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Abstract A permutation representation of a Coxeter group W naturally defines an
absolute order. This family of partial orders (which includes the absolute order on W )
is introduced and studied in this paper. Conditions under which the associated rank
generating polynomial divides the rank generating polynomial of the absolute order
on W are investigated when W is finite. Several examples, including a symmetric
group action on perfect matchings, are discussed. As an application, a well-behaved
absolute order on the alternating subgroup of W is defined.
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1 Introduction

The Bruhat order on a Coxeter group W is a key ingredient in understanding the
structure of W . This order involves both the set of simple reflections S and the set
of all reflections T of W : it may be defined by the condition that u ∈ W is covered
by v ∈ W if there exists t ∈ T such that v = tu and �S(v) = �S(u) + 1, where �S :
W → N is the length function with respect to the generating set S. There are two
“more coherent” closely related concepts. Replacing the role of T by S determines
an order which was extensively studied in the past three decades, namely the weak
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order on W . Replacing the role of S by T determines the absolute order. The study of
maximal chains in the absolute order on the symmetric group is traced at least back to
Hurwitz [15]; see also [11, 28]. However, the growing interest in the absolute order is
relatively recent and followed the discovery [6, 9] that distinguished intervals in the
absolute order, known as the noncrossing partition lattices, are objects of importance
in the theory of finite-type Artin groups. For further information on the absolute order,
the reader is referred to [1, Sect. 2.4; 2, 16].

Consider a transitive action of W on a set X. Motivated by recent work of Rains
and Vazirani [20], which introduces and studies the Bruhat order on X, a naturally
defined absolute order on X is introduced in this paper. Our goal is to find condi-
tions under which important enumerative and structural properties of the absolute
order on the acting group W carry over to the absolute order on X; in particular,
conditions under which the associated rank generating polynomial divides the rank
generating polynomial of the absolute order on W . Several examples, including the
symmetric group action on ordered tuples and its conjugation action on fixed point
free involutions, are discussed. As an application, a well-behaved absolute order on
the alternating subgroup of W is defined and studied.

2 Basic concepts

Let W be a Coxeter group with set of reflections T (for background on Coxeter groups
the reader is referred to [7, 8, 14]). The minimum length of a T-word for an element
w ∈ W is denoted by �T(w) and called the absolute length of w. The absolute order
on W , denoted by Abs(W), is the partial order (W,≤T) defined by letting u ≤T v

if �T(vu−1) = �T(v) − �T(u), for u,v ∈ W . Equivalently, ≤T is the reflexive and
transitive closure of the relation on W consisting of the pairs (u, v) of elements of W

for which �T(u) < �T(v) and v = tu for some t ∈ T. For basic properties of Abs(W),
see [1, Sect. 2.4].

We will be concerned with the following generalization of the absolute order
on W . Consider a transitive action ρ of W on a set X. We will write wx for the
result ρ(w)(x) of the action of w ∈ W on an element x ∈ X.

Definition 2.1 Fix an arbitrary element x0 ∈ X.

(a) The absolute length of x ∈ X is defined as �T(x) := min{�T(w) : x = wx0}.
(b) The absolute order on X, denoted Abs(X), associated to ρ is the partial order

(X,≤T) defined by letting x ≤T y if there exists w ∈ W such that y = wx and
�T(w) = �T(y) − �T(x), for x, y ∈ X. Equivalently, ≤T is the reflexive and tran-
sitive closure of the relation on X consisting of the pairs (x, y) of elements of X

for which �T(x) < �T(y) and y = tx for some t ∈ T.

The present section discusses elementary properties and examples of Abs(X). We
begin with some comments on Definition 2.1.

Remark 2.2 (a) A different way to describe the relation ≤T on X is the following. Let
x0 ∈ X be fixed, as before, and consider the simple graph Γ = Γ (W,ρ) on the vertex
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set X whose (undirected) edges are the sets of the form {x, tx} for t ∈ T and x ∈ X.
Then for every x ∈ X, the absolute length �T(x) is equal to the distance between
x0 and x in the graph Γ and for x, y ∈ X, we have x ≤T y if and only if x lies
in a geodesic path in Γ with endpoints x0 and y. This description implies that ≤T

is indeed a partial order on X and that it coincides with the reflexive and transitive
closure of the relation on X described in Definition 2.1(b).

(b) The isomorphism type of Abs(X) is independent of the choice of x0 ∈ X. In-
deed, consider another base point y0 ∈ X and let Abs(X,x0) and Abs(X,y0) denote
the absolute orders on X with respect to x0 and y0, respectively. Choose w0 ∈ W

so that y0 = w0x0 and define a map f : X �→ X by letting f (x) = w0x for x ∈ X.
Clearly, f is a bijection and satisfies f (x0) = y0. Moreover, since T is closed under
conjugation, the map f is an automorphism of the graph Γ considered in part (a).
These properties imply that f : Abs(X,x0) �→ Abs(X,y0) is an isomorphism of par-
tially ordered sets.

(c) The order Abs(X) has minimum element x0.
(d) As an easy consequence of the definition of absolute length, we have �T(wx) ≤

�T(w) + �T(x) for all w ∈ W and x ∈ X.

Since the action ρ is transitive, the set X may be identified with the set of left
cosets of the stabilizer of x0 ∈ X in W . This identification leads to the following
reformulation of Definition 2.1, which we will often find convenient (the role of the
base point x0 in Definition 2.1 will be played by the subgroup H ).

Definition 2.3 Let H be a subgroup of W and let X = W/H be the set of left cosets
of H in W .

(a) The absolute length of x ∈ X is defined as �T(x) := min{�T(w) : w ∈ x}.
(b) The absolute order on X, denoted Abs(X), is the partial order (X,≤T) defined

by letting x ≤T y if there exists w ∈ W such that y = wx and �T(w) = �T(y) −
�T(x), for x, y ∈ X.

We recall that a partially ordered set (poset) P with a minimum element 0̂ is
said to be locally graded with rank function rk : P → N if for each x ∈ P , every
maximal chain in the closed interval [0̂, x] of P has exactly rk(x) + 1 elements (for
background and terminology on posets we refer to [26, Chapter 3]). We note the
following elementary property of Abs(X).

Proposition 2.4 The absolute order Abs(X) is locally graded, with minimum ele-
ment 0̂ = x0 and rank function given by the absolute length.

Proof We have already noted that x0 is the minimum element of Abs(X). Thus, it
suffices to show that �T(y) = �T(x) + 1 whenever y covers x in Abs(X). This is an
easy consequence of Definition 2.1. �

We recall (see, for instance, [1, Theorem 2.7.3; 14, Sect. 3.9] and the references
given there) that when W is finite, the rank (or length) generating polynomial of
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Abs(W) satisfies

WT(q) :=
∑

w∈W

q�T(w) =
d∏

i=1

(1 + eiq), (1)

where d is the Coxeter rank of W and e1, e2, . . . , ed are its exponents. The rank
generating polynomial

XT(q) :=
∑

x∈X

q�T(x) (2)

of Abs(X) is well-defined when X is finite. The following question provided much
of the motivation for this paper.

Question 2.5 For which W -actions ρ does XT(q) divide WT(q)?

We now list examples, some of which will be studied in detail in later sections.

Example 2.6 (a) The order Abs(W) occurs by letting ρ be the left multiplication
action of W on itself and choosing x0 as the identity element e ∈ W in Definition 2.1,
or by choosing H as the trivial subgroup {e} of W in Definition 2.3.

(b) Let H be the subgroup of W generated by a given reflection t0 ∈ T. The set
X = W/H of left cosets of H in W is in bijection with the alternating subgroup W+
of W and hence Abs(X) gives rise to an absolute order on W+. This order will be
studied in Sect. 5.

