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Abstract We describe an explicit crystal morphism between Nakajima monomials
and monomials which give a realization of crystal bases for finite dimensional irre-
ducible modules over the quantized enveloping algebra for Lie algebras of type A and
C. This morphism provides a connection between arbitrary Nakajima monomials and
Kashiwara–Nakashima tableaux. This yields a translation of Nakajima monomials to
the Littelmann path model. Furthermore, as an application of our results we define
an insertion scheme for Nakajima monomials compatible to the insertion scheme for
tableaux.

Keywords Crystals · Nakajima monomials · Littelmann paths · Insertion scheme ·
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1 Introduction

Crystal basis theory for integrable modules over quantum groups as introduced by
Kashiwara [4] leads to a combinatorial interpretation of those modules in terms of
crystals themselves, and furthermore their various models. Let us list some of those
models, which will play a role in the present article:

(1) semistandard Young tableaux and reversed Young tableaux, satisfying certain
conditions, for classical Lie algebras by Kashiwara and Nakashima [6], and Kim
and Shin [7] (see also Kang et al. [2] and [3]), respectively,

(2) Young walls for affine Lie algebras by Kang et al. [1],
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(3) monomials for Kac–Moody algebras discovered by Nakajima [11], and general-
ized by Kashiwara [5],

(4) the path model for symmetrizable Kac–Moody algebras introduced by Littel-
mann [10].

Let us be more precise about the monomial and the path model. Defining a t-analog
of q-characters Nakajima [11] introduced a set of monomials M in certain variables
Yi(k), and discovered a crystal structure on certain subsets of M. Kashiwara [5] gen-
eralized this, in that he defined a crystal structure on M, and proved that the connected
component containing a highest weight monomial of integral weight λ is isomorphic
to the crystal basis B(λ) of irreducible highest weight modules.

Kang et al. [2, 3] considered specific highest weight monomials Mλ ∈ M of weight
λ and gave an explicit description of their connected components M(λ). Further-
more, they exhibited a connection between those and reversed Young tableaux.

As a generalization of Young tableaux Littelmann [9] considered paths (modulo
reparametrization) on the real form of the weight lattice and defined the so-called root
operators acting on those paths. With these operators the set of paths Π becomes a
crystal, and every Young tableau can easily be considered as such a path [10].

In this article we describe a translation between the monomial and the path model.
That is, we map an arbitrary monomial, not necessarily contained in some M(λ), to a
path in Π such that our mapping yields a crystal morphism. For example, if the under-
lying Lie algebra is of type A1 a possible definition of such a map is quite obvious:
each monomial M ∈ M is of the form M = Y1(i1)

y(i1) · · ·Y1(ik)
y(ik) where k ∈ N,

i1, . . . , ik ∈ Z and i1 < · · · < ik , and y(ij ) ∈ Z. To a fixed monomial M we associate
the path πM = πy(ik)Λ1 ∗ · · · ∗ πy(i1)Λ1, where πλ(t) = tλ is the path connecting the
origin to λ.

Example Consider the monomial M = Y1(2)−1Y1(1)2:

Note that, even for type A2, to find such a mapping is by far less obvious.

Example For g of type A2 we have f̃1(Y1(2)−1Y1(1)2) = Y1(2)−2Y1(1)Y2(1).
Adopting the (obvious) construction in type A1, we would associate the path π dis-
played on the left:
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After applying f̃1, observe that f̃1(π) has a linear part different from any fundamental
root direction. That is, f̃1(π) does not coincide with the path we would associate to
the monomial f̃1(M) in the same manner.

By generalizing the results of [2] and [3] in type A and C to arbitrary monomials
in M, we determine the structure of the crystal graph associated to the connected
component of an arbitrary, not necessarily highest weight, monomial in M. More
precise, we give a crystal morphism between the set M and the set of tableaux which
give realizations of B(λ), and consequently, due to Littelmann [10], we can associate
a path to those tableaux. Our crystal morphism compresses an arbitrary Nakajima
monomial M ∈ M into one which lies in a connected component M(λ), with integral
dominant weight λ depending on M .

In a first step we describe a crystal isomorphism between the Nakajima monomi-
als and certain matrices, namely Matn+1×Z(Z≥0) in the An-case and Mat2n×Z(Z≥0)

in type Cn. This bijection allows us to define the compression of a monomial by
compressing its associated matrix as follows: For simplicity let M denote the matrix
associated to an arbitrary monomial M ∈ M lying in some a priori unknown con-
nected component of M. We give an algorithm which decomposes M into a sum
M = M1 + M2, such that M1 corresponds to a monomial in some M(μ1). Then we
move every column of M2 one step to the left and denote by M(1) the sum of M1 and
the altered counterpart of M2. Our procedure allows an iteration yielding a sequence
of matrices M(i). Since M has just finitely many nonzero columns, it is guaranteed
that after a finite number of steps our iteration becomes stationary and we obtain a
matrix M(k) corresponding to a monomial that lies in some M(μk). We call M(k)

the compressed version of M . Our algorithm respects the crystal structure, that is, we
prove the following.

Main Theorem Let g be of type A or C, and let M ∈ M be a Nakajima monomial.
Denote by M(k) its compressed version. Then the map

κ : M →
⋃

λ

M(λ)

M �→ M(k)

is a morphism of crystals. In particular, the connected component of M is isomorphic
to the connected component of κ(M).

Due to [2] and [3] we can assign a tableau S(N) to each N ∈ M(λ). Consequently,
our Main Theorem gives

Corollary Let g be of type A or C, and let M ∈ M be a Nakajima monomial. The
mapping sending M to the tableau S(κ(M)) yields a crystal morphism.

Note that in view of [10] we obtain a translation of Nakajima monomials into
Littelmann paths.
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Example Consider the monomial M = Y1(2)Y1(1)2, and the path obtained via our
construction. Observe that our assignment commutes with the crystal operator f̃1, as
illustrated in the following pictures.

As another application of our compression and the Corollary we define an in-
sertion scheme for Nakajima monomials compatible with the insertion scheme of
reversed tableaux described in [8]. More precise, let M1 and M2 be two matri-
ces which correspond to arbitrary monomials in M. Then we consider the matrix
M1 ∗ M2 = (M2,0,M1) with a suitable zero-matrix 0 and apply our compression
procedure to M1 ∗ M2. Following the convention that M1 ∗ M2 interchangeably de-
notes the matrix and its associated monomial, we obtain κ(M1 ∗M2) ∈ ⋃

λ M(λ) and
the tensor product rule of crystals yields the following.

Theorem Let g be of type A or C, and let M be the set of Nakajima monomials.
Then the map

M ⊗ M →
⋃

λ

M(λ)

M1 ⊗ M2 �→ κ(M1 ∗ M2)

is a morphism of crystals. In particular, the connected component of M1 ⊗ M2 is
isomorphic to the connected component of κ(M1 ∗ M2).

2 Nakajima monomials

In this section we define the Nakajima monomials and their crystal structure. Let g

be an arbitrary symmetrizable Kac–Moody Lie algebra with weight lattice P and I

an index set such that αi ∈ P for i ∈ I are the simple roots. Let further hi ∈ P ∗ be
the simple coroots and (·, ·) : P × P → Q a bilinear symmetric form. For i ∈ I and
λ ∈ P set 〈hi, λ〉 := 2(αi ,λ)

(αi ,αi )
.

For i ∈ I and n ∈ Z we consider monomials in the variables Yi(n). That means we
obtain the set of Nakajima monomials M as follows:

M :=
{

∏

i∈I,n∈Z

Yi(n)yi(n);yi(n) ∈ Z vanish except for finitely many (i, n)

}
.
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In order to define the crystal structure on M we take some integers c = (cij )i 
=j∈I ⊂ Z

such that cij + cji = 1 and consider the monomials

Ai(n) := Yi(n)Yi(n + 1)
∏

j 
=i

Yj (n + cji)
〈hj ,αi 〉.

Let now M be an arbitrary monomial in M and i ∈ I . Then we set

wt(M) =
∑

i

(
∑

n

yi(n)

)
Λi,

ϕi(M) = max

{
∑

k≤n

yi(k);n ∈ Z

}
,

εi(M) = max

{
−

∑

k>n

yi(k);n ∈ Z

}
,

where Λi ∈ P are the fundamental weights, which means that 〈hj ,Λi〉 = δi,j . To
define the operators ẽi and f̃i we consider the quantities

nf = min

{
n;ϕi(M) =

∑

k≤n

yi(k)

}

= min

{
n; εi(M) = −

∑

k>n

yi(k)

}
,

ne = max{n;ϕi(M) =
∑

k≤n

yi(k)}

= max

{
n; εi(M) = −

∑

k>n

yi(k)

}

and set

f̃i (M) =
{

0 if ϕi(M) = 0,

Ai(nf )−1M if ϕi(M) > 0,

ẽi (M) =
{

0 if εi(M) = 0,

Ai(ne)M if εi(M) > 0.

