(f ∗) and coker(f ∗) are all 2-torsion.
The kernel and cokernel of f can be explicitly determined as the space of bicycles

in G and G+ ∪ G−, respectively, possessing certain symmetry properties. If G+ is
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connected, then

|K(G)|
|K(G+) ⊕ K(G−)| = | coker(f ∗)|

|ker(f ∗)| = 2|V φ |−|Eφ |−1.

One obtains a version of Theorem 1.2 by taking the orders of the groups in the
exact sequence

0 → ker
(
f ∗) → K(G+) ⊕ K(G−) → K(G) → coker

(
f ∗) → 0.

Corollary 1.3 If G is a graph with reflective symmetry and G+ is connected, then

κ(G) = 2|V φ |−|Eφ |−1κ(G+)κ(G−).

The reader will notice that the main theorem really pertains to graphs with an in-
volutive automorphism whose fixed edges have fixed vertices. Indeed any such graph
possess a drawing that makes it a graph with reflective symmetry, as we have de-
fined it: Draw the quotient G/φ so that its fixed edges lay along a straight line �. This
drawing along with its reflection across � yields the desired drawing of G.

This paper is organized as follows. In Sect. 2 we recall the definition of the crit-
ical group of a graph. In Sect. 3 we define the group homomorphism alluded to in
the Main Theorem. We then identify some basic properties of this map. In Sect. 4
we explicitly identify the kernel and cokernel of the maps, and in Sect. 5 we relate
the order of these two objects. Finally, we include an appendix that contains many
technical facts on critical groups that are not available in the published literature.

2 Critical groups of graphs

For this section only, G = (V ,E) is an arbitrary graph. Orient the edges of G arbi-
trarily, and form the usual boundary map

∂ = ∂(G) : ZE → ZV.

We follow the convention that the negative of an oriented edge e ∈ ZE corresponds
to that edge with opposite orientation. Thus, if e = uv is an oriented edge, then uv =
−vu.

Both ZE and ZV come with distinguished bases, and hence orthonormal forms.
There is, thus, an adjoint (or transpose) map,

∂t : ZV → ZE,

given by the coboundary operator. The bond (or cut) space B of G is the image of ∂t .
The cycle space Z of G is the kernel of ∂ . These spaces are free modules and are
orthogonal under the above form.

The bond space of G is generated, as a free Z-module, by the fundamental bonds
at the vertices of G, omitting one vertex from each connected component. Given a



212 J Algebr Comb (2014) 39:209–224

vertex of G, this is the element

bG(v) :=
∑

u∼v

uv ∈ ZE.

More generally, the fundamental bond of a subset S ⊂ V is bG(S) = ∑
v∈S bG(v).

The cycle space of G is generated, as free Z-module, by oriented circuits of G.
That is, if v1 → v2 → ·· · → v� → v�+1 = v1 is an oriented circuit in G then∑�

i=1 vivi+1 is an element of the cycle space of G, and such elements generate Z.
Following Appendix A, we define the critical group of G to be the quotient

K(G) := (ZE)/(Z + B).

This is a finite Abelian group whose order is the number of spanning forests of G,
which we denote by κ(G).

3 A map arising from a reflective symmetry

Let G = (V ,E) be a graph with reflective symmetry, and G+ = (V+,E+), G− =
(V−,E−) the left and right graphs this gives rise to, as in the introduction. Let φ

denote the involution determined by the reflective symmetry.
The edges of G+ come in two flavors: Those that are simply edges from EL,

the left half G, and those that were obtained by subdividing φ-fixed edges of G.
Edges of G− correspond uniquely to edges in ER , the right half of G. We will often
abuse notation and identify edges in G+ or G− that come from edges in G with the
corresponding edge in G. A similar identification will be made for vertices in G+
and G− arising from vertices in G.

Orient the edges of G in such a way that φ is an involution of directed graphs. In
this way we obtain induced orientations of G+ and G−.

Example 3.1 Here we display an orientation of G that is φ-fixed, and the induced
orientations on G+ and G−.

Our primary goal in this section is to define a map

f ∗ : K(G+) ⊕ K(G−) → K(G).

For this we define a Z-linear map

f : ZE+ ⊕ ZE− → ZE,
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that will take cycles to cycles and bonds to bonds, and f ∗ will be the induced map on
critical groups. If e ∈ E+ is an edge obtained from a non-fixed edge of E, define

f (e,0) := e + φ(e).