(c) Let λ be an integer partition of m and let X consist of the set partitions of
{1,2, . . . ,m} whose block sizes are the parts of λ. The symmetric group Sm acts
transitively on X and thus defines an absolute order. This order will be studied in
Sect. 4.3 in the motivating special case in which m = 2n is even and all parts of λ

are equal to 2. The resulting absolute order is a partial order on the set of perfect
matchings of {1,2, . . . ,2n}. The stabilizer of this action is the natural embedding of
the hyperoctahedral group Bn in S2n.

(d) Let λ = (λ1, λ2, . . . , λr) be an integer partition of n and let X consist of the or-
dered set partitions (meaning, set partitions in which the order of the blocks matters)
of {1,2, . . . , n} whose block sizes are λ1, λ2, . . . , λr , in this order. The symmetric
group Sn acts transitively on X and the stabilizer is a Young subgroup Sλ1 ×· · ·×Sλr

of Sn. The resulting absolute order will be discussed in Sect. 6 in the special case in
which λ = (n − k,1, . . . ,1), where k ∈ {1,2, . . . , n − 1}. Then X can be identified
with the set of k-tuples of pairwise distinct elements of {1,2, . . . , n}.

(e) Consider the special case n = 4, λ = (2,2) and x0 = ({1,2}, {3,4}) of the
example of part (d). Equivalently, let W be the symmetric group S4 and let H be the
four element subgroup generated by the commuting reflections (1 2) and (3 4). Then
X = W/H has six elements. The Hasse diagram of Abs(X) is shown on Fig. 1.

Remark 2.7 It is possible that not all edges of the graph Γ = Γ (W,ρ), defined in
Remark 2.2(a), are edges of the Hasse diagram of Abs(X). For instance, consider
the action of S4 on the set X of perfect matchings of {1,2,3,4}, discussed in Exam-
ple 2.6(c). Then X has three elements and Γ is the complete graph on these three
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Fig. 1 An absolute order of S4

vertices. On the other hand, Abs(X) has a minimum element x0 which is covered by
the other two elements of X. Thus exactly one of the edges of Γ is not an edge of the
Hasse diagram of Abs(X).

3 Modular subgroups

This section investigates a natural condition on a subgroup of a Coxeter group,
called modularity, and shows that under this condition, the corresponding absolute
order is well-behaved in several ways. Enumerative (Proposition 3.4) and order-
theoretic (Theorem 3.9) characterizations, as well as examples, of modularity are
given. Throughout this section, W is a Coxeter group with identity element e, T is
the set of reflections, H is a subgroup of W and X = W/H is the set of left cosets of
H in W . The Coxeter rank of W will be denoted by rank(W).

The following properties of absolute length will be frequently used throughout this
paper.

Fact 3.1 For u,v,w ∈ W we have:

(a) �T(w) = 0 ⇔ w = e,
(b) �T(w) = 1 ⇔ w ∈ T,
(c) �T(w

−1) = �T(w),
(d) �T(uv) ≤ �T(u) + �T(v),
(e) �T(wuw−1) = �T(u),
(f) �T(w) = codim(Fix(w)), if W is finite,

where Fix(w) is the fixed space of w when W is realized as a group generated by
reflections in Euclidean space (see the relevant discussions after Remark 3.8).

The main definition of this section is as follows.

Definition 3.2 We say that H is a modular subgroup of W if every left coset of H in
W has a minimum in Abs(W).

We note that for x ∈ X and w◦ ∈ x, the element w◦ is the minimum of x in Abs(W)

if and only if we have �T(w◦h) = �T(w◦) + �T(h) for every h ∈ H . We also note that
if H is a modular subgroup of W , then so are its conjugate subgroups.
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Example 3.3 (a) Let H be a subgroup of W generated by a single reflection t ∈ T.
Then every left coset x ∈ X consists of two elements w and wt , which are comparable
in Abs(W). This implies that H is a modular subgroup of W .

(b) Let H be the symmetric group Sn−1, naturally embedded in Sn. It will be
shown in Example 3.19 (and can be verified directly) that H is a modular subgroup
of Sn. The corresponding absolute order consists of the minimum element H and the
left cosets (i n)H for i ∈ {1,2, . . . , n − 1}, each of which covers H .

(c) The subgroup H of S4 in part (e) of Example 2.6 is not modular. Indeed,
there is a single left coset wH ∈ X, that with w = (1 3)(2 4), which does not have
a minimum in Abs(S4). As an induced subposet of Abs(W), this coset has w and
(1 4)(2 3) as minimal elements, (1 4 2 3) and (1 3 2 4) as maximal elements and all
four possible Hasse edges among these elements.

(d) It is possible for a subgroup H of a finite Coxeter group W to have a left coset
which has a unique element of minimum absolute length but no minimum in Abs(W)

(clearly, such a subgroup H cannot be modular). Consider, for instance, the hyperoc-
tahedral group Bn for some n ≥ 4 and write ((a b)) for the reflection in W with cycle
form (a b)(−a − b). Let H be the subgroup of order 16 generated by the pairwise
commuting reflections t1 = ((1 2)), t2 = ((1 − 2)), t3 = ((3 4)) and t4 = ((3 − 4)) and
let t = ((1 3)) and h = t1t2t3t4 ∈ H . Then tH contains a unique reflection, namely t ,
but has no minimum element in Abs(W), since t is not comparable to th.

The following proposition explains the significance of modularity with respect to
Question 2.5. It should be compared to [7, Lemma 7.1.2; 14, Sect. 5.2; 20, Theo-
rem 8.1].

Proposition 3.4 Assume that W is finite. Then the subgroup H is modular if and
only if WT(q) = HT(q) · XT(q).

Proof Let wx ∈ x be an element of minimum absolute length in x ∈ X. Thus, we have
�T(wx) = �T(x) for every x ∈ X and hence �T(wxh) ≤ �T(wx) + �T(h) = �T(x) +
�T(h) for all x ∈ X and h ∈ H . As a result, we find that

WT(q) =
∑

w∈W

q�T(w) =
∑

x∈X

∑

h∈H

q�T(wxh)

	
∑

x∈X

∑

h∈H

q�T(x)+�T(h) = XT(q) · HT(q),

where 	 stands for the reverse lexicographic order on the set of polynomials with
nonnegative integer coefficients, i.e., for f (q), g(q) ∈ N[q] we write f (q) ≺ g(q) if
the highest term of g(q) − f (q) has positive coefficient. Equality holds if and only if
�T(wxh) = �T(wx) + �T(h), that is wx ≤T wxh, for all x ∈ X and h ∈ H . The latter
holds if and only if wx is the minimum element of x in Abs(W) for every coset x ∈ X

and the proof follows. �

A subgroup of W generated by reflections is called a reflection subgroup. The
absolute length function on such a subgroup K is defined with respect to the set of
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reflections T∩K . When W is finite, this function coincides with the restriction of �T :
W → N on K (this follows from part (f) of Fact 3.1). As a result, the corresponding
absolute order on K coincides with the induced order from Abs(W) on K .

Proposition 3.5 Assume that W is finite. If K is a modular reflection subgroup of W

and H is a modular subgroup of K , then H is a modular subgroup of W .