Proposition 2.1 [5] With the maps wt, ϕi, εi, f̃i and ẽi thus defined, M becomes a
semi-normal crystal.
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We denote this crystal by Mc because the crystal structure of M depends on the
choice of c. On the other hand one can easily see that the isomorphism class of the
crystal Mc does not depend on this choice.

From now on, for simplicity, we choose c = (cij )i 
=j∈I as follows:

cij =
{

0 if i > j ,

1 else.

Now we recall the following result of Kashiwara.

Proposition 2.2 [5] Let M be a monomial of weight λ with ẽi (M) = 0 for all i ∈ I .
Then the connected component of M containing M is isomorphic to B(λ).

The aim of this thesis is to give such an isomorphism explicitly for not necessar-
ily highest weight monomials. In the first part we define this isomorphism for Lie
algebras of type A. In the second part we generalize this to type C.

3 Compression of Nakajima monomials in type A

Henceforth we consider a Lie algebra g of type An. In this case we have the fun-
damental weights Λ1, . . . ,Λn and we get an orthogonal basis β1, . . . , βn+1 with
β1 = Λ1, βi = Λi − Λi−1 for 2 ≤ i ≤ n and βn+1 = −Λn. Moreover the simple
roots are given by αi = βi − βi+1. Thus we compute

Ai(j) = Yi(j)Yi(j + 1)Yi−1(j + 1)−1Yi+1(j)−1.

For i ∈ {1, . . . , n + 1} and j ∈ Z we introduce some specific monomials which will
be of special interest to us:

Xi(j) := Yi−1(j + 1)−1Yi(j),

where we set Yn+1(j) = 1 = Y0(j) for all j ∈ Z.
With this notation we observe

Ai(j) = Xi(j)Xi+1(j)−1.

Let us briefly recall the monomial realization of the crystal bases B(λ) given in [2].

Proposition 3.1 [2] Let λ = ∑n
k=1 akΛk be a dominant integral weight and consider

M1 = Y1(1)a1Y2(1)a2 . . . Yn(1)an as highest weight monomial. Then the connected
component M1(λ) of M containing M1 is characterized as the set of monomials of
the form

M =
∏

i∈{1,...,n+1}
j∈{1,...,n}

Xi(j)mij

with
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(i)
∑n+1

i=1 mij = aj+1 + · · · + an for j = 1, . . . , n,

(ii)
∑n+1

k=i mk,j ≤ ∑n+1
k=i+1 mk,j−1 for j = 2, . . . , n + 1 and i = 1, . . . , n + 1.

For s ∈ Z we also consider the following shifted highest weight monomials of
weight λ

Ms = Y1(s)
a1Y2(s)

a2 · · ·Yn(s)
an .

As an immediate consequence of Proposition 2.1 we obtain their connected compo-
nent Ms(λ) by the set of monomials of the form

M =
∏

i∈{1,...,n+1}
j∈{s,...,s+n−1}

Xi(j)mij

satisfying condition (i) for j = s, s + 1, . . . , s + n − 1 and (ii) for i = 1, . . . , n + 1
and j = s + 1, . . . , s + n.

Our aim is to compress an arbitrary monomial into the form of those in Ms(λ) for
a suitable λ ∈ P and s ∈ Z such that the crystal structure is preserved.

As a first step we write an monomial in M as a product of Xi(j)s. Thus we show
that M is generated by the variables Xi(j). That means we consider M as a group
with the multiplication of monomials as binary operation. Let M be the free abelian
monoid generated by the set {Xi(j), i ∈ {1, . . . , n + 1}, j ∈ Z}, with the same opera-
tion and we define an ideal J ⊂ M by

J =
〈

n+1∏

k=1

Xk(j + i − k), for i = 1, . . . , n + 1 and j ∈ Z

〉

M

.

The quotient M/J becomes a group since we obtain the inverse of Xi(j) by∏n+1
k=i+1 Xk(j − k + i)

∏i−1
k=1 Xk(j + i − k). Moreover we get

Proposition 3.2 Sending Xi(j) onto Yi(j)Yi−1(j +1)−1 yields a group isomorphism
and therefore we get

M ∼= M/J.

Proof In order to show surjectivity let M be of the form M = ∏
i∈I,j∈Z

Yi(j)yi (j).

First we write every Yi−1(j + 1)−1Yi(j) that already occurs in M as Xi(j). Then we
consider the other Yi(j)yi (j)s in M . There are two possible cases.

1. Case: yi(j) > 0. Then we write

Yi(j) =
i−1∏

k=0

Yk(j + i − k)−1
i∏

k=1

Yk(j + i − k)

=
i∏

k=1

Xk(j + i − k).
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Therefore we get

Yi(j)yi (j) =
i∏

k=1

Xk(j + i − k)yi(j).

2. Case: yi(j) < 0. In this case we get

Yi(j)−1 =
n∏

k=i

Yk

(
j − (k − i)

)−1
n+1∏

k=i+1

Yk

(
j − (k − i)

)

=
n+1∏

k=i+1

Xk(j − k + i).

Hence we have

Yi(j)yi (j) =
n+1∏

k=i+1

Xk(j − k + i)−yi (j).

These equations imply

Yi(j)−1Yi−1(j + 1) =
n+1∏

k=i+1

Xk(j − k + i)

i−1∏

k=1

Xk(j + i − k)

and hence with the definition of J we have injectivity. �

Let now M ∈ M be an arbitrary monomial. Due to Proposition 3.2 we can write
M as a product of Xi(j)s. That means we find mij ∈ Z≥0 such that

M =
∏

i∈{1,...,n+1},j∈Z

Xi(j)mij .

Writing M in this way is obviously not unique. But we can fix a reduced notation
[mi,j ] and associate this matrix. Let us define the reduced notation on the level of
matrices.

Let M = (mij ) be an arbitrary matrix in Matn+1×Z(Z≥0), where Matn+1×Z(Z≥0)

is the set of matrices with infinitely many columns but just finitely many different
from zero. Then we get the reduced form [M] of M by applying the following rule:

Rule A1 For every i ∈ {1, . . . , n + 1} we search for j ∈ Z such that

mi+s,j−s 
= 0 for all s = −i + 1,−i + 2, . . . ,−1,0,1, . . . , n − i,

then we decrease these entries by

min{mi+s,j−s; s = −i + 1,−i + 2, . . . ,−1,0,1, . . . , n − i}.
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Denote by [M] the matrix obtained from M by applying this rule.
From now on we associate a matrix to a monomial in the following way: We write

every Yi(j)yi (j) as a product of Xk(l)s as in Proposition 3.1 and get a correspond-
ing matrix M = mij . Then we apply A1 and obtain [M]. We define an equivalence
relation on Matn+1×Z(Z≥0) by

M ∼ N iff [M] = [N ]
and consider the quotient

Matn+1×Z(Z≥0)/ ∼ .

Now it is obvious that two matrices M ∼ N correspond to the same monomial and
therefore we get a well defined map by sending a monomial to the associated matrix
[M] as above. Moreover, we obtain

Proposition 3.3 There exists a bijection between M and Matn+1×Z(Z≥0)/ ∼.

Since we want this bijection to become a crystal morphism we need to define a
crystal structure on Matn+1×Z(Z≥0)/ ∼ which coincides with the structure on M

under our bijection.
Let M = (mij ) i=1,...,n+1

j∈Z

⊂ Z≥0 be a (n + 1) × Z-matrix.

Set

wt(M) =
n+1∑

i=1

(
∑

j∈Z

mij

)
βi,

ϕi(M) = max

{
∑

j≤k

mij −
∑

j<k

mi+1,j ; k ∈ Z

}
,

εi(M) = −min

{
∑

j>k

mij −
∑

j≥k

mi+1,j ; k ∈ Z

}
.

If ϕi(M) = 0 we set f̃i (M) = 0. Otherwise let k ∈ Z be minimal such that

ϕi(M) =
∑

j≤k

mij −
∑

j<k

mi+1,j .

Note that this k exists because M has just finitely many columns different from zero.
We define f̃i (M) as the matrix we get from M by increasing (resp. decreasing)

mi+1,k (resp. mi,k) by one. Formally, we get f̃i (M) = m̂s,j from M = ms,j by

m̂s,j =

⎧
⎪⎨

⎪⎩

ms,j if (s, j) /∈ {(i, k), (i + 1, k)},
mi,k − 1 if (s, j) = (i, k),

mi+1,k + 1 if (s, j) = (i + 1, k).

Similarly, we can define the operator ẽi , as follows.
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If εi(M) = 0 we set ẽi (M) = 0.
For εi(M) 
= 0 let p ∈ Z be maximal such that

εi(M) = −
(
∑

j>p

mij −
∑

j≥p

mi+1,j

)
.

Then we obtain ẽi (M) = m̂s,j from M = ms,j by

m̂s,j =

⎧
⎪⎨

⎪⎩

ms,j if (s, j) /∈ {(i,p), (i + 1,p)},
mi,p + 1 if (s, j) = (i,p),

mi+1,p − 1 if (s, j) = (i + 1,p).