If e ∈ E+ is obtained by subdividing an edge e′ ∈ E, we set f (e,0) := e′. For an edge
e ∈ E−, which we think of as an edge in E, we set

f (0, e) := e − φ(e).

There is the usual adjoint map f t : ZE → ZE+ ⊕ZE−, characterized by the property
that 〈f (e′, e′′), e〉 = 〈(e′, e′′), f t (e)〉. Specifically, for e ∈ Eφ , let e′ and e′′ be the
edges of G+ this gives rise to. Then f t (e) = (e′ + e′′,0). If e ∈ EL then f t (e) =
(e,−φ(e)), and for e ∈ ER we have f t (e) = (φ(e), e).

Denote the cycle and bond spaces of G+ by Z+ and B+. Similarly denote the
cycle and bond spaces of G− by Z− and B−.

Proposition 3.2 The map f takes Z+ ⊕ Z− into Z, and takes B+ ⊕ B− into B .

Example 3.3 We illustrate the proposition in our running example. Edges with arrows
have coefficient +1 oriented in the indicated direction. Edges with larger coefficients
are indicated. Edges without arrows have coefficient zero.

Here we map a cycle z in G+ to a cycle in G as f (z,0).

Here we map a cycle z in G− to a cycle in G as f (0, z).

Proof We leave the proof of the statement about cycles to the reader, confident that
the example will guide their proof.

For the second part of the proposition it is sufficient to observe the following. First,
if v ∈ V+ is one of the vertices obtained by subdividing a φ-fixed edge of G, then
f (bG+(v),0) = 0. If v ∈ V+ comes from a φ-fixed vertex of G then f (bG+(v),0) =
bG(v). If v ∈ V+ is any other vertex then f (bG+(v),0) = bG(v) + bG(φ(v)).

We now consider the case of v ∈ V−. If v is the vertex obtained by contracting
V φ ⊂ V to a point then f (0,bG−(v)) = bG(VL) − bG(VR). For any other vertex,
f (0,bG−(v)) = bG(v) − bG(φ(v)). �
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It follows that f induces a natural map,

f ∗ : K(G+) ⊕ K(G−) → K(G),

on the quotient spaces. The adjoint f t induces a map going the opposite direction

(
f t

)∗ : K(G) → K(G+) ⊕ K(G−).

Proposition 3.4 The kernel and cokernel of f ∗ are 2-torsion.

Proof By Proposition A.3 it is sufficient to prove that f ∗ and (f t )∗ have cokernels
that are 2-torsion.

Choose an edge e ∈ E. If e is φ-fixed then e ∈ im(f ). If e is not φ-fixed, suppose
that e is on the left half of G. We may view e and φ(e) as edges in G+ and G− and
compute,

f
(
e,−φ(e)

) = e + φ(e) − φ(e) + e = 2e.

We conclude from this that coker(f ) is 2-torsion, and hence coker(f ∗) is too.
Choose an edge e′ ∈ E+. If e′ was obtained by subdividing e ∈ E, let e′′ ∈ E+ be

the other edge obtained in this way. We compute,

f t (e) = e′ + e′′ ≡ e′ + e′′ + (
e′ − e′′) = 2e′ mod B+,

since e′ − e′′ is a bond of G+.
If e ∈ E+ did not arise from subdividing an edge of G, then we may identify e

with an edge e of G. We have

f t
(
e − φ(e)

) = f t (e) − f t
(
φ(e)

) = (
e,φ(e)

) − (−e,φ(e)
) = 2(e,0).

A similar computation shows that if e ∈ E− then 2(0, e) ∈ im(f t ). It follows that
coker((f t )∗) is 2-torsion. �

We have thus proved the first and second part of the Main Theorem.

4 Identifying the kernel and cokernel

To ease the notation within this section and the next we make the following conven-
tion.

Convention In this section and the next, Z and B will denote the reduction of the
usual cycle and bond spaces of G by the prime 2. Thus Z = ker(∂ : (Z/2)E →
(Z/2)V ) and B = im(∂t : (Z/2)V → (Z/2)E). The same notation is used for Z±
and B±. We will also write f and f t for the reduction of these Z-linear maps by 2.