Proof Let x be any left coset of H in W . Clearly, x is contained in a left coset y

of K in W . Since K is modular in W , the coset y has a minimum element w◦ in
Abs(W). We leave it to the reader to check that the map f : K �→ w◦K = y, defined
by f (w) = w◦w for w ∈ K , is a poset isomorphism, where K and y are considered
as induced subposets of Abs(W). Thus x is isomorphic to its preimage f −1(x) in K

under f , which is a left coset of H in K . Since H is modular in K , this preimage has
a minimum element in Abs(K), therefore in Abs(W), and hence so does x. It follows
that H is modular in W . �

Remark 3.6 The absolute length function on K with respect to T∩ K coincides with
the restriction of �T : W → N on K even if W is infinite, provided K is a parabolic
reflection subgroup of W (meaning that K is conjugate to a subgroup generated by
simple reflections) [12, Corollary 1.4]. Thus, the transitivity property of modularity
in Proposition 3.5 holds in this situation as well.

Proposition 3.7 Assume H is modular in W and let σ(x) be the minimum element
of x ∈ X in Abs(W). Then the map σ : X �→ W induces a poset isomorphism from
Abs(X) onto an order ideal of Abs(W).

Proof We need to show that (i) x ≤T y ⇔ σ(x) ≤T σ(y) for all x, y ∈ X and that
(ii) σ(X) is an order ideal of Abs(W). For x, y ∈ X we have

x ≤T y

⇔ y = wx for some w ∈ W with �T(w) = �T(y) − �T(x)

⇔ wσ(x) ∈ σ(y)H for some w ∈ W with �T(w) = �T
(
σ(y)

) − �T
(
σ(x)

)

⇔ wσ(x) = σ(y) for some w ∈ W with �T(w) = �T
(
σ(y)

) − �T
(
σ(x)

)

⇔ σ(x) ≤T σ(y),

where the third equivalence is because σ(y) is the unique element of minimum
absolute length in its coset and �T(wσ(x)) ≤ �T(w) + �T (σ (x)) = �T(σ (y)). This
proves (i).

For (ii), given elements u,w ∈ W with u ≤T w and w ∈ σ(X), we need to show
that u ∈ σ(X). We set v = u−1w, so that uv = w and �T(w) = �T(u) + �T(v). Since
w is the minimum element of wH in Abs(W), we have �T(wh) = �T(w) + �T(h) for
every h ∈ H . Thus, for h ∈ H we have

�T(uvh) = �T(wh) = �T(w) + �T(h) = �T(u) + �T(v) + �T(h),
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�T(uvh) = �T
(
uh · h−1vh

) ≤ �T(uh) + �T
(
h−1vh

) = �T(uh) + �T(v).

We conclude that �T(uh) ≥ �T(u) + �T(h), hence that �T(uh) = �T(u) + �T(h), for
every h ∈ H . This means that u is the minimum element of uH in Abs(W), so that
u ∈ σ(X), and the proof follows. �

Remark 3.8 Part (i) of the proof of Proposition 3.7 shows that Abs(X) is isomorphic
to an induced subposet of Abs(W) (moreover, covering relations are preserved). For
that we only needed that each left coset of H in W has a unique element of minimum
absolute length.

Next we give a characterization of modularity (which explains our choice of ter-
minology) for the class of parabolic reflection subgroups of W .

First we need to recall some background and notation on finite Coxeter groups.
Such a group W acts faithfully on a finite-dimensional Euclidean space V by its
standard geometric representation [8, §V.4; 14, §V.3]. This representation realizes
W as a group of orthogonal transformations on V generated by reflections. Let Φ

be a corresponding root system. For α ∈ Φ , we denote by Hα the linear hyperplane
in V which is orthogonal to α and by tα the orthogonal reflection in Hα , so that
T= {tα : α ∈ Φ}. We denote by L A the intersection lattice [19, §2.1; 27, §1.2] of the
Coxeter arrangement A = {Hα : α ∈ Φ} and by LW the geometric lattice of all linear
subspaces of V (flats) spanned by subsets of Φ , partially ordered by inclusion. Thus
L A and LW are isomorphic as posets and the map which sends an element of L A to
its orthogonal complement in V is a poset isomorphism from L A onto LW .

Given a reflection subgroup H of W , we will denote by VH the linear span of all
roots α ∈ Φ for which tα ∈ H , so that VH ∈ LW . Then H is parabolic if and only
if tα ∈ H for every α ∈ Φ ∩ VH (see, for instance, [4]). Finally, we recall that an
element Z of a geometric lattice L is called modular [19, Definition 2.25; 25; 27,
Definition 4.12] if we have

rk(Y ) + rk(Z) = rk(Y ∧ Z) + rk(Y ∨ Z)

for every Y ∈ L, where rk : L �→ N denotes the rank function of L and Y ∧Z (respec-
tively, Y ∨Z) stands for the greatest lower bound (respectively, least upper bound) of
Y and Z in L.

Theorem 3.9 Assume that W is finite and that H is a parabolic reflection subgroup
of W . Then H is a modular subgroup of W if and only if VH is a modular element of
the geometric lattice LW .

We will give two proofs of Theorem 3.9. We first need to establish two crucial lem-
mas. We recall [1, §2.4] that to any w ∈ W are associated the spaces Fix(w) ∈ L A
and Mov(w) ∈ LW , where Fix(w) is the set of points in V which are fixed by the
action of w and Mov(w) is the orthogonal complement of Fix(w) in V . For in-
stance, for every α ∈ Φ the space Mov(tα) is the one-dimensional subspace of V

spanned by α. The maps Fix : W �→ L A and Mov : W �→ LW are surjective and we
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have dim Mov(w) = �T(w) for every w ∈ W . Moreover (see the proof of [1, Theo-
rem 2.4.7]), if w = tα1 tα2 · · · tαk

is a reduced T-word for w, then {α1, α2, . . . , αk} is
an R-basis of Mov(w). In particular, u ≤T v ⇒ Mov(u) ⊆ Mov(v) for u,v ∈ W .

Lemma 3.10 Assume that W is finite and that H is a reflection subgroup of W

and let w◦ ∈ W . Then w◦ is the minimum of w◦H in Abs(W) if and only if
Mov(w◦) ∩ VH = {0}.

Proof Let w◦ = tα1 tα2 · · · tαk
be a reduced T-word for w◦. Thus �T(w◦) = k and

{α1, α2, . . . , αk} is an R-basis of Mov(w◦).
Suppose first that Mov(w◦)∩VH = {0}. We need to show that w◦ ≤T w◦h for eve-

ry h ∈ H . Let h = tβ1 tβ2 · · · tβ�
be a reduced T-word for h ∈ H . Then �T(h) = � and

{β1, β2, . . . , β�} is an R-basis of Mov(h). Since h is a product of reflections in H , its
fixed space contains the orthogonal complement of VH and hence Mov(h) ⊆ VH . We
conclude that {β1, β2, . . . , β�} is a linearly independent subset of VH . Our hypothesis
implies that {α1, . . . , αk,β1, . . . , β�} is a linearly independent subset of V . We may
infer from Carter’s lemma [1, Lemma 2.4.5] that tα1 · · · tαk

tβ1 · · · tβ�
is a reduced T-

word for w◦h. Therefore �T(w◦h) = �T(w◦) + �T(h), which means that w◦ ≤T w◦h.
Conversely, suppose that w◦ is the minimum of w◦H in Abs(W). We choose

an R-basis {β1, β2, . . . , β�} of VH consisting of roots βi with tβi
∈ H and set

h = tβ1 tβ2 · · · tβ�
∈ H . By assumption, we have �T(w◦h) = �T(w◦) + �T(h). This

equation and Carter’s lemma imply that {α1, . . . , αk,β1, . . . , β�} is linearly indepen-
dent or, equivalently, that Mov(w◦) ∩ VH = {0}. �

Lemma 3.11 Assume that W is finite and that H is a parabolic reflection subgroup
of W and let w ∈ W . Then w is a minimal element of wH in Abs(W) if and only if
Mov(w) ∧ VH = {0} holds in LW .