It is easy to see that these maps are well defined and that Matn+1×Z(Z≥0)/ ∼ along
with wt, ϕi, εi, f̃i and ẽi becomes a semi-normal crystal.

Now we can prove the following.

Proposition 3.4 The bijection

Ψ : M → Matn+1×Z(Z≥0)/ ∼
M =

∏

i∈{1,...,n+1},j∈Z

Xi(j)mij �→ [mij ]

is a crystal isomorphism.

Proof We have to verify that for every M ∈ M and i ∈ I the following holds:

wt(M) = wt
(
Ψ (M)

)
,

ϕi(M) = ϕi

(
Ψ (M)

)
,

εi(M) = εi

(
Ψ (M)

)
,

Ψ
(
f̃i (M)

) = f̃i

(
Ψ (M)

)
,

Ψ
(
ẽi (M)

) = ẽi

(
Ψ (M)

)
.

So let M = ∏
s∈I,t∈Z

Ys(t)
ys (t) ∈ M be arbitrary and Ψ (M) ∈ Matn+1×Z(Z≥0) its

corresponding reduced matrix. Now we show that

wt(M) = wt
(
Ψ (M)

)
.

Assume we write M as a product of Xs(t)s by writing every factor Ys(t)
ys (t) as in

Proposition 3.1 with corresponding matrix ms,t . Now it suffices to show that wt(M)
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coincides with wt(ms,t ) because it is obvious that wt is invariant under A1. So we get

wt(M) =
∑

s

(
∑

t

ys(t)

)
Λs

since Λs = β1 + · · · + βs, =
∑

s

(
∑

t

ys(t)

)
(β1 + . . . + βs)

=
∑

s

⎛

⎜⎜⎜⎜⎝

∑

t

(
∑

t≤s

ys(t))

︸ ︷︷ ︸
=mst

⎞

⎟⎟⎟⎟⎠
βs

=
∑

s

(
∑

t

mst

)
βs

since wt is invariant under A1, = wt(Ψ (M)).

The same computations work for ϕi and εi .
Now we show that Ψ commutes with f̃i :
Let nf be minimal such that ϕi(M) = ∑

t≤nf
ys(t).

Then we get f̃i (M) = Ai(nf )−1M . Due to the choice of nf we know that nf is
minimal such that

ϕi(M) = ϕi

(
Ψ (M)

) =
∑

j≤nf

mij −
∑

j<nf

mi+1,j .

That means we decrease (resp. increase) mi,nf
(resp. mi+1,nf

) by one in Ψ (M). But

since Ai(nf )−1 = Xi(nf )−1Xi+1(nf ) it follows that f̃i (Ψ (M)) is a corresponding
matrix of f̃i (M). It remains to show that f̃i (Ψ (M)) = [f̃i (Ψ (M))].

Assume we had to apply A1 only after having operated with f̃i but not be-
fore. That means we get a full diagonal mi+1+s,nf −s 
= 0 for all s = −i + 1,−i +
2, . . . ,−1,0,1, . . . , n−i after having increased mi+1,nf

by one. But due to the choice
of nf we have mi,nf +1 < mi+1,nf

since otherwise
∑

j≤nf
mij − ∑

j<nf
mi+1,j

would not be maximal. Therefore increasing mi+1,nf
does not cause any new A1

application and

Ψ
(
f̃i (M)

) = f̃i

(
Ψ (M)

)
.

The same arguments hold for ẽi which finishes our proof. �

Now we define the set of matrices such that the corresponding monomials give a
realization of the crystal bases B(λ).

Definition 3.1 Define N ⊂ Matn+1×Z(Z≥0) as the set of matrices whose reduced
forms have only zero-entries out of an (n + 1) × n-submatrix M = (mij ) i=1,...,n+1

j=0,...,n−1

with the following properties:

(i) mij ∈ Z≥0 for i = 1, . . . , n + 1 and j = 0, . . . , n − 1.
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(ii)
∑n+1

k=i mk,j ≤ ∑n+1
k=i+1 mk,j−1 for i = 1, . . . , n + 1 and j = 1, . . . , n − 1, where

we set
∑n+1

k=i+1 mk,j−1 = 0 for i = n + 1.

Due to Proposition 3.1 the associated monomials of matrices in N can be consid-
ered as elements in Ms(λ) for a suitable λ ∈ P and s ∈ Z. Hence instead of a crystal
morphism between M and

⋃
λ∈P,s∈Z

Ms(λ) which we originally intended to find,
we just need a morphism from Matn+1×Z(Z≥0)/ ∼ to N/ ∼.

The idea is to compress the matrices. More precisely we move entries into the
next column to the left such that the crystal structure is preserved. We do this by
decomposing our matrix M = M1 +M2 with M1 ∈ N according to the following rule.

3.1 The lower decomposition rule

Let M = [M] = mij ∈ Matn+1×Z(Z≥0) be a reduced version of an arbitrary matrix.
Let k ∈ Z be minimal and l ∈ Z be maximal such that mij = 0 for all j < l, j > k and
i ∈ {1, . . . , n + 1}. That means the finite part of M which is different from zero is an
(n+ 1)× (l − k + 1)-matrix over Z≥0. For simplicity we set p = l − k and renumber
the columns by 0, . . . , p. We also assume that p ≥ n− 1, otherwise we fill the matrix
with zero-entries on the right side.

We search for M1 ∈ N such that

M = M1 + M2.

We explain how to compute M1 = m
(1)
ij out of M = mi,j recursively:

For i = 1, . . . , n + 1 we set m
(1)
i,0 := mi,0.

Then for each j from 1 to p we do the following:
For i = n + 1 to i = 1 we compare

∑

k≥i+1

m
(1)
k,j−1 with mi,j +

∑

k≥i+1

m
(1)
k,j

and if
∑

k≥i+1 m
(1)
k,j−1 < mi,j + ∑

k≥i+1 m
(1)
k,j then we set

m
(1)
i,j :=

∑

k≥i+1

m
(1)
k,j−1 −

∑

k≥i+1

m
(1)
k,j .

Otherwise, namely if
∑

k≥i+1 m
(1)
k,j−1 ≥ mi,j + ∑

k≥p+1 m
(1)
k,j , we set

m
(1)
i,j = mi,j .

In this way we get M1 and set

M2 := M − M1.

By construction it is obvious that M1 satisfies condition (i) and (ii) of Definition 3.1
but it remains to show that M1 has at most n columns different from zero such that
we can guarantee that M1 ∈ N. For that we show the following.
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Lemma 3.1 Let [M] = (mij ) i=1,...,n+1
j=0,...l−1

∈ Matn+1×l (Z≥0) be a reduced matrix without

zero columns which satisfies condition (ii) of Definition 3.1. Then we have

l ≤ n.

Proof Since
∑n+1

k=i+1 mk,0 = 0 for i = n + 1 condition (ii) yields mn+1,1 = 0. Again
by condition (ii) we obtain 0 = mn+1,1 ≥ mn,2 + mn+1,2 and therefore mn,2 =
mn+1,2 = 0. In general condition (ii) provides

n+1∑

k=n+2−j

mk,j = 0.

That means in particular that mi,n = 0 for all i = 2, . . . , n + 1 and mi,j = 0 for all
i ∈ I and j ≥ n + 1.

It remains to show that m1,n = 0.
Assume m1,n 
= 0. Since

∑n+1
k=n+2−j mk,j = 0 this implies m1+t,n−t ≥ m1,n for all

t = 1, . . . , n. That means we can apply A1 which is a contradiction to M being in
reduced form and hence

m1,n = 0. �

Now we can define our desired map:

Φ : Matn+1×Z(Z≥0)/ ∼ → N/ ∼
mij �→ nij ,

where the matrix nij is computed in the following way:
Let M be the reduced version of an arbitrary matrix in Matn+1×Z(Z≥0). Then we

consider the lower decomposition of M :

M = M1 + M2

with M1 ∈ N.
Then we move every entry of M2 one column to the left and denote the new M2

by M
(1)
2 . Now we set M(1) := M1 + M

(1)
2 and if M(1) ∈ N we are done and set

M(1) =: N = nij .

If M(1) /∈ N we consider the lower decomposition of [M(1)] and do the same again.
This iteration yields a sequence of matrices M(i). Since M has just finitely many
columns different from zero there exists a k ∈ N such that the iteration becomes
stationary with M(k) ∈ N and we set

M(k) =: N = nij .

Let us now combine Φ and Ψ to obtain the compression map κ from the set of
arbitrary monomials into the set of monomials which give a realization of the crystal
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bases B(λ):

κ := Ψ −1 ◦ Φ ◦ Ψ : M →
⋃

λ∈P,s∈Z

Ms(λ).