Since the kernel and cokernel of f ∗ are 2-torsion their structure is intimately re-
lated to the reduction of their critical groups by 2. The 2-bicycle space (hereafter
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the bicycle space) of G is Z ∩ B ⊂ (Z/2)E, which by Proposition B.2 is naturally
isomorphic to K(G)/2K(G).

An element h of (Z/2)E can be identified with a subgraph of H ⊂ G via its
support. Note that this subgraph does not come with an orientation. An element of
Z ∩ B corresponds to a graph H satisfying the properties:

(1) H is the set of edges connecting a bipartition of V .
(2) Every vertex of G is incident to an even number of edges of H .

The following algebraic result is proved in a more general context as Proposi-
tion B.2, and it follows since the kernel and cokernel of f ∗ are known to be 2-torsion.

Proposition 4.1 There are group isomorphisms,

coker
(
f ∗) ≈ ker

(
f t : Z ∩ B → (Z+ ⊕ Z−) ∩ (B+ ⊕ B−)

)
,

ker
(
f ∗) ≈ ker

(
f : (Z+ ⊕ Z−) ∩ (B+ ⊕ B−) → Z ∩ B

)
.

We are now in a position to identify coker(f ∗).

Proposition 4.2 The kernel of f t : (Z/2)E → (Z/2)E+ ⊕ (Z/2)E− has a basis
given by the φ-fixed elements e + φ(e). The kernel of f t restricted to Z ∩ B con-
sists of the φ-fixed bicycles of G.

Proof It is sufficient to prove the first claim. A basis for (Z/2)E is given by {e +
φ(e) : e ∈ EL} ∪ EL ∪ Eφ . Likewise, a basis of (Z/2)E+ ⊕ (Z/2)E− is given by
{(e,φ(e)) : e ∈ EL} ∪ E+ ∪ EL.

The matrix of f t becomes diagonal in this basis, and it is clear that the kernel of
f t has the stated form. �

To identify the cokernel of (f t )∗ we need another involution. Define

ψ : (Z/2)(E+ ∪ E−) → (Z/2)(E+ ∪ E−)

as follows. If e ∈ E+ is obtained by subdividing an edge of E then set ψ(e) equal to
the other edge obtained in this way. If e ∈ E+ arises from an edge that is not φ-fixed,
then we define ψ(e) := φ(e) ∈ E− and ψ(φ(e)) = e. This map is not determined by
a graph automorphism.

Proposition 4.3 The kernel of f : (Z/2)E+ ⊕ (Z/2)E− → (Z/2)E consists of the
elements ψ -fixed elements. The kernel of f restricted to (Z+ ∩ Z−) ∩ (B+ ∩ B−)

consists of the ψ -fixed bicycles of G+ ∪ G−.

Proof Compute the matrix of f in terms of the basis used in the proof of Proposi-
tion 4.2. The first statement follows from inspection of the matrix representing f and
the second follows from the first. �

Propositions 4.1, 4.2 and 4.3 give a complete combinatorial description of
coker(f ∗) and ker(f ∗). We illustrate them with an example.
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Example 4.4 We continue with our running example, starting with coker(f ∗).
A φ-fixed bicycle in G is indicated by the shaded edges below.

It follows that coker(f ∗) ≈ Z/2. For the kernel of f ∗, we investigate bicycles in
G+ ∪ G−. The graph G+ ∪ G− itself is a ψ -fixed bicycle.

Although both G+ ⊂ G+ ∪ G− and G− ⊂ G+ ∪ G− are bicycles, they are not
ψ -fixed. It follows that ker(f ∗) ≈ Z/2. The ker–coker exact sequence for f ∗ takes
the form,

0 → Z/2 → Z/4 ⊕ Z/2
f ∗
→ Z/8 → Z/2 → 0.

Example 4.5 Let G be a (2n)-cycle with the obvious reflective symmetry. Then G+
is a path on n + 1 vertices and G− is an n-cycle. We see that G is a φ-fixed bicycle.
Since G+ is a path it has no (non-empty) bicycles, and hence there are no ψ -fixed
bicycles.

The ker–coker exact sequence for the map f ∗ takes the form

0 → Z/n → Z/(2n) → Z/2 → 0,

which is never split if n is even.

We close this section with alternate presentations of ker(f ∗) and coker(f ∗).

Proposition 4.6 There are isomorphisms,

ker
(
f ∗) ≈ ((Z/2)(E+ ∪ E−))ψ

(Z+ ⊕ Z−)ψ + (B+ ⊕ B−)ψ
,

coker
(
f ∗) ≈ ((Z/2)E)φ

Zφ + Bφ
.