Proof We recall that every element of LW is of the form Mov(u) for some u ∈ W and
that Mov(u) is nonzero if and only if it contains Mov(t) for some t ∈ T. Moreover,
we have Mov(t) ⊆ Mov(u) ⇔ t ≤T u [1, Theorem 2.4.7] for t ∈ T and since H is
parabolic, we have t ∈ H for every reflection t ∈ T for which Mov(t) ⊆ VH . From
these facts we conclude that Mov(w) ∧ VH �= {0} holds in LW if and only if there
exists t ∈ H ∩ T such that t ≤T w. The latter holds if and only if wt <T w for some
t ∈ H ∩ T or, equivalently, if and only if w is not a minimal element of wH in
Abs(W). �

First proof of Theorem 3.9 We will use the following characterization of modula-
rity in LW : An element Z ∈ LW is modular if and only if Y ∩ Z ∈ LW for every
Y ∈ LW . This statement follows directly from [19, Lemma 2.24], which implies that
an element Z ∈ L A is modular if and only if Y + Z ∈ L A for every Y ∈ L A.

We first assume that H is modular in W and consider any element Y ∈ LW . We
need to show that Y ∩ VH ∈ LW . Since Y ∈ LW , we have Y = Mov(w) for some
w ∈ W . By our assumption, the coset wH has a minimum element, say w◦, in
Abs(W). We claim that Y ∩ VH = Mov(w−1◦ w). Since Mov(w−1◦ w) ∈ LW , it suf-
fices to prove the claim. Indeed, since w◦ ≤T w, we also have w−1◦ w ≤T w and hence
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Mov(w−1◦ w) ⊆ Mov(w) = Y . Similarly, since w ∈ w◦H , we have w−1◦ w ∈ H and
hence Mov(w−1◦ w) ⊆ VH , so we may conclude that Mov(w−1◦ w) ⊆ Y ∩ VH . For the
reverse inclusion, we recall [1, p. 25] that

Y = Mov(w) = Mov(w◦) ⊕ Mov
(
w−1◦ w

)
.

By our choice of w◦ and Lemma 3.10 we have Mov(w◦) ∩ VH = {0}. As we already
know that Y ∩ VH ⊇ Mov(w−1◦ w), it follows that Y ∩ VH = Mov(w−1◦ w).

Suppose now that VH is a modular element of LW and consider any left coset
x of H in W . We need to show that x has a minimum in Abs(W). Let w◦ be any
minimal element of x in Abs(W). Since Mov(w◦)∩VH ∈ LW , by modularity of VH ,
the greatest lower bound Mov(w◦) ∧ VH of Mov(w◦) and VH in LW must be equal
to Mov(w◦) ∩ VH . This statement and Lemmas 3.10 and 3.11 imply that w◦ is the
minimum element of x in Abs(W) and the proof follows. �

Remark 3.12 The assumption in Theorem 3.9 that the reflection subgroup H is
parabolic was not used in the proof of the only if direction of the theorem. How-
ever, it is essential for the other direction. Indeed, let W be the dihedral group of
symmetries of a square Q and let H be the subgroup of order 4 generated by the
reflections on the lines through the center of Q which are parallel to the sides. The
unique left coset of H in W , other than H , has no minimum element in Abs(W)

and hence H is not modular in W . On the other hand, VH = V is trivially a modular
element of the lattice LW .

For the second proof of Theorem 3.9 we recall the following definition. Let L
be a geometric lattice of rank d , with rank function rk : L �→ N. The characteristic
polynomial of L is defined by the formula

χL(q) :=
∑

Y∈L
μL(0̂, Y )qd−rk(Y ), (3)

where μL stands for the Möbius function [26, §3.7] of L and 0̂ is the minimum
element of L. We now let L = LW and recall that rk(Y ) = dim(Y ) and (see, for
instance, [18, Lemma 4.7])

(−1)rk(Y )μL(0̂, Y ) = #
{
w ∈ W : Mov(w) = Y

}
(4)

for Y ∈ L and that dim Mov(w) = �T(w) for w ∈ W . As a result, the characteristic
polynomial of LW is related to the rank generating polynomial of Abs(W) by the
well known equality

WT(q) = (−q)dχL(−1/q). (5)

Second proof of Theorem 3.9 Let us write L = LW , as before, and set Z = VH ∈ L.
By the Modular Factorization Theorem for geometric lattices [25; 27, Theorem 4.13]
and its converse (see [17, Sect. 8]) we see that Z is a modular element of L if and
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only if

χL(q) = χ[0̂,Z](q)

( ∑

Y∈L:Y∧Z=0̂

μL(0̂, Y )qd−rk(Y )−rk(Z)

)
, (6)

where [0̂,Z] denotes a closed interval in L and 0̂ = {0} is the minimum element
of L. Replacing q by −1/q and taking (4) and (5) into account, we see that (6) can
be rewritten as

WT(q) = HT(q)

( ∑

Mov(w)∧Z=0̂

q�T(w)

)
. (7)

We recall that every finite partially ordered set has at least one minimal element.
Assume first that Z is a modular element of L. Setting q = 1 in (7) and using
Lemma 3.11 we conclude that every left coset of H in W has exactly one mini-
mal (and hence a minimum) element in Abs(W). By definition, this means that H is
a modular subgroup of W . Conversely, suppose that H is a modular subgroup of W .
Then, by Lemma 3.11, the sum in the right-hand side of (7) is equal to XT(q) and
hence (7) holds by Proposition 3.4. Thus Z is a modular element of L and the proof
follows. �

Proposition 3.13 Assume that W is finite. Then every modular reflection subgroup
of W is a parabolic reflection subgroup.

Proof Let H be a modular reflection subgroup of W and let K be the unique
parabolic reflection subgroup of W with VK = VH . Thus K is generated by all reflec-
tions t ∈ T with Mov(t) ⊆ VH and contains H as a reflection subgroup. We need to
show that H = K . Since H is modular in W , it is also modular in K . Thus, without
loss of generality we may assume that K = W , so that rank(H) = rank(W). We note
that HT(q) and WT(q) are both polynomials of degree rank(W). Therefore, Propo-
sition 3.4 implies that XT(q) is a constant. Since this can only happen if X is a
singleton, we conclude that H = W and the proof follows. �

Question 3.14 Does there exist a modular subgroup of a Coxeter group which is not
a reflection subgroup?

We recall that a poset P is said to be graded of rank d if every maximal chain
in P has exactly d + 1 elements. The following proposition generalizes the fact that
Abs(W) is graded with rank equal to rank(W).

Proposition 3.15 The order Abs(X) is graded of rank rank(W)− rank(H) for every
finite Coxeter group W and every modular reflection subgroup H of W .

Proof Since Abs(X) has a minimum element and is locally graded with rank function
given by absolute length (Proposition 3.7), it suffices to show that for every element
x ∈ X there exists y ∈ X of absolute length rank(W) − rank(H) such that x ≤T y.
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Consider any x ∈ X and let u◦ be the minimum element of x in Abs(W). Thus
we have Mov(u◦) ∩ VH = {0} by Lemma 3.10 and �T(x) = �T(u◦) = dim Mov(u◦).
Let u◦ = tαk

· · · tα2 tα1 be a reduced T-word for u◦, so that �T(x) = k. We extend
{α1, α2, . . . , αk} to a maximal linearly independent set of roots {α1, α2, . . . , αr}
whose linear span intersects VH trivially and set w◦ = tαr · · · tα2 tα1 and y = w◦H ∈ X.
Clearly, we have r = dim(V ) − dim(VH ) = rank(W) − rank(H). Since Mov(w◦)
is the linear span of α1, α2, . . . , αr , we have Mov(w◦) ∩ VH = {0} by construc-
tion. Lemma 3.10 implies that w◦ is the minimum element of y in Abs(W) and
hence that �T(y) = �T(w◦) = r . Finally, setting v = w◦u−1◦ = tαr · · · tαk+1 we have
w◦ = vu◦ and hence y = vx. By Carter’s lemma [1, Lemma 2.4.5] we also have
�T(v) = r − k = �T(y) − �T(x). Definition 2.1 implies that x ≤T y and the proof
follows. �

Question 3.16 Does there exist a subgroup H of a Coxeter group W for which
Abs(X) is not graded?