Before we prove that this map is a crystal morphism we consider an example:

Example 3.1 As above, let g be of type A4 and take the monomial

M = Y1(4)−1Y3(1)Y1(3)−1Y4(1)−1Y2(0)2Y3(2)2.

Due to Proposition 3.2 we write

Y1(4)−1 = X2(3)X3(2)X4(1)X5(0),

Y3(1) = X3(1)X2(2)X1(3),

Y1(3)−1 = X2(2)X3(1)X4(0)X5(−1),

Y4(1)−1 = X5(0),

Y2(0)2 = X2(0)2X1(1)2,

Y3(2)2 = X3(2)2X2(3)2X1(4)2.

That means we obtain the associated reduced matrix by

⎛

⎜⎜⎜⎜⎝

0 0 2 0 1 2
0 2 0 2 3 0
0 0 2 3 0 0
0 1 1 0 0 0
1 2 0 0 0 0

⎞

⎟⎟⎟⎟⎠
(A1)=

⎛

⎜⎜⎜⎜⎝

0 2 0 0 1
2 0 1 2 0
0 1 2 0 0
0 0 0 0 0
1 0 0 0 0

⎞

⎟⎟⎟⎟⎠
= [M],

where we always only consider the finite part of the matrix which is different from
zero.

We obtained the lower decomposition of M by

⎛

⎜⎜⎜⎜⎝

0 2 0 0 1
2 0 1 2 0
0 1 2 0 0
0 0 0 0 0
1 0 0 0 0

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

0 2 0 0 0
2 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0

⎞

⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎝

0 0 0 0 1
0 0 0 2 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠

and therefore

M(1) =

⎛

⎜⎜⎜⎜⎝

0 2 0 1
2 0 3 0
0 3 0 0
0 0 0 0
1 0 0 0

⎞

⎟⎟⎟⎟⎠
.
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Since M(1) /∈ N we decompose [M(1)] = M(1) and get

M(2) =

⎛

⎜⎜⎜⎜⎝

0 2 0 1
2 2 1 0
2 1 0 0
0 0 0 0
1 0 0 0

⎞

⎟⎟⎟⎟⎠
∈ N.

Now we apply Ψ −1 and obtain the monomial

N = Ψ (−1)(M(2)) = X1(1)2X1(3)X2(0)2X2(1)X3(0)2X3(1)X5(0)

= Y1(3)Y2(0)2Y1(2)−2Y3(0)2Y3(1)Y4(1)−1.

Due to Proposition 3.1 we get N ∈ M0(4Λ2 + Λ4).

Theorem 3.1 Let g be of type A. Then the map

κ : M →
⋃

λ∈P,s∈Z

Ms(λ)

M �→ (Ψ −1 ◦ Φ ◦ Ψ )(M)

defined as above is a morphism of crystals.

Proof We have already seen that Ψ is a crystal morphism therefore we limit the proof
to Φ and get the claim by composition. Since Φ is successively defined it suffices to
show that sending a reduced version matrix M to M(1) preserves the crystal structure.
So we take such a matrix M = mij and its lower decomposition M = M1 + M2 with

M1 = m
(1)
ij and M2 = m

(2)
ij .

By definition we obtain

(
M(1)

)
ij

= m
(1)
ij + m

(2)
i,j+1.

Now we have to show the following for i ∈ I :

(i) wt(M) = wt(M(1)),
(ii) ϕi(M) = ϕi(M

(1)),

(iii) εi(M) = εi(M
(1))

and we find that computing M(1) interchanges with the Kashiwara operators, namely

(iv) (f̃i(M))(1) = f̃i (M
(1)),

(v) (ẽi(M))(1) = ẽi (M
(1)).

Since
∑

j∈Z
mij does not change it is obvious that wt is invariant under this con-

struction.
We prove (ii) and (iv) simultaneously and (iii) and (v) follow in an analogous

manner. For simplicity we set M(1) =: N = nij .



664 J Algebr Comb (2012) 35:649–690

We know that

ϕi(M) = max

{
∑

j≤k

mij −
∑

j<k

mi+1,j ; k ∈ Z

}
.

Assume ϕi(M) 
= 0 and let k ∈ Z be minimal such that

ϕi(M) =
∑

j≤k

mij −
∑

j<k

mi+1,j .

Now assume ϕi(M) < ϕi(N).

That is only possible if there exists p ∈ Z such that m
(2)
i,p+1 > m

(2)
i+1,p .

Otherwise
∑

j≤p nij − ∑
j<p ni+1,j is equal to or smaller than

∑
j≤p mij −∑

j<p mi+1,j .

Due to the lower decomposition this implies

m
(2)
i,p+1 ≤ mi,p+1 − m

(1)
i+1,p (1)

and since M = M1 + M2,

m
(2)
i+1,p = mi+1,p − m

(1)
i+1,p. (2)

Now we compute

∑

j≤p

nij −
∑

j<p

ni+1,j =
∑

j≤p

m
(1)
i,j + m

(2)
i,j+1 −

(
∑

j<p

m
(1)
i+1,j + m

(2)
i+1,j+1

)

=
∑

j<p

m
(1)
i,j + m

(2)
i,j+1 + m

(1)
i,p + m

(2)
i,p+1

−
(

∑

j<p−1

m
(1)
i+1,j + m

(2)
i+1,j+1 + m

(1)
i+1,p−1 + m

(2)
i+1,p

)

(1)≤
∑

j<p

m
(1)
i,j + m

(2)
i,j+1 + m

(1)
i,p + mi,p+1 − m

(1)
i+1,p

−
(

∑

j<p−1

m
(1)
i+1,j + m

(2)
i+1,j+1 + m

(1)
i+1,p−1 + m

(2)
i+1,p

)

(2)=
∑

j<p

m
(1)
i,j + m

(2)
i,j+1 + m

(1)
i,p + mi,p+1 − m

(1)
i+1,p

−
(

∑

j<p−1

m
(1)
i+1,j + m

(2)
i+1,j+1

+ m
(1)
i+1,p−1 + mi+1,p − m

(1)
i+1,p

)
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=
∑

j≤p+1

mij −
∑

j<p+1

mi+1,j .

But due to the choice of k we have

ϕi(M) ≥
∑

j≤p+1

mij −
∑

j<p+1

mi+1,j

and hence

ϕi(M) ≥ ϕi(N).

Now suppose ϕi(N) < ϕi(M).

It is obvious that
∑

j≤k nij − ∑
j<k ni+1,j becomes smaller than

∑
j≤k mij −∑

j<k mi+1,j if and only if

0 
= m
(2)
i+1,k > m

(2)
i,k .

Moreover the choice of k again implies that

m
(1)
i+1,k ≤ mi+1,k < mi,k.

That means we have the following situation in M1:
∑

l≥i+1

m
(1)
l,k =

∑

l>i+1

m
(1)
l,k−1

and therefore

m
(2)
i,k = mi,k − m

(1)
i+1,k−1.

With this equation we compute

∑

j≤k−1

nij −
∑

j<k−1

ni+1,j =
∑

j≤k−1

m
(1)
i,j + m

(2)
i,j+1 −

(
∑

j<k−1

m
(1)
i+1,j + m

(2)
i+1,j+1

)

=
∑

j<k−2

m
(1)
i,j + m

(2)
i,j+1 + m

(1)
i,k−1 + m

(2)
i,k

−
(

∑

j<k−2

m
(1)
i+1,j + m

(2)
i+1,j+1

+ m
(1)
i+1,k−2 + m

(2)
i+1,k−1

)

=
∑

j<k−2

m
(1)
i,j + m

(2)
i,j+1 + m

(1)
i,k−1 + mi,k − m

(1)
i+1,k−1

−
(

∑

j<k−2

m
(1)
i+1,j + m

(2)
i+1,j+1 + m

(1)
i+1,k−2
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+mi+1,k−1 − m
(1)
i+1,k−1

)

=
∑

j<k−2

m
(1)
i,j + m

(2)
i,j+1 + m

(1)
i,k−1 + mi,k

−
(

∑

j<k−2

m
(1)
i+1,j + m

(2)
i+1,j+1 + m

(1)
i+1,k−2

+mi+1,k−1

)

=
∑

j≤k

mij −
∑

j<k

mi+1,j .

Hence

ϕi(N) ≥ ϕi(M).

Furthermore these computations also show that we obtain ϕi(N) either by

∑

j≤k

nij −
∑

j<k

ni+1,j

or as in the last case by
∑

j≤k−1

nij −
∑

j<k−1

ni+1,j

and that k (resp. k − 1) is minimal with this property.
That means that we obtain f̃i (N) by operating on ni,k or on ni,k−1.

So assume we operate on ni,k and consider the lower decomposition of f̃i (M).
In this case we know that mi,k > mi+1,k−1 and the same in N . That means ni,k >

ni+1,k−1.

Hence

m
(1)
i,k > m

(1)
i+1,k−1.

That implies
∑

j≥i+2

m
(1)
j,k−1 >

∑

j≥i+1

m
(1)
j,k

and in particular

m
(2)
i+1,k = 0.