Proof The proofs amount to the fact that ker(f ∗) and coker(f ∗) are succinctly de-
scribed as the ψ and φ fixed elements of K(G+)/2K(G+) ⊕ K(G−)/2K(G−) and
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K(G)/2K(G). This is true because the isomorphisms relating the various presenta-
tions of the critical groups in Appendix B are equivariant with respect to ψ and φ.

We then see that ((Z/2)(E+ ∪ E−))ψ and ((Z/2)E)φ surject onto these critical
groups. The kernels of these maps are evident. �

5 Relating ker(f ∗) and coker(f ∗)

Our final goal is to relate the orders of ker(f ∗) and coker(f ∗) in a concrete fash-
ion. An easy and immediate result is that | coker(f ∗)|/|ker(f ∗)| is a positive integer
power of 2.

Proposition 5.1 There is an injective map

ker
(
f ∗) → coker

(
f ∗).

Proof We use the above presentation of these groups as ψ and φ fixed bicycles. If
(x, x′) ∈ (Z/2)E+ ⊕ (Z/2)E− is ψ -fixed, set g(x, x′) := f (x,0) = f (0, x′). This
restricts to a map on the ψ -fixed bicycles whose image is in the space of φ-fixed
bicycles. The map is injective since f |(Z+⊕Z−)ψ is injective. �

We will use the map g occurring in the proof of the proposition in what follows.
Consider the commutative diagram below, whose horizontal arrows are those induced
by g, and whose vertical arrows are the natural ones.

0 0

(Z+ ⊕ Z−)ψ ∩ (B+ ⊕ B−)ψ Zφ ∩ Bφ

(Z+ ⊕ Z−)ψ ⊕ (B+ ⊕ B−)ψ Zφ ⊕ Bφ

(Z+ ⊕ Z−)ψ + (B+ ⊕ B−)ψ Zφ + Bφ

0 0

(1)

The columns in this diagram are exact. We wish to identify the order of the cokernel
in the top row. For this, we need to compute the kernel and cokernel in the middle
row.
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Proposition 5.2 The dimension of (B+ ⊕B−)ψ is |VR|+ |Eφ |. The dimension of Bφ

is |VR| + |V φ | − 1. It follows that

∣∣Bφ
∣∣/

∣∣(B+ ⊕ B−)ψ
∣∣ = 2|V φ |−|Eφ |−1.

Proof A basis for the bond space of G− is obtained by taking the fundamental bonds
at all of its vertices except one. We exclude the vertex obtained by contracting all
of V φ to a point. If we take these bonds and symmetrize them by ψ we obtain
|VR| = |VL| many linearly independent bonds in (B+ ⊕ B−)ψ . Any ψ -fixed bond
not contained in the span of these cannot be supported on B−. It is clear that the
bonds at the vertices obtained by subdividing φ-fixed edges complete our description
of a basis of (B+ ⊕ B−)ψ .

A basis for the bond space of G is given by all but one of the fundamental bonds
at vertices of G. We omit a φ-fixed vertex from our basis. The remaining φ-fixed
vertices have φ-fixed bonds. Symmetrizing the bonds of vertices in VR yields the rest
of a basis for Bφ . �

Proposition 5.3 Suppose that G+ is connected. There is an equality,

|(Z+ ⊕ Z−)ψ |
|Zφ | = 2|V φ |−|Eφ |−1.

Proof The idea is to consider the injection g : (Z+ ⊕ Z−)ψ → Zφ , and compute a
basis for its cokernel. For this we note that |V φ |−|Eφ|−1 is the number of connected
components of Gφ .

Choose one vertex from each connected component of Gφ , v0, v1, . . . , vm. In G+,
take a path pij connecting vi to vj . Viewing pij as a path in G, we form the cycle
zij = pij + φ(pij ) ∈ Zφ . We claim that the cycles {zij } are not in the image of g. If
there was a cycle in G− lifting zij then it would differ from pij by a sum of bonds of
vertices obtained by subdividing φ-fixed edges. Since vi and vj are not connected by
a path in Gφ we see that zij /∈ im(g).