A reflection subgroup H of W is said to be of almost maximal rank if rank(H) =
rank(W) − 1. Modular parabolic reflection subgroups of this kind can be character-
ized as follows.

Proposition 3.17 Assume that W is finite and that H is a parabolic reflection sub-
group of W , other than W . The following are equivalent:

(i) H is a modular subgroup of W of almost maximal rank.
(ii) Every left coset of H , other than H , contains a reflection.

(iii) Every left coset of H , other than H , contains a unique reflection.

Proof Suppose that (i) holds. We then have WT(q) = HT(q)XT(q) by Proposi-
tion 3.4. Since the degrees of WT(q) and HT(q) are equal to the Coxeter ranks of W

and H , respectively, it follows that the degree of XT(q) is equal to one. This means
that every left coset x ∈ X of H , other than H , contains an element of absolute length
one, so that (ii) is satisfied. We have shown that (i) implies (ii).

Suppose that (ii) holds and let x ∈ X be a left coset of H in W , other than H .
Choose a reflection t ∈ x. Since H is parabolic and does not contain t , we have
Mov(t) ∩ VH = {0}. Lemma 3.10 implies that t is the minimum element of x in
Abs(W). In particular, x contains a unique reflection. We conclude that (ii) implies
both (i) and (iii). The implication (iii) ⇒ (ii) is trivial. �

Question 3.18 Does there exist a non-parabolic (necessarily non-modular) reflec-
tion subgroup H of a finite Coxeter group such that every left coset, other than H ,
contains a unique reflection?

Example 3.19 For k ≤ n and under the natural embedding, the symmetric and hyper-
octahedral groups Sk and Bk are modular subgroups of Sn and Bn, respectively. This
follows from Theorem 3.9 and known facts on the modular elements of the geometric
lattice LW in these cases; see, for instance, [3, Theorem 2.2]. Alternatively, one can
check directly that for 1 ≤ i ≤ n − 1, the transpositions (i n) are representatives of
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the left cosets of Sn−1 in Sn, other than Sn−1. Proposition 3.17 implies that Sn−1 is
modular in Sn. The transitivity property of Proposition 3.5 implies that Sk is modular
in Sn for each k ≤ n. A similar argument works for the hyperoctahedral groups.

We end this section with two more open questions.

Question 3.20 Do infinite modular subgroups exist?

Question 3.21 For which subgroups H of W does Abs(X) have a maximum ele-
ment?

4 Quasi-modular subgroups

This section introduces a condition on a subgroup of a Coxeter group, termed quasi-
modularity, which is broader than modularity and guarantees an affirmative answer
to Question 2.5. Examples of quasi-modular subgroups which are not modular are
discussed. Throughout this section, the set of reflections of a Coxeter group H will
be denoted by T(H).

4.1 Quasi-modularity

The main definition of this section is as follows.

Definition 4.1 A subgroup H of a finite Coxeter group W is quasi-modular if H is
isomorphic to a Coxeter group and

WT(q) = HT(H)(q) · XT(q), (8)

where T= T(W) and T(H) is the subset of H which corresponds to the set of reflec-
tions of this Coxeter group.

Proposition 3.4 implies that for reflection subgroups of W , quasi-modularity is
equivalent to modularity. However, this is not the case for general subgroups as T(H)

may not be equal to H ∩ T(W).

Example 4.2 We list two families of examples of quasi-modular subgroups which are
not modular.

(a) Let W be the Weyl group of type Dn, considered as a group of signed permu-
tations of {1,2, . . . , n} with an even number of sign changes. Let H be the subgroup
consisting of all w ∈ W satisfying w(n) ∈ {n,−n}. Then H is isomorphic to the hype-
roctahedral group Bn−1 and the identity element e ∈ W together with the reflections
((i n)) for 1 ≤ i ≤ n− 1 (where the notation is as in Example 3.3(d)) form a complete
list of coset representatives of H in W . As a result, we have XT(q) = 1 + (n − 1)q ,
where X = W/H and T = T(W). Using this fact and (1), it can be easily verified
that (8) holds in this situation and hence that H is a quasi-modular subgroup of W .



88 J Algebr Comb (2014) 39:75–98

On the other hand, it is also easy to verify that HT(q) has degree n, as does WT(q).
Thus H is not a modular subgroup of W by Proposition 3.4.

(b) Consider the symmetric group S2n as the group of all permutations of the set
Ωn := {1,−1,2,−2, . . . , n,−n} and the natural embedding of the hyperoctahedral
group Bn in S2n, mapping the Coxeter generators of Bn to the transposition (n − n)

and the products (i i + 1)(−i − i − 1) for 1 ≤ i ≤ n − 1. Clearly, this embedded
copy of Bn is not a reflection subgroup of S2n. Several combinatorial interpretations
to the poset Abs(S2n/Bn) will be given in Sect. 4.3, where the following statement
will also be proved.

Theorem 4.3 The group Bn is a non-modular, quasi-modular subgroup of S2n for
every n ≥ 2.

4.2 Balanced complex reflections

Before proving Theorem 4.3 we introduce an absolute order on balanced complex
reflections. Recall that the wreath product of the cyclic group Zr by the symmetric
group Sn is defined as

G(r,n) = Zr � Sn := {[
(c1, . . . , cn);π

]: ci ∈ Zr , π ∈ Sn

}

with group operation
[
(c1, . . . , cn);π

] · [(c′
1, . . . , c

′
n

);π ′] := [(
c1 + c′

π−1(1)
, . . . , cn + c′

π−1(n)

);ππ ′].

We think of the elements of Zr as colors and denote by ψ : G(r,n) → Sn the
canonical map, defined by ψ([c̄;π]) := π . Via this map, the elements of G(r,n)

inherit a cycle structure from those of Sn.

Definition 4.4 A cycle of an element of G(r,n) is balanced if the sum of the colors
of its elements is zero modulo r . An element w ∈ G(r,n) is balanced if all cycles of
w are balanced. We denote by C(r,n) the set of balanced elements of G(r,n).

For example, there are three balanced elements in G(2,2) ∼= B2, namely the
identity and the reflections [(0,0); (1 2)] = (1 2)(−1 − 2) and [(1,1); (1 2)] =
(1 − 2)(−1 2). Note that C(2,2) is not a subgroup of G(2,2).

Remark 4.5 To motivate the notion of balanced, we note that balanced cycles gen-
eralize the notion of paired cycles, introduced by Brady and Watt [9] in the study of
the absolute order of types B and D and further studied in [16]. Moreover, conjugacy
classes in G(r,n) are parametrized by cycle type and sum of colors (modulo r) in
each cycle (so that C(r,n) is the union of conjugacy classes in G(r,n)).

The wreath product G(r,n) acts on the vector space V = C
n by permuting coor-

dinates and multiplying them by suitable r th roots of unity, in a standard way. The
set of pseudoreflections T(r, n) ⊆ G(r,n) consists of all elements fixing a hyperplane
(codimension one subspace). The absolute length function �T(r,n) : G(r,n) → N is
defined with respect to the generating set T(r, n).
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Remark 4.6 (a) We have ψ(T(r, n)) = T(Sn) ∪ {e}, where e ∈ Sn stands for the iden-
tity element.