Therefore we get m
(1)
i+1,k increased by one in the lower decomposition of f̃i (M).

Moreover we know that

m
(1)
i+1,k = mi+1,k ≥ mi,k+1.
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That means

m
(2)
i,k+1 = 0

and increasing m
(1)
i+1,k by one does not change the decomposition of the k + 1st col-

umn.
Hence

(
f̃i (M)

)(1) = f̃i (N).

The same arguments show that m
(2)
i+1,k is increased by one if we operate on ni,k−1

and we also get
(
f̃i (M)

)(1) = f̃i (N). �

For M ∈ M we set B(M) to be the connected component of M in M.

Corollary 3.1 For M ∈ M and Φ(Ψ (M)) =: ni,j ∈ N we consider s ∈ Z maximal
such that ni,j = 0 for all j < s and i ∈ {1, . . . , n+1}. Furthermore for k = 1, . . . , n+
1 we define the quantities

ak :=
∑

i∈{1,...,n+1}
ni,k+s−1 −

∑

i∈{1,...,n+1}
ni,k+s ≥ 0.

Then we have

κ(M) ∈ Ms

(
n∑

k=1

akΛk

)

and hence by restriction

κ|B(M) : B(M) → Ms

(
n∑

k=1

akΛk

)

is a crystal isomorphism.

Now we give an application of the compression. In their framework about the
correspondence between Young walls and Young tableaux, Kim and Shin [7] gave
another realization of the crystal bases B(λ) in the sense of reversed Young tableaux.
Moreover Kang et al. [2] constructed a crystal morphism between the monomials
in M1(λ) for dominant integral weights λ and those reversed tableaux. By combin-
ing this with the crystal morphism κ we can generalize their morphism to arbitrary
monomials in M.

For a dominant integral weight λ we define S(λ) to be the set of all (reversed)
semistandard tableaux of shape λ with entries 1, . . . , n + 1, which gives a realization
of the crystal bases B(λ) [7].

Let M ∈ M1(λ) be a monomial and mij the associated reduced matrix in N. We
define the tableau S(M) to be the semistandard reversed tableau with mij , the number
of i entries in the j th row.

Then we get
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Proposition 3.5 [2] The map

� : M1(λ) → S(λ)

M �→ S(M)

is a crystal isomorphism.

It is obvious how to generalize this morphism to Ms(λ). Let M ∈ Ms(λ) be a
monomial and mij the associated reduced matrix in N. In this case we define S(M)

to be the semistandard reversed tableaux with mij , the number of i entries in the
j − s + 1st row, and get the morphism

� :
⋃

λ∈P,s∈Z

Ms(λ) →
⋃

λ∈P

S(λ)

M �→ S(M).

The combination of this morphism with the compression map κ yields

Corollary 3.2 The map

� ◦ κ : M →
⋃

λ∈P

S(λ)

is a crystal morphism.

Example 3.2 For g of type A4 we consider the monomial

M = Y1(4)−1Y3(1)Y1(3)−1Y4(1)−1Y2(0)2Y3(2)2.

We have already seen that

κ(M) = N = X1(1)2X1(3)X2(0)2X2(1)X3(0)2X3(1)X5(0),

with the corresponding reduced matrix

⎛

⎜⎜⎜⎜⎝

0 2 0 1
2 2 1 0
2 1 0 0
0 0 0 0
1 0 0 0

⎞

⎟⎟⎟⎟⎠
.

Therefore we assign the following semistandard reversed Young tableau:

S(M) = .
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4 Insertion scheme for monomials in type A

In this section, as another application of the compression given in Sect. 2, we de-
fine a bumping rule for Nakajima monomials. That means we consider the crys-
tal tensor product of two monomials M1 and M2 and search for a monomial N ∈⋃

λ∈P,s∈Z
Ms(λ) such that the connected component of M1 ⊗ M2 is isomorphic to

the connected component of N . Moreover we will see that this bumping is compatible
with the reversed bumping for reversed tableaux (given in [8]).

Before we define the monomial bumping we recall the tensor product rule for
crystals B1 and B2.

The set B1 ⊗ B2 := {b1 ⊗ b2;b1 ∈ B1 and b2 ∈ B2} becomes a crystal by setting

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max
{
εi(b1), εi(b2) + 〈hi,wt(b1)〉

}
,

ϕi(b1 ⊗ b2) = max
{
ϕi(b1) + 〈hi,wt(b2)〉, ϕi(b2)

}
,

f̃i (b1 ⊗ b2) =
{

f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2 if ϕi(b1) ≤ εi(b2),

ẽi(b1 ⊗ b2) =
{

b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),

ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2).

Let now M1 and M2 be reduced matrices of monomials in M. In order to use the com-
pression procedure we associate a matrix M1 ∗ M2 ∈ Matn+1×Z(Z≥0) to the tensor
product M1 ⊗ M2 in the following way:

M1 ⊗ M2 �→

⎛

⎜⎜⎜⎜⎜⎝

0
0

M2
... M1
0
0

⎞

⎟⎟⎟⎟⎟⎠
=: M1 ∗ M2,

where again M1 and M2 stand for their finite parts different from zero.
With the crystal structure on Matn+1×Z(Z≥0)/ ∼ we can show the following.

Proposition 4.1 The map

Matn+1×Z(Z≥0)/ ∼ ⊗Matn+1×Z(Z≥0)/ ∼ → Matn+1×Z(Z≥0)/ ∼
M1 ⊗ M2 �→ M1 ∗ M2

is a crystal morphism.

Proof Let M1 and M2 be matrices as above and after possible renumbering we set
M1 = (m1

i,j ) i=1,...,n+1
j=1,...,l

and M2 = (m2
i,j ) i=1,...,n+1

j=1,...,t
. For simplicity we write

M1 ∗ M2 =: M = mi,j .
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Since M1 and M2 are reduced we get by definition that M1 ∗ M2 is a reduced matrix
without any A1 application.

We have to show that wt, ϕi and εi are invariant under this map and that it com-
mutes with f̃i and ẽi . We observe directly from the definition that

wt(M1 ⊗ M2) = wt(M1 ∗ M2).

For i ∈ I we show that

ϕi(M1 ⊗ M2) = ϕi(M1 ∗ M2).

In order to do this we distinguish the two cases ϕi(M1) > εi(M2) and ϕi(M1) ≤
εi(M). At first we assume ϕi(M1) > εi(M2) and take k minimal such that

ϕi(M1) =
∑

j≤k

m1
i,j − m1

i+1,j−1.

This implies

ϕi(M1 ∗ M2) =
∑

j≤k+t+1

mi,j − mi+1,j−1.

=
∑

j≤k

m1
i,j − m1

i+1,j−1

+
∑

j

m2
i,j −

∑

j

m2
i+1,j

since 〈hi,Λj 〉 = δi,j ,

= ϕi(M1) +
∑

j

m2
i,j 〈hi,Λi − Λi−1〉

+
∑

j

m2
i+1,j 〈hi,Λi+1 − Λi〉

= ϕi(M1) +
∑

j

m2
i,j 〈hi,βi〉

+
∑

j

m2
i+1,j 〈hi,βi+1〉

= ϕi(M1)

+
〈
hi,

∑

j

m2
i,j βi +

∑

j

m2
i+1,j βi+1

〉

〈hi,βj 〉 = 0 for j 
= i, i + 1, = ϕi(M1) +
〈
hi,

∑

i

(
∑

j

m2
i,j

)
βi

〉

= ϕi(M1) + 〈hi,wt(M2)〉
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since ϕi(M1) > εi(M2), = ϕi(M1 ⊗ M2).

Moreover these computations also show: If ϕi(M1) > εi(M2), then k is minimal with

ϕi(M1 ∗ M2) = ϕi(M) =
∑

j≤k

mi,j −
∑

j<k

mi+1,j

and hence

f̃i (M1 ∗ M2) = f̃iM1 ∗ M2.

Due to the tensor product rule we also observe

f̃i (M1 ⊗ M2) = f̃iM1 ⊗ M2,

which implies that the map interchanges with f̃i in this case.
Let now ϕi(M1) ≤ εi(M2). This yields directly

ϕi(M1 ∗ M2) = ϕi(M2) = ϕi(M1 ⊗ M2)

and again f̃i (M1 ∗ M2) = M1 ∗ f̃iM2.

The same arguments hold for εi and ẽi . �

With this interpretation of the crystal tensor product of monomials we are able to
give the definition of bumping for Nakajima monomials. Let M1 and M2 be mono-
mials in M then we define M1 → M2 as the result of the following compositions of
crystal morphisms:

M × M → Matn+1×Z(Z≥0)/ ∼ Φ→ N/ ∼ →
⋃

λ∈P,s∈Z

Ms(λ)

(M1,M2) �→ Ψ (M1) ∗ Ψ (M2)
Φ�→ N �→ Ψ −1(N).