Let v′
i and v′

j be two vertices in the same connected component of Gφ as vi

and vj , respectively. If p′
ij is a path connecting v′

i to v′
j and z′

ij = p′
ij + φ(p′

ij ),
then zij + z′

ij ∈ im(g). This is because we have a cycle of G+, pij + p′
ij +

(a subdivided path in Gφ from vi to v′
i ) + (a subdivided path in Gφ from vj to v′

j ).
Applying ψ to this cycle yields a cycle in G−, since pij must touch the axis of
symmetry an even number of times. We conclude from this zij = z′

ij ∈ Zφ/ im(g)

and that zi(i+1) + · · · + z(j−1)j is equivalent to zi,j in Zφ/ im(g).
We now claim that (the images of) z01, z12, . . . , z(m−1)m form a basis for

Zφ/ im(g). They are linearly independent since the paths {pi(i+1)} are linearly in-
dependent in (Z/2)E+. If z represents a cycle in G that is not in im(g), then z visits
each of some even number of connected component of Gφ a twice odd number of
times. Subtracting off elements of the form zij , where i and j label two components
visited an odd number of times by z, we conclude that {zij } spans Zφ/ im(g). From
this we have {zi(i+1) : i = 0, . . . ,m − 1} spans Zφ/ im(g) �
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Proposition 5.4 There is an equality,

|(Z+ ⊕ Z−)ψ + (B+ ⊕ B−)ψ |
|Zφ + Bφ | = |ker(f ∗)|

| coker(f ∗)| .

Proof This follows from Proposition 4.6 by multiplying and dividing the left side by
|((Z/2)E)φ |, which is equal to |((Z/2)(E+ ∪ E−))ψ |. �

We are finally in a position to prove the remaining part of the Main Theorem.

Theorem 5.5 Suppose that G+ is connected. Then,

|K(G+) ⊕ K(G−)|
|K(G)| = |ker(f ∗)|

| coker(f ∗)| = 2|V φ |−|Eφ |−1.

Proof Take the alternating product of the orders of the groups in the first column
of the diagram (1) and divide by the alternating product for the second column. We
obtain

1 = |(Z+ ⊕ Z−)ψ ∩ (B+ ⊕ B−)ψ | · |(Z+ ⊕ Z−)ψ + (B+ ⊕ B−)ψ | · |Zφ ⊕ Bφ |
|(Z+ ⊕ Z−)ψ ⊕ (B+ ⊕ B−)ψ | · |Zφ ∩ Bφ | · |Zφ + Bφ | .

Applying Propositions 5.1, 5.2, 5.3, and 5.4 this yields

1 = 22(|V φ |−|Eφ |−1) |ker(f ∗)|2
| coker(f ∗)|2 .

Manipulating this fraction and taking the square root proves the theorem. �

6 Open problems

It would be desirable to actually exhibit bicycles forming a basis of the cokernel of
g : ker(f ∗) → coker(f ∗). This appears to be difficult and subtle, since it requires
producing linearly independent bicycles in G. When G is planar the left-right tours
of Shank [4] could possibly be used to furnish the needed bicycles.

There is a more general version of Theorem 1.2 given by Yan and Zhang [6]. It
allows for an arbitrary involution on a weighted graph drawn in the plane, essentially
meaning that we relax the condition that edges cannot cross the axis of symmetry.

The construction of an appropriate version of G+ and G− is more involved in this
case, but a result of the form κ(G) = 2mκ(G+)κ(G−) is obtained. The integer m

appearing in this formula might be negative in general, and positive integer weights
for G might involve half integer weights for G+ and G−. It would be interesting to
see a critical group generalization of this result.
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Appendix A: Critical groups of adjoint pairs

The point of these appendices is to gather and prove algebraic results about critical
groups for the previous work. Some of these results can be found in Bacher, de la
Harpe, Nagnebeda [1] and Treumann’s bachelor’s thesis [5]

Following Treumann [5], we consider the category Adj, whose objects are adjoint
pairs (∂, ∂t ) of linear maps,

∂ : C1 → C0, ∂t : C0 → C1

between two finitely generated free Z-modules C1 and C0. We assume that both
C1 and C0 are both equipped with a positive definite inner product (both denoted
〈−,−〉) and have bases which are orthonormal with respect to these inner products.
The adjointness of the maps ∂ , ∂t means that for all v ∈ C0 and e ∈ C1,

〈∂e, v〉 = 〈
e, ∂tv

〉
.