(b) The set T(r, n) ∩ C(r,n) of balanced pseudoreflections in G(r,n) consists of
all elements of the form τ = [c̄; t], where t = (a b) ∈ T(Sn) and c̄ assigns opposite
colors to a and b and the zero color to all other elements of {1,2, . . . , n}. As a result,
we have ψ(T(r, n) ∩ C(r,n)) = T(Sn).

(c) The canonical map ψ has the following crucial property: given w ∈ C(r,n)

and t ∈ T(Sn) such that tψ(w) is covered by ψ(w) in Abs(Sn), there is a unique
(necessarily balanced) pseudoreflection τ ∈ ψ−1(t) such that τw ∈ C(r,n).

Definition 4.7 The absolute order on C(r,n), denoted Abs(C(r, n)), is the reflexive
and transitive closure of the relation consisting of the pairs (u, v) of elements of
C(r,n) for which v = τu for some τ ∈ T(r, n) ∩ C(r,n) and �T(r,n)(u) < �T(r,n)(v).

The partial order Abs(C(r, n)) is the subposet induced on C(r,n) from Shi’s ab-
solute order on G(r,n); see [22, 23]. We will focus on this subposet since it will be
useful (in the special case r = 2) in our proof of Theorem 4.3.

Proposition 4.8

(a) The canonical map ψ : G(r,n) → Sn induces a rank preserving poset epimor-
phism from the order Abs(C(r, n)) onto Abs(Sn).

(b) Every maximal interval in Abs(C(r, n)) is mapped isomorphically by ψ onto a
maximal interval in Abs(Sn).

Proof (a) The map ψ is a group epimorphism, by its definition, and ψ(T(r, n)) =
T(Sn) ∪ {e} by Remark 4.6(a). Hence we have �T(r,n)(w) ≥ �T(ψ(w)) for every w ∈
G(r,n). For w ∈ C(r,n) the reverse inequality �T(r,n)(w) ≤ �T(ψ(w)) follows from
Remark 4.6(c). Thus we have �T(r,n)(w) = �T(ψ(w)) for every w ∈ C(r,n). Further-
more, this fact and parts (b) and (c) of Remark 4.6 imply that for u,v ∈ C(r,n), we
have v = τu for some τ ∈ T(r, n) ∩ C(r,n) and �T(r,n)(u) < �T(r,n)(v) if and only if
ψ(v) = tψ(u) for some t ∈ T(Sn) and �T(ψ(u)) < �T(ψ(v)). In other words, u is
covered by v in Abs(C(r, n)) if and only if ψ(u) is covered by ψ(w) in Abs(Sn).

(b) We first check that ψ maps maximal elements of Abs(C(r, n)) to maximal el-
ements of Abs(Sn). Indeed, since ψ is rank preserving, the rank of an element w in
Abs(C(r, n)) is equal to n − k, where k is the number of cycles. Thus, if ψ(w) is not
maximal in Abs(Sn), then ψ(w) has at least two cycles and one can check that there
exists τ ∈ T(r, n) ∩ C(r,n) such that τw has fewer cycles than w, so w is not maxi-
mal either. We next observe that by Remark 4.6(c), for every w ∈ C(r,n) the map ψ

induces a bijection between elements covered by w in Abs(C(r, n)) and those cov-
ered by ψ(w) in Abs(Sn). By induction on the rank of the top element, it follows that
intervals in Abs(C(r, n)) are mapped isomorphically by ψ to intervals in Abs(Sn).
In particular, every maximal interval in Abs(C(r, n)) is mapped isomorphically by ψ

onto a maximal interval in Abs(Sn). �
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Corollary 4.9

∑

w∈C(r,n)

q�T(r,n)(w) =
n−1∏

i=1

(1 + riq).

Proof Let ψ0 : C(r,n) → Sn be the restriction of ψ to C(r,n). By Proposition 4.8
we have �T(r,n)(w) = �T(π) = n − k for every w ∈ C(r,n), where k is the number of
cycles of π := ψ0(w). Since all elements in the preimage ψ−1

0 (π) are balanced, we
have

∣∣ψ−1
0 (π)

∣∣ = rn−k = r�T (π)

and thus
∑

w∈C(r,n)

q�T(r,n)(w) =
∑

π∈Sn

∣∣ψ−1
0 (π)

∣∣q�T(π) =
∑

π∈Sn

r�T (π)q�T(π)

=
∑

π∈Sn

(rq)�T(π) =
n−1∏

i=1

(1 + riq).
�

4.3 Perfect matchings

A partition of a set Ω into two-element subsets is called a perfect matching.
Throughout this section we will denote by Mn the set of perfect matchings of
Ωn = {1,−1,2,−2, . . . , n,−n}. Consider the simple graph Δn, introduced in [13],
on the set of nodes Mn in which two perfect matchings are adjacent if their symmet-
ric difference is a cycle of length 4. The diameter and the enumeration of geodesics
of this graph were studied in [5]; the induced subgraph on noncrossing perfect match-
ings was studied earlier in [13].

Definition 4.10 Fix an arbitrary element x0 ∈ Mn. The absolute order on Mn, de-
noted Abs(Mn), is the poset (Mn,	) defined by letting x 	 y if x lies in a geodesic
path in Δn with endpoints x0 and y, for x, y ∈ Mn.

The symmetric group S2n of permutations of Ωn acts naturally on Mn (this action
may be identified with the conjugation action of S2n on the set of fixed point free in-
volutions on a 2n-element set). The stabilizer of x0 = {{−1,1}, {−2,2}, . . . , {−n,n}}
is the natural embedding of the hyperoctahedral group Bn in S2n and hence we get
the following statement.

Observation 4.11 The poset Abs(Mn) is isomorphic to Abs(S2n/Bn).

In particular, the isomorphism type of Abs(Mn) is independent of the choice
of x0 ∈ Mn. Without loss of generality, for the remainder of this section we will
assume that x0 = {{−1,1}, {−2,2}, . . . , {−n,n}}.

Proposition 4.12 The poset Abs(Mn) is isomorphic to Abs(C(2, n)).
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Proof The proof generalizes a construction from [13].
Given a perfect matching x ∈ Mn, consider the union x ∪x0, consisting of the arcs

of x and {−i, i} for 1 ≤ i ≤ n. This is a disjoint union of nontrivial cycles and isolated
arcs. We orient the nontrivial cycles in the following way: Given any such cycle C,
we let k be the minimum positive integer such that {−k, k} is an arc of C and choose
the cyclic orientation of C in which this edge is directed from −k to k. We associate
to x a signed permutation f (x) = π ∈ Bn as follows. For i ∈ Ωn, we set π(i) = i if
{−i, i} ∈ x. Otherwise we set π(i) = −j if either (i, j) or (−i,−j) is a directed edge
in the above orientation, and π(i) = j if either (−i, j) or (i,−j) is a directed edge
in the orientation. We will show that f : Mn → C(2, n) is a well-defined map which
is an isomorphism of the corresponding absolute orders.

We first observe that the map f : Mn → Bn is well-defined. Indeed, this holds
since {−i, i} ∈ x ∪ x0 for 1 ≤ i ≤ n and hence at most one of i and −i can be the
initial vertex of a directed arc in the above orientation. Moreover, since the number
of arcs of any nontrivial cycle of x ∪ x0 is even, the number of arcs with vertices of
same sign in such a cycle must also be even. This implies that every nontrivial cycle
of the signed permutation f (x) is balanced and hence we have a well-defined map
f : Mn → C(2, n).