In other words we set

M1 → M2 := Ψ −1(Φ
(
Ψ (M1) ∗ Ψ (M2)

))
.

With Proposition 4.1 and Theorem 3.1 we observe

Theorem 4.1 Let g be of type A. Then the map

M ⊗ M →
⋃

λ∈P,s∈Z

Ms(λ)

M1 ⊗ M2 �→ M1 → M2

defined as above is a morphism of crystals.

Now we notice that the monomial bumping coincides with the tableaux bumping
defined in [8]. More precisely, if we take M1,M2 ∈ M we have two possibilities to
associate a reversed tableaux to their tensor product M1 ⊗ M2.
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The first one is to take the monomial bumping M1 → M2 and to consider the
tableaux S(M1 → M2) in the sense of Corollary 3.2. On the other hand we com-
pute S(M1) and S(M2) and apply the reversed bumping rule given by Kim and Shin
[7, 8], namely S(M1) → S(M2). Corollary 3.2 and Theorem 4.1 imply

S(M1 → M2) = S(M1) → S(M2).

5 Compression of Nakajima monomials in type C

In this section we will define the compression of Nakajima monomials for a Lie
algebra g of type Cn. We briefly recall the basic setting of g. Let P be the weight
lattice of g and β1, . . . , βn the orthogonal basis of P . Let further I = {1, . . . , n} be
the index set for the simple roots given by αi = βi − βi+1 for i = 1, . . . , n − 1 and
αn = 2βn. Moreover we get the fundamental weights by Λi = β1 + · · · + βi and
therefore βi = Λi − Λi−1. Then we compute for all i 
= n and j ∈ I :

〈hj ,αi〉 =

⎧
⎪⎨

⎪⎩

2 if i = j ,

−1 if j = i − 1 or j = i + 1,

0 else

and

〈hj ,αn〉 =

⎧
⎪⎨

⎪⎩

2 if j = n,

−2 if j = n − 1,

0 else.

As in the An-case we set

cij =
{

0 if i > j ,

1 else.

With this notation we obtain for j ∈ Z

Ai(j) =
{

Yi(j)Yi+1(j)−1Yi(j + 1)Yi−1(j + 1)−1 if i 
= n,

Yn(j)Yn(j + 1)Yn−1(j + 1)−2 if i = n.

Let B = {1, . . . , n, 1̄, . . . n̄}; then we define a total order on B by

1 ≺ 2 ≺ · · · ≺ n ≺ n ≺ · · · ≺ 2 ≺ 1.

For i ∈ I and j ∈ Z we consider the variables defined in [3]:

Xi(j) := Yi−1(j + 1)−1Yi(j),

Xi(j) := Yi−1(j + n − i + 1)Yi(j + n − i + 1)−1.

With these variables we have for i 
= n

Ai(j) = Xi+1(j)−1Xi(j),
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Ai(j) = Xi+1(j − n + i)Xi(j − n + i)−1

and

An(j) = Xn(j)Xn(j)−1.

Furthermore it is easy to see that for i = 1, . . . , n and some p − q = n− i the follow-
ing equation holds:

Xi(p)Xi(q) = Xi+1(p)Xi+1(q).

This equation will be important later when we define the equivalence relation on
matrices because it involves more options to write an arbitrary monomial as a product
of Xi(j)s and Xi(j)s.

As in Sect. 3 we recall the characterization of M1(λ) with a dominant integral
weight λ for Lie algebras of type Cn given in [3].

Proposition 5.1 [3] Let λ = a1Λ1 + · · · + anΛn. Then the connected component
M1(λ) containing the maximal vector

M1 = Y1(1)a1 · · ·Yn(1)an

is characterized as the set of monomials

M = Xt1,1(1) · · ·Xt1,k1
(1) · · ·Xtn,1(n) · · ·Xtn,kn

(n)

satisfying the following conditions:

(i) kj = aj + · · · + an for all j = 1, . . . , n,

(ii) tj,1 � tj,2 � · · · � tj,kj
for all j = 1, . . . , n,

(iii) for each j = 2, . . . , n and l = 1, . . . , kj , tj−1,l � tj,l .

For s ∈ Z we also consider the shifted highest weight monomials of weight λ

Ms = Y1(s)
a1Y2(s)

a2 · · ·Yn(s)
an .

As an immediate consequence of Proposition 5.1 we obtain their connected compo-
nent Ms(λ) by the set of monomials of the form

M = Xt1,1(s) · · ·Xt1,k1
(s) · · ·Xtn,1(s + n − 1) · · ·Xtn,kn

(s + n − 1)

satisfying condition (i),(ii) and (iii).
We will see later on that these conditions translate into the notation of matrices

exactly the same way as in the An-case. In order to use similar constructions as in
Sect. 3 we show that M is generated by the elements Xi(j) and Xi(j). That means
we define M to be the free abelian monoid generated by the set {Xi(j),Xi(j), i =
1, . . . , n, j ∈ Z}. We further define an ideal J ⊂ M by
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J :=
〈

i∏

k=1

Xk(j + i − k)Xk(j − n + k − 1),

i∏

k=1

Xk(j − i + k)Xk(j + n + 1 − k), i = 1, . . . , n, j ∈ Z

〉

M

.

Hence the quotient M/J becomes a group with

Xi(j)−1 =
i−1∏

k=1

Xk(j + i − k)

i∏

k=1

Xk(j − n + k − 1)

and

Xi(j)−1 =
i−1∏

k=1

Xk(j − i + k)

i∏

k=1

Xk(j + n + 1 − k).

This gives rise to an analog of Proposition 3.2.

Proposition 5.2 We have

M ∼= M/J.

Proof We consider the map that identifies Xi(j) with Yi(j)Yi−1(j + 1)−1 and Xi(j)

with Yi−1(j +n− i +1)Yi(j +n− i +1)−1. Let M = ∏
i∈I,j∈Z

Yi(j)yi (j) be a mono-

mial in M. In order to show surjectivity we consider again each Yi(j)yi (j) separately
and distinguish two cases.

1. Case: yi(j) > 0, then we write

Yi(j) =
i−1∏

k=0

Yk(j + i − k)−1
i∏

k=1

Yk(j + i − k)

=
i∏

k=1

Xk(j + i − k).

Therefore we get

Yi(j)yi (j) =
i∏

k=1

Xk(j + i − k)yi(j).

2. Case: yi(j) < 0, then we set

Yi(j)−1 =
i∏

k=1

Xk(j − n + k − 1)
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and hence

Yi(j)yi (j) =
i∏

k=1

Xk(j − n + k − 1)−yi (j).

With these equations we compute

Xi(j)−1 = Yi(j)−1Yi−1(j + 1) =
i−1∏

k=1

Xk(j + i − k)

i∏

k=1

Xk(j − n + k − 1)

and

Xi(j)−1 = Yi−1(j + n − i + 1)−1Yi(j + n − i + 1)

=
i−1∏

k=1

Xk(j − i + k)

i∏

k=1

Xk(j + n + 1 − k),

which implies injectivity. �

Remark 5.1 The equation, for p − q = n − i,

Xi(p)Xi(q) = Xi+1(p)Xi+1(q)

also holds in M/J.

Due to Proposition 5.2 we can write an arbitrary M ∈ M as a product of Xi(j)s
and Xi(j)s. More precisely, there exist mij ∈ Z≥0 such that

M =
∏

i∈B,j∈Z

Xi(j)mij .

In other words, we can associate a matrix mi,j to each M ∈ M, where i ∈
{1, . . . , n, 1̄, . . . , n̄} and j ∈ Z. That means we obtain a matrix in Mat2n×Z(Z≥0).

As in the An-case these are matrices with just finitely many non zero columns and
we number the rows by 1, . . . , n, n̄, . . . , 1̄ instead of 1, . . . ,2n.

In order to get a bijection between the monomials and those matrices we need
to fix the matrix notation. Consider M ∈ Mat2n×Z(Z≥0) with M = mi,j . Then the
definition of J and Remark 5.1 allow us to apply the following rules without changing
the underlying monomial.

Rule C1 For a pair p,q with p − q = n − b with

mb,p 
= 0 and mb,q 
= 0

we decrease mb,p and mb,q by min{mb,p,mb,q} and increase mb+1,p and mb+1,q by
min{mb,p,mb,q}.
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Rule C2 For a pair p,q with p − q = n − b + 1 with

mb,p 
= 0 and mb,q 
= 0

we decrease mb,p and mb,q by min{mb,p,mb,q} and increase mb−1,p and mb−1,q by
min{mb,p,mb,q}.

Moreover we have an analog of rule A1.

Rule C3 For every i ∈ {1, . . . , n} and k ∈ Z with

mi−s,k+s 
= 0 for all s = 0,1, . . . , i − 1

and

mi−s,k−n+i−1−s 
= 0 for all s = 0,1, . . . , i − 1

we decrease all these entries by

min{mi−s,k+s ,mi−s,k−n+i−1−s;0,1, . . . , i − 1}.
We call such a collection a generalized diagonal at mi,k and this procedure a cance-
lation at mi,k .