Let (∂, ∂t ) be an adjoint pair as above. We define Z := ker(∂) and B := im(∂t ).
The critical group of (∂, ∂t ) is

K = K
(
∂, ∂t

) := C1/(Z + B).

A morphism between two adjoint pairs (∂, ∂t ), (∂ ′, (∂ ′)t ) is a pair of linear maps

f = (
f1 : C1 → C′

1, f0 : C0 → C′
0

)
,

subject to the intertwining conditions

f0∂ = ∂ ′f1, f1∂
t = (

∂ ′)t
f0 mod B ′.

A morphism f = (f1, f0) between two pairs (∂, ∂t ) and (∂ ′, (∂ ′)t ) induces maps

f ∗
1 : K → K ′,

as one checks that f1 takes Z into Z′ and B into B ′.

Proof Suppose that z ∈ Z. Then ∂ ′f1(z) = f0(∂z) = 0. Suppose that b = (∂ ′)t v.
Then f1((∂

′)t v) = ∂tf0(v) mod B ′, hence f1((∂
′)t v) is an element of B ′. �

In this way, the critical group is a functor Adj → Ab from Adj to the category of
finitely generated Abelian groups.

There is an alternate definition of the critical group in terms of the Laplacian op-
erator ∂∂t : C0 → C0.

Proposition A.1 (Treumann [5]) The induced map ∂ : K → coker(∂∂t ) is injective
and there is a direct sum decomposition,

K ⊕ coker(∂) = coker
(
∂∂t

)
.

The order of K is the absolute value of the maximal minors of ∂∂t .
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When ∂ = ∂(G) for a graph G, the cokernel of ∂ is a free Z-module whose rank is
the number of connected components of G. In this case the absolute value of the max-
imal minors of ∂∂t is the given by Kirchhoff’s Theorem as the number of spanning
forests of G.

A morphism f = (f1, f0) between two pairs (∂, ∂t ) and (∂ ′, (∂ ′)t ) gives rise to a
natural map on the quotient

f ∗
0 : coker

(
∂∂t

) → coker
(
∂ ′(∂ ′)t)

.

This map restricts to the critical group summands, and we have the following result.

Theorem A.2 (Treumann [5]) The induced maps

f ∗
1 : K → K ′, f ∗

0 : K → K ′

are equal.

As such, we will drop the subscript on f when referring to the map it induces on
critical groups.

Let f be a morphism in Adj, taking (∂, ∂t ) to (∂ ′, (∂ ′)t ). The map f has an adjoint
f t taking (∂ ′, (∂ ′)t ) to (∂, ∂t ), given by taking the adjoint of the constituent functions.
This means that

〈f1e, e
′〉 = 〈

e, f t
1e′〉, 〈f0v, v′〉 = 〈

v,f t
0v′〉.

The pair f t = (f t
1 , f t

0 ) is a morphism in Adj. The maps f ∗ : K → K ′ and (f t )∗ are
related by the following result.

Proposition A.3 There is a commutative square

K

≈

K ′
f t ∗

≈

HomZ(K,Q/Z)
◦f ∗

HomZ(K ′,Q/Z)

There are natural isomorphisms ker(f ∗) ≈ coker(f t ∗), coker(f ∗) ≈ ker(f t∗).

It is a fact that K is equipped with a non-degenerate Q/Z-valued bilinear form
(−,−), see [1, p.170], [5, p.3]. The identification of K with HomZ(K,Q/Z) is via
x �→ (x,−). For this inner product we have the relation

(
f ∗(x), y

) = (
x,f t∗(y)

)
.

See [2, Proposition 2.5] or [5, Proposition 9] for the proof of the proposition.
We now come to an important technical lemma.
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Lemma A.4 Let (∂, ∂t ) and (∂ ′, (∂ ′)t ) be two objects in Adj. Suppose that f1 : C1 →
C′

1 is a Z-linear map satisfying f1Z ⊂ Z′ and f1B ⊂ B ′.
Define f0 : im ∂ → C′

0 by f0(∂x) := ∂ ′f1(x). Then f := (f1, f0) defines a mor-
phism in Adj,

(
∂ : C1 → im ∂, ∂t : im ∂ → C1

) f→ (
∂ ′,

(
∂ ′)t)

.

Proof This is well defined since f1 takes Z into Z′. We only need to check that the
second intertwining condition is satisfied, since the first is satisfied by definition. For
this we must find that f1 commutes, up to B ′, with the down-up Laplacian:

f1
((

∂t ∂
)
x
) = ((

∂ ′)t
∂ ′)f1(x) mod B ′.