To show that f : Mn → C(2, n) is a bijection, it suffices to describe the inverse
map g : C(2, n) → Mn. Given a balanced signed permutation π ∈ C(2, n), we con-
struct g(π) ∈ Mn as follows. First, we include in g(π) the arc {−i, i} for each i ∈ Ωn

with π(i) = i. Second, let (a1 a2 · · · ak) be any nontrivial cycle of π and assume that
a1 is the minimum of the absolute values of the element of this cycle. We then in-
clude in g(π) the arcs {a1,−a2}, {a2,−a3}, . . . , {ak,−a1}. We leave it to the reader
to verify that g is the inverse map of f .

Finally we prove that f : Mn → C(2, n) induces an isomorphism of absolute or-
ders. We consider the simple graph Γn on the node set C(2, n) in which two permuta-
tions π,σ ∈ C(2, n) are adjacent if π−1σ ∈ T(2, n). Since f maps x0 to the identity
element of C(2, n), it suffices to show that f induces a graph isomorphism from Δn

to Γn. Indeed, two matchings x1, x2 ∈ Mn are adjacent in Δn if and only if there exist
four distinct elements i, j, k, l ∈ Ωn such that x1 \ {{i, j}, {k, l}} = x2 \ {{i, k}, {j, l}}.
Without loss of generality, we may assume that (i, j) and (k, l) are directed edges
in the orientation of x1 ∪ x0. By considering the eight cases determined by the signs
of i, j, k, l, one can verify that this happens if and only if there exists a reflection
τ ∈ {(j, k), (−j,−k)} ⊆ T(2, n) such that f (x2) = τf (x1) and the proof follows. �

Corollary 4.13 There is a poset epimorphism from Abs(Mn) to Abs(Sn) which
maps every maximal interval in Abs(Mn) isomorphically onto a noncrossing par-
tition lattice of type An−1.

Proof This follows from Propositions 4.12 and 4.8 and the fact that every maximal
interval in Abs(Sn) is isomorphic to the lattice of noncrossing partitions of the set
{1,2, . . . , n}. �

The previous corollary implies [13, Corollaries 1.6 and 2.2] and [5, Theorem 3.20].



92 J Algebr Comb (2014) 39:75–98

Corollary 4.14 For every n ≥ 1 we have

(Mn)T(q) =
n−1∏

i=0

(1 + 2iq).

Proof This follows from Proposition 4.12 and Corollary 4.9. �

Proof of Theorem 4.3 That Bn is a quasi-modular subgroup of S2n follows from
Observation 4.11, Corollary 4.14 and the known formulas for the rank generating
functions of Abs(S2n) and Abs(Bn).

Suppose that Bn were a modular subgroup of S2n for some n ≥ 2. Then, accord-
ing to Proposition 3.4 and Observation 4.11 we should have (S2n)T(q) = (Bn)T(q) ·
(Mn)T(q), where T := T(S2n), and hence (Bn)T(q) should have degree n. This is not
correct, since there exist elements of the natural embedding of Bn in S2n which are
cycles in S2n of absolute length 2n − 1. �

Remark 4.15 By Corollary 4.14, the S2n conjugation action on fixed point free in-
volutions of Ωn has a quasi-modular stabilizer. For 1 ≤ k < n such that n − k is
even, however, the Sn conjugation action on involutions of {1,2, . . . , n} with k fixed
points has a nicely factorized rank generating function even though its stabilizer is
not quasi-modular.

Question 4.16 For r ≥ 3, is there a Coxeter group action whose associated absolute
order is isomorphic to Abs(C(r, n))?

The cardinality of C(r,n) is equal to the product
∏n−1

i=1 (1 + ri) (by Corollary 4.9)
and hence to the number of (r + 1)-ary increasing trees of order n; see, for instance,
[24].

Question 4.17 For r ≥ 1, is there a (natural) Coxeter group action on these trees
whose associated absolute order is isomorphic to Abs(C(r, n))?

5 An application to alternating subgroups

Throughout this section (W,S) will be a Coxeter system with set of reflections T=
{wsw−1 : w ∈ W,s ∈ S}. The alternating subgroup W+ is defined as the kernel of
the sign character on W , which maps every element of S to −1. We will show that a
natural absolute order on W+ can be defined in a way which is compatible with the
general construction of Sect. 2.

Choose any element s0 ∈ S. Then S0 := {s0s : s ∈ S} is a generating set for W+
which carries a simple presentation [8, §IV.1, Ex. 9] and a Coxeter-like structure [10].
Let us write

T0 := {s0t : t ∈ T}.
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Given a pair (G,A) of a group G and generating set A, we say that an element g ∈ G

is an odd palindrome if there is an (A ∪ A−1)∗-word (a1, . . . , a�) for g such that � is
odd and ai = a�−i+1 for every index i. For example, the set of odd palindromes for
(W,S) is equal to T.

Claim 5.1 The set of odd palindromes for (W+, S0) is equal to T0.

Proof Let w be an odd palindrome in (W+, S0). Then s0w is an odd palindrome in
(W,S) and hence a reflection in T. Conversely, since s0 is an involution, for every
reflection t = si1si2si3si4si5 · · · si4si3si2si1 ∈ T,

s0t = (s0si1)(si2s0)(s0si3)(si4s0)(s0si5) · · · (si4s0)(s0si3)(si2s0)(s0si1)

is an odd palindrome in (W+, S0). �

Odd palindromes in alternating subgroups play a role which is analogous to that
played by reflections in Coxeter groups [10, §2.5, §3.5]. This leads to the following
definition of absolute order to alternating subgroups.

Definition 5.2 Given a simple reflection s0 ∈ S, the (left) absolute order ≤T0 on the
alternating subgroup W+ of W is defined as the reflexive and transitive closure of the
relation consisting of the pairs (u, v) of elements of W+ for which �T0(u) < �T0(v)

and v = τu for some τ ∈ T0.

The absolute order on W+, which we will denote by Abs0(W
+), depends on the

choice of s0: non-conjugate simple reflections determine non-isomorphic absolute
orders on W+. For example, the absolute order on B+

3 , which is determined by the
choice of the adjacent transposition s0 = (1 2)(−1 − 2), is not isomorphic to the
one determined by the choice s0 = (1 − 1). However, the rank generating function is
independent of the choice of s0. This will be proved by considering the action of W

on cosets of 〈s0〉, the subgroup generated by s0.
Here are some basic lemmas on the absolute lengths �T and �T0 which will be used

in the proof. For w ∈ W we set ws0 := s0ws0.

Lemma 5.3 For every w ∈ W+ we have

�T0(w) =
{

�T(w), if �T0(w) is even

�T(w) − 1, if �T0(w) is odd.

Proof Let w = t1 · · · t� be a T-word for w of length � := �T(w). Since w ∈ W+, the
number � is even and we may write

w = t1s0s0t2s0s0t3 · · · t�−1s0s0t� = s0t
s0
1 s0t2 · · · s0t

s0
�−1s0t�.

This proves that

�T0(w) ≤ � = �T(w). (9)
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Suppose that �T0(w) = 2m is even. Then we may write

w = s0t1 · · · s0t2m =
m∏

i=1

t
s0
2i−1t2i ,

with ti ∈ T for each index i. Thus �T(w) ≤ 2m = �T0(w) and the proof follows in this
case. Finally, if �T0(w) = 2m + 1 is odd, then we may write

w = s0t1 · · · s0t2m+1 = s0t1

m∏

i=1

t
s0
2i t2i+1,

with ti ∈ T for each i. This shows that

�T(w) ≤ 2m + 2 = �T0(w) + 1. (10)

Combining (9) with (10) yields �T0(w) ≤ �T(w) ≤ �T0(w) + 1. Since �T(w) and
�T0(w) have distinct parities, we conclude that �T(w) = �T0(w) + 1 and the proof
follows in this case too. �

Lemma 5.4 For every w ∈ W+, the following conditions are equivalent:

(i) �T0(w) is even.
(ii) �T(w) < �T(s0w).