We can also insert some generalized diagonals to get longer ones:

Rule C4 For every i ∈ {1, . . . , n} and k ∈ Z with

mi,k 
= 0

and

mi−s,k−n+i−1−s 
= 0 for all s = 0,1, . . . , i − 1

we increase the entries mi−s,k+s for all s = 1, . . . , i − 1 by

min{mi,k,mi−s,k−n+i−1−s;0,1, . . . , i − 1}
and apply C3 to get a longer cancelation at mi,k .

For every i ∈ {1, . . . , n} and k ∈ Z with

mi,k−n+i−1 
= 0

and

mi−s,k+s 
= 0 for all s = 0,1, . . . , i − 1

we increase the entries mi−s,k−n+i−1−s for all s = 1, . . . , i − 1 by

min{mi−s,k+s ,mi,k−n+i−1;0,1, . . . , i − 1}
and apply C3 to get a longer cancelation at mi,k .
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We use the rules C1–C4 to get reduced versions of the matrices associated to
monomials in M. We explain what we mean by reduced in this case:

Let mi,j ∈ Mat2n×Z(Z≥0) be a matrix corresponding to a monomial M ∈ M:

M =
∏

i∈B,j∈Z

Xi(j)mij .

We search for [mi,j ] such that

(i)

∑

i∈B,j∈Z

[mij ] = min

{
∑

i∈B,j∈Z

nij ;
∏

i∈B,j∈Z

Xi(j)mij =
∏

i∈B,j∈Z

Xi(j)nij

}
,

(ii) there are no pairs p,q with p − q = n − b + 1 such that

[mb,p] 
= 0 and [mb,q ] 
= 0.

We use the rules C1–C4 stepwise to obtain [mij ] from mij as follows.
Let j be minimal such that mi,k = 0 for all i ∈ B and k > j . Then we start at mn,j

and apply C1–C2 to all the other entries if this yields an application of C3–C4 to
mn,j . This means we try to get some cancelation at this entry.

After that we go left to the next entry in this row and do the same.
Once we have done this with the whole row we go to the upper one and apply the

same procedure until we reach m1,1.
At the end we apply C2 to guarantee the desired condition (ii).
With this notation we define an equivalence relation on Mat2n×Z(Z≥0):

mi,j ∼ ni,j iff [mi,j ] = [ni,j ].
We consider the quotient

Mat2n×Z(Z≥0)/ ∼ .

It is obvious that two matrices which lie in the same equivalence class correspond to
the same monomial and vice versa. Hence by sending a monomial onto its reduced
matrix we get

Proposition 5.3 There exists a bijection between M and Mat2n×Z(Z≥0)/ ∼.

In order to get a morphism of crystals we endow Mat2n×Z(Z≥0)/ ∼ with a crystal
structure by defining it on the reduced representatives.

Let M = mi,j ∈ Mat2n×Z(Z≥0) be a reduced matrix. Then we set

wt(M) =
n∑

i=1

(
∑

j∈Z

(mij − mi,j )

)
βi.
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For i 
= n we put

ϕi(M) = max

{
∑

j≤k

mij + mi+1,j−n+i −
∑

j<k

mi+1,j + mi,j−n+i; k ∈ Z

}
,

εi(M) = −min

{
∑

j>k

mij + mi+1,j−n+i −
∑

j≥k

mi+1,j + mi,j−n+i; k ∈ Z

}

and

ϕn(M) = max

{
∑

j≤k

mn,j −
∑

j<k

mn,j ; k ∈ Z

}
,

εn(M) = −min

{
∑

j>k

mn,j −
∑

j≥k

mn,j ; k ∈ Z

}
.

If ϕi(M) = 0 we set f̃i (M) = 0 for all i ∈ I .
Let now ϕi(M) 
= 0 then we define the Kashiwara operator f̃i for i 
= n.
Let k be minimal such that

ϕi(M) =
∑

j≤k

mij + mi+1,j−n+i −
∑

j<k

mi+1,j + mi,j−n+i .

Then we distinguish the following two cases.

1. Case: mi+1,k−n+i = 0.

Then we set f̃i (M) as the matrix we get from M by increasing (resp. decreasing)
mi+1,k (resp. mi,k) by one. Formally, we obtain f̃i (M) = m̂s,j from M = ms,j by

m̂s,j =

⎧
⎪⎨

⎪⎩

ms,j if (s, j) /∈ {(i, k), (i + 1, k)},
mi,k − 1 if (s, j) = (i, k),

mi+1,k + 1 if (s, j) = (i + 1, k).

2. Case: mi+1,k−n+i 
= 0.

Then we define f̃i (M) as the matrix we get from M by increasing (resp. decreas-
ing) mi,k−n+i (resp. mi+1,k−n+i ) by one. That means we obtain f̃i (M) = m̂s,j from
M = ms,j by

m̂s,j =

⎧
⎪⎨

⎪⎩

ms,j if (s, j) /∈ {(i, k − n + i), (i + 1, k − n + i)},
mi+1,k−n+i − 1 if (s, j) = (i + 1, k − n + i),

mi,k−n+i + 1 if (s, j) = (i, k − n + i).

Now we give the definition of f̃n(M) for ϕn(M) 
= 0.
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Let k be minimal such that

ϕn(M) =
∑

j≤k

mn,j −
∑

j<k

mn,j .

Then we set f̃n(M) as the matrix we get from M by increasing (resp. decreasing)
mn,k (resp. mn,k) by one. More precisely we obtain f̃n(M) = m̂s,j from M = ms,j

by

m̂s,j =

⎧
⎪⎨

⎪⎩

ms,j if (s, j) /∈ {(n, k), (n, k)},
mn,k − 1 if (s, j) = (n, k),

mn,k + 1 if (s, j) = (n, k).

If εi(M) = 0 we set ẽi (M) = 0.
For εi(M) 
= 0 let p be maximal such that

εi(M) = −
(
∑

j>p

mij + mi+1,j−n+i −
∑

j≥p

mi+1,j + mi,j−n+i

)
.

Then we distinguish the following two cases to define ẽi (M) for i 
= n:

1. Case: mi+1,p−n+i 
= 0.

Then we set ẽi (M) as the matrix we get from M by increasing (resp. decreasing)
mi,p (resp. mi+1,p) by one. Formally, we observe ẽi (M) = m̂s,j from M = ms,j by

m̂s,j =

⎧
⎪⎨

⎪⎩

ms,j if (s, j) /∈ {(i,p), (i + 1,p)},
mi,p + 1 if (s, j) = (i,p),

mi+1,p − 1 if (s, j) = (i + 1,p).

2. Case: mi+1,p−n+i = 0.

Then we define ẽi (M) as the matrix we get from M by increasing (resp. decreas-
ing) mi+1,p−n+i (resp. mi,p−n+i ) by one. That means we obtain ẽi (M) = m̂s,j from
M = ms,j by

m̂s,j =

⎧
⎪⎨

⎪⎩

ms,j if (s, j) /∈ {(i,p − n + i), (i + 1,p − n + i)},
mi+1,p−n+i + 1 if (s, j) = (i + 1,p − n + i),

mi,p−n+i − 1 if (s, j) = (i,p − n + i).

Let p be maximal such that

εn(M) = −
(
∑

j>p

mn,j −
∑

j≥p

mn,j

)
.
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Then we set ẽn(M) as the matrix we get from M by decreasing (resp. increasing)
mn,p (resp. mn,p) by one. Formally, we obtain ẽn(M) = m̂s,j from M = ms,j by

m̂s,j =

⎧
⎪⎨

⎪⎩

ms,j if (s, j) /∈ {(n,p), (n,p)},
mn,p + 1 if (s, j) = (n,p),

mn,p − 1 if (s, j) = (n,p).

Easy computations show that Mat2n×Z(Z≥0)/ ∼ along with the maps wt, ϕi, εi , f̃i

and ẽi becomes a semi-normal crystal. As in Sect. 3 we prove that this crystal struc-
ture coincides with the structure on M under the above bijection.

Proposition 5.4 The bijection

Ψ : M → Mat2n×Z(Z≥0)/ ∼
M =

∏

i∈B,j∈Z

Xi(j)mij �→ [mij ]

is a crystal isomorphism.

Proof It is easy to verify that wt, εi and ϕi are invariant under Ψ especially because
they are invariant under the application of C1–C4. It remains to show that Ψ com-
mutes with the crystal operators f̃i and ẽi . Let M ∈ M be a monomial with associated
matrix [ml,j ]. Due to the crystal structure defined on the matrices it follows almost
directly that for all i ∈ I

f̃i(M) =
∏

l∈B,j∈Z

Xl(j)f̃i ([mlj ])

and the same for ẽi .
Therefore it suffices to verify that

f̃i

([mlj ]
) = [

f̃i

([mlj ]
)]

and

ẽi

([mlj ]
) = [

ẽi

([mlj ]
)]

.