On the left, since (∂t ∂)x is in B and f1 takes B to B ′ we obtain an element of B ′.
The element of the right is patently in B ′, thus both sides are equal modulo B ′. �

The point of this result is that if one has defined f1 and it behaves sufficiently well
then f0 is essentially determined by f1, modulo data that the critical group cannot
see. Indeed, if (∂, ∂t ) is in Adj then its critical group is equal to that of

(
∂ : C1 → im ∂, ∂t : im ∂ → C1

) ∈ Adj.

This follows since the image of ∂t : im ∂ → C1 is equal to the image of ∂t : C0 → C1.

Appendix B: Bicycles

We maintain the notation of adjoint pairs from the previous section. Let p be a prime
number. The p-bicycles of an adjoint pair (∂, ∂t ) are the elements of

Hom(K,Z/p).

Since K is equipped with a non-degenerate Q/Z-valued bilinear form the p-bicycles
are naturally identified with K/pK . Indeed, every map K → Z/p can be thought of
as a map K → {0,1/p, . . . , (p − 1)/p} ⊂ Q/Z, and this map is of the form (x,−)

for some x ∈ K . Mapping (x,−) to x + pK gives the desired identification.
A morphism f : (∂, ∂t ) → (∂ ′, (∂ ′)t ) in Adj gives rise to a natural map

f : K/pK → K ′/pK ′

which is just reduction of f by p. Given an adjoint pair (∂, ∂t ) we will denote the
reduction by p of the associated modules Z and B by ZZ/p and BZ/p .

Proposition B.1 There is a commutative square

K/pK

≈

K ′/pK ′
f t ∗

≈

Hom(K,Z/p)
◦f ∗

Hom(K ′,Z/p)
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If coker(f ∗) is all p-torsion, there is a natural isomorphism coker(f ∗) ≈ ker(f t ∗).

Proof Let (−,−) denote the Q/Z-valued bilinear forms on K and K ′. The commu-
tativity of the diagram boils down to the equality (f (x), y) = (x, f t (y)), which holds
by Proposition A.3, reduced modulo 1

p
(Q/Z) ⊂ Q/Z.

Since HomZ(−,Z/p) is right exact, the kernel of (f t )∗ : K ′/pK ′ → K/pK is
identified with HomZ(coker(f ∗),Z/p). Since coker(f ∗) is assumed to be p-torsion,
HomZ(coker(f ∗),Z/p) = coker(f ∗). �

Proposition B.2 The p-bicycles of (∂, ∂t ) are naturally identified with ZZ/p ∩BZ/p .
This association is functorial in the sense that if f : (∂, ∂t ) → (∂ ′, (∂ ′)t ) is a mor-
phism, then there is a commutative diagram,

K/pK
f ∗

≈

K ′/pK ′

≈

ZZ/p ∩ BZ/p

f1

(Z′)Z/p ∩ (B ′)Z/p

Proof There is a direct sum decomposition

C0/pC0 = ker
(
∂∂t

) ⊕ im
(
∂∂t

)
,

since ∂∂t is self-adjoint. This yields an isomorphism of Z/p-vector spaces

ker
(
∂∂t

) ≈ coker
(
∂∂t

) = K/pK ⊕ coker(∂).

Now, map an element x in ker ∂∂t to ∂tx. The kernel of this map is precisely coker(∂),
and its image is all of ZZ/p ∩ BZ/p . This proves the first part of the result.

The commutativity of the square follows directly from the relations

f0∂ = ∂ ′f1, f1∂
t = (

∂ ′)t
f0,

and the fact that f ∗ is represented either by f ∗
0 or f ∗

1 . �

By Lemma A.4, we do not need to have the full data of a morphism in Adj to
reach the conclusion of the previous proposition.

Corollary B.3 Let (∂, ∂t ) and (∂ ′, (∂ ′)t ) be two objects in Adj. Suppose that f1 :
C1 → C′

1 is a Z-linear map satisfying f1Z ⊂ Z′ and f1B ⊂ B ′. Then, there is a
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commutative diagram

K/pK
f ∗

≈

K ′/pK ′

≈

ZZ/p ∩ BZ/p

f1

(Z′)Z/p ∩ (B ′)Z/p
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