(iii) �T(w) < �T(ws0).

Proof Since the absolute length is invariant under conjugation (Fact 3.1(e)), we have
�T(s0w) = �T(ws0) and hence it suffices to prove that (i) ⇔ (ii).

Suppose first that �T(w) > �T(s0w). We note that �T(s0w) is an odd number, since
w ∈ W+, say �T(s0w) = 2m + 1, and let t1 · · · t2m+1 be a reduced T-word for s0w.
Then s0t1 · · · t2m+1 is a reduced T-word for w and �T(w) = 2m + 2. Since

w = s0t1

m∏

i=1

(
s0t

s0
2i

)
(s0t2i+1),

we have �T0(w) ≤ 2m+1. On the other hand, we have �T0(w) ≥ �T(w)−1 = 2m+1
by Lemma 5.3. Thus �T0(w) = 2m + 1 and, in particular, �T0(w) is odd. This proves
the implication (i) ⇒ (ii).

Conversely, suppose that �T0(w) is odd. Then the proof of Lemma 5.3 shows that
there is a reduced T-word for w which starts with s0. This implies that �T(w) >

�T(s0w) and hence (ii) ⇒ (i). �

Let us denote by 〈s0〉 the two-element subgroup of W generated by s0. We recall
that the absolute length function on W/〈s0〉 is determined by Definition 2.3.

Corollary 5.5 We have �T(w〈s0〉) = �T0(w) for every w ∈ W+.
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Proof By definition of �T(w〈s0〉) and Lemma 5.4 we have

�T
(
w〈s0〉

) = min
{
�T(w), �T(ws0)

} =
{

�T(w), if �T0(w) is even

�T(w) − 1, if �T0(w) is odd

and the result follows from Lemma 5.3. �

Proposition 5.6 The orders Abs0(W
+) and Abs(W/〈s0〉) are isomorphic.

Proof We consider the map ϕ : W+ −→ W/〈s0〉 defined by

ϕ(w) :=
{

w〈s0〉, if �T0(w) is even

ws0〈s0〉, if �T0(w) is odd

for w ∈ W+. We will show that ϕ is the required isomorphism of absolute orders.
We first note that conjugation by s0 is an automorphism on both W and W+ which

preserves the lengths �T and �T0 , respectively. Corollary 5.5 then implies that

�T
(
ϕ(w)

) = �T0(w) (11)

for every w ∈ W+. Since the map π : W+ −→ W/〈s0〉 defined by π(w) = w〈s0〉 is a
bijection, we may conclude that ϕ is a bijection as well. Thus, it remains to show that
the following conditions are equivalent for u,v ∈ W+:

(a) u is covered by v in Abs0(W
+),

(b) ϕ(u) is covered by ϕ(v) in Abs(W/〈s0〉).
Using the definitions of the relevant absolute orders, we find that

(a) ⇔ v = τu for some τ ∈ T0 and �T0(u) < �T0(v)

⇔ v = s0tu for some t ∈ T and �T0(u) < �T0(v)

⇔ vs0〈s0〉 = tu〈s0〉 for some t ∈ T and �T0(u) < �T0(v)

⇔ v〈s0〉 = t s0us0〈s0〉 for some t ∈ T and �T0(u) < �T0(v)

and

(b) ⇔ ϕ(v) = tϕ(u) for some t ∈ T and �T(ϕ(u)) < �T(ϕ(v)).

The claim that (a) ⇔ (b) follows from the previous equivalences, (11) and the defini-
tion of the map ϕ. �

The following statement extends [21, Theorem 7.2] from the case of symmetric
groups to that of all finite Coxeter groups.

Corollary 5.7 For every finite Coxeter group W we have

∑

w∈W+
q�T0 (w) = WT(q)

1 + q
=

d∏

i=2

(1 + eiq), (12)

where d is the Coxeter rank and 1 = e1, e2, . . . , ed are the exponents of W .
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Proof Proposition 5.6 implies that

∑

w∈W+
q�T0 (w) = (

W/〈s0〉
)
T(q).

Since 〈s0〉 is a modular subgroup of W (see Example 3.3(a)), we have

(
W/〈s0〉

)
T(q) = WT(q)

〈s0〉T(q)
= WT(q)

1 + q

by Proposition 3.4 and the first equality in (12) follows. The second equality is a
restatement of (1). �

Another description of Abs0(W
+) can be given as follows. Let us write R0 :=

{w ∈ W : �T(ws0) > �T(w)}. The proof of Proposition 3.7 shows that R0 is an order
ideal of Abs(W).

Corollary 5.8 The absolute order Abs0(W
+) is isomorphic to (R0,≤T).

Proof The proof of Proposition 3.7 shows that Abs(W/〈s0〉) is isomorphic to
(R0,≤T). The result follows from this statement and Proposition 5.6. �

6 Remarks on ordered tuples

This section briefly discusses the action of the symmetric group Sn on the set Xn,k

of ordered k-tuples of pairwise distinct elements of {1,2, . . . , n}, as well as a genera-
lization. The stabilizer Sn−k of this action is a modular reflection subgroup of Sn (see
Example 3.19). Therefore, by Proposition 3.4 we have

(Xn,k)T(q) = (Sn)T(q)

(Sn−k)T(q)
=

n−1∏

i=n−k

(1 + iq).

By a classical result of Hurwitz [15] (see also [11, 28]), there is a one-to-one
correspondence between the maximal chains of any maximal interval of Abs(Sn)

and labeled trees of order n. The following generalization of this statement on the
enumeration of maximal chains of Xn,k is possible. We will denote by dΓ (v) the
valency (i.e., number of neighbors) of a node v of a labeled tree Γ of order n.

Proposition 6.1 For all integers 1 ≤ k < n, the number of maximal chains of
Abs(Xn,k) is equal to

k!
∑

Γ

(n − k)dΓ (v0),

where the sum runs over all trees Γ on the node set {v0, v1, . . . , vk}.
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The proof of this statement will be given elsewhere. The special case k = n − 1 is
equivalent to Hurwitz’s theorem.

Combining Propositions 5.6 and 6.1, we get the following statement.

Corollary 6.2 The number of maximal chains of the absolute order on the alternating
group of Sn is equal to

(n − 2)!
∑

Γ

2dΓ (v0),

where the sum runs over all trees Γ on the node set {v0, v1, . . . , vn−2}.

The previous setting has a natural extension to wreath product actions on ordered
colored tuples. Recall from [22, 23] the absolute order on the complex reflection
group G(r,n) = Zr � Sn; absolute length and order are naturally defined with respect
to the set T, consisting of all elements (pseudoreflections) of finite order fixing a hy-
perplane. Let Xr,n,k := {(a1, . . . , ak): ∀i ai ∈ Zr × Zn} be the set of ordered k-tuples
of letters in an alphabet of size n which are r-colored. Then G(r,n) acts naturally on
Xr,n,k , with stabilizer G(r,n − k). By extending Propositions 3.5 and 3.17, one can
prove that the subgroup G(r,n − k) is a modular subgroup of G(r,n) for 1 ≤ k ≤ n.
Hence, by (the extension of) Proposition 3.4 we have

Xr,n,kT(q) = G(r,n)T(q)

G(r,n − k)T(q)
=

n−1∏

i=n−k

(1 + riq).
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