Since this can be proved analogously we just give the proof for f̃i .
For simplicity we denote [ml,j ] by ml,j and for i 
= n let k be minimal such that

ϕi(M) =
∑

j≤k

mij + mi+1,j−n+i −
∑

j<k

mi+1,j + mi,j−n+i .

First we look at the case mi+1,k−n+i = 0. That means we get f̃i (ml,j ) by increasing
mi+1,k and decreasing mi,k each by one. Let us assume that the increase of mi+1,k

induces a longer or new cancelation. But this yields

mi+1,k = 0 and mi,k−n+i = 0
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and together with the choice of k this implies

mi,k+1 = 0 and mi+1,k−n+i+1 = 0.

Since mi,k+1 = 0 and mi,k−n+i = 0, the increase does not provide any generalized
diagonal at mi+s,k+1−s for positive s, without insertion. But those insertions would
have been done before we operate with f̃i because ml,j is in reduced form.

It is still possible that we get a new generalized diagonal by C4 at mi+1,k itself. But
we get no diagonal mi+1−s,k+s 
= 0 for s = 0, . . . , i since mi,k+1 = 0. Furthermore we
cannot increase this entry by applying C1 because otherwise we could have applied
C4 at mi,k+1 before.

The second possibility to apply C4 at mi+1,k needs mi+1−s,k−n+i−s 
= 0 for all
s = 0, . . . , i. In particular we get mi−s,k−n−1+i−s 
= 0 for all s = 0, . . . , i − 1 and
mi,k 
= 0 which implies an application of C4 at mi,k before operating. This is again a
contradiction to the fact that mi,j is reduced.

Moreover since mi+1,k−n+i = 0 we cannot apply C1 to the increased mi+1,k .

Overall we have seen that operating with f̃i preserves the reduced version in this
case.

Similar arguments hold for the case mi+1,k−n+i 
= 0. �

Now we translate the characterizing conditions of the monomials that give a real-
ization of the crystal bases, given in Proposition 5.1, into the language of matrices.
We will recognize that those are the same conditions as in Sect. 3. From this obser-
vation one can deduce that similar constructions yield our desired morphism.

Definition 5.1 Define N ⊂ Mat2n×Z(Z≥0) as the set of matrices whose reduced ver-
sions have only zero-entries out of a 2n × n-submatrix M = (mij ) i=1,...,n,n,...,1

j=0,...,n−1
satisfy-

ing the following properties:

(i) mij ∈ Z≥0 for i = 1, . . . , n, n, . . . ,1 and j = 0, . . . , n − 1,
(ii)

∑
k≥i mk,j ≤ ∑

k>i mk,j−1 for i = 1, . . . , n, n, . . . ,1 and j = 1, . . . , n−1, where

we set
∑

k>i mk,j−1 = 0 for i = 1.

Due to the crystal structure and the equivalence relation above we observe the
following remark which helps us to guarantee that operating interchanges with lower
decomposition later. Moreover it implies that N and hence also N are stable under
application of ẽi and f̃i .

Remark 5.2 Let mi,j be a reduced version of a matrix in Mat2n×Z(Z≥0) and i ∈ I.

(i) If f̃i acts on mi,k then mi,k > mi+1,k−1,

(i) if ẽi acts on mi+1,p then mi+1,p > mi,p+1,

where we set i + 1 = i − 1 if i ∈ {n, . . . ,2} and n + 1 = n.

As mentioned above we also use the lower decomposition rule for the latter con-
structions. Therefore we need a C-analog of Lemma 3.1.
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Lemma 5.1 Let [M] = (mij ) i=1,...,n,n,...,1
j=0,...,l−1

∈ Mat2n×l (Z≥0) be a reduced matrix with-

out zero columns which satisfies condition (ii) of Definition 5.1.
Then we have

l ≤ n.

Proof Assume l > n and consider a special collection of elements in B = {1, . . . , n,

n̄, . . . 1̄}:
For k = 1, . . . , n + 1 let ik ∈ B be maximal such that mik,k 
= 0.

This collection exists because there are no zero columns and l > n. Furthermore
condition (ii) of Definition 4.1 implies

in+1 ≺ in ≺ · · · ≺ i2 ≺ i1.

That means there exists at least one pair p,q ∈ {1, . . . , n + 1} with p > q such that

ip ∈ {1, . . . , n} and iq = ip.

Let p be minimal with this property. The minimality of p yields

p − q ≤ n − ip + 1.

We assume p − q < n − ip + 1, namely p − q = n − ip + 1 − j for some j ∈ N.
Let us consider the number of elements between ip and iq :

|{ip, ip−1, . . . , iq+1, iq}| = n − ip − j + 2.

Since

(n − ip − j + 2) + (ip − 1) = n − j + 1 < n + 1

there is another pair p̂, q̂ with p̂ > p > q̂ such that ip̂ ∈ {1, . . . , n} and iq̂ = ip̂ . If we
consider p̂ minimal with this property one gets

p̂ − q̂ ≤ n − ip̂ + 1.

If we assume p̂ − q̂ < n − ip̂ + 1 we can use the same arguments as above. This way
we can inductively conclude that there has to be such a pair with p − q = n − ip + 1
which is a contradiction to mi,j being reduced and therefore l ≤ n. �

Let us define the C-analog of the map Φ given in Sect. 3.

Φ : Mat2n×Z(Z≥0)/ ∼ → N/ ∼
mij �→ nij ,

where we compute nij as follows:
Let M be a reduced version matrix in Mat2n×Z(Z≥0)/ ∼. Then we consider the

lower decomposition of M :

M = M1 + M2,
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with M1 = m
(1)
i,j , M2 = m

(2)
i,j and M1 ∈ N. We use exactly the same decomposition

as in Sect. 3.1 with 2n rows instead of n + 1. Then we move every entry of M2 one
column to the left and denote this matrix by M

(1)
2 and set

M(1) := M1 + M
(1)
2 .

Then we decompose [M(1)] and proceed the same way until the iteration becomes
stationary and we reach M(k) = m

(k)
i,j ∈ N. Then set

ni,j = N := M(k).

Before we show that this map has the desired properties we state another lemma
which will be useful for the proof of the main theorem.

Lemma 5.2 Let M = M1 + M2 be the lower decomposition of a matrix in reduced
form with M1 = m

(1)
i,j and M2 = m

(2)
i,j . Then there exists no pair p,q with p − q =

n − i such that

m
(1)
i,p 
= 0 and m

(2)

i,q

= 0.

Proof Due to the lower decomposition rule we obtain M1 ∈ N and since M is reduced
it is obvious that M1 is reduced. Now one can use the same arguments as used in the
proof of Lemma 5.1. �

We define the compression map κ again as the following composition:

κ := Ψ −1 ◦ Φ ◦ Ψ

and show.

Theorem 5.1 Let g be of type C. Then the map

κ : M →
⋃

λ∈P,s∈Z

Ms(λ)

M �→ (Ψ −1 ◦ Φ ◦ Ψ )(M)

defined as above is a morphism of crystals.

Proof We limit ourselves to proving that sending a reduced matrix M onto M(1) thus
defined preserves the crystal structure. This implies inductively that Φ and hence
Ψ −1 ◦ Φ ◦ Ψ are crystal morphisms. So consider M = ml,j the reduced form of an

arbitrary matrix in Mat2n×Z(Z≥0) and ml,j = m
(1)
l,j + m

(2)
l,j its lower decomposition.

For an i ∈ I we have to show:

(i) wt(M) = wt(M(1)),
(ii) ϕi(M) = ϕi(M

(1)),

(iii) εi(M) = εi(M
(1))
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and that computing M(1) commutes with the Kashiwara operators namely

(iv) (f̃i(M))(1) = f̃i (M
(1)),

(v) (ẽi(M))(1) = ẽi (M
(1)).

We confine ourselves to prove (ii) and (iv) because the rest follows analogously.
Rather we just show (ii) and get (iv) from the An-case. Set N = M1 + M

(1)
2 with

N = nl,j and let k be minimal such that

ϕi(M) =
∑

j≤k

mij + mi+1,j−n+i −
∑

j<k

mi+1,j + mi,j−n+i .

In the first step we show ϕi(M) ≤ ϕi(N).

For simplicity we introduce some notation.
For i ∈ I, l ∈ Z and a matrix M = mi,j we set

pi,l(M) :=
∑

j≤l

mi,j + mi+1,j−n+i −
∑

j<l

mi+1,j + mi,j−n+i .

First of all we look at the case mi+1,k−n+i = 0. That yields mi,k 
= 0 and further-
more Remark 4.2 says mi,k > mi+1,k−1. The fact that M is reduced also implies
mi,k−n+i−1 = 0. We show that either

pi,k(N) = pi,k(M) = ϕi(M)

or

pi,k−1(N) = pi,k(M) = ϕi(M).

Let us assume that pi,k(N) < pi,k(M). The first case that could yield this is
∑

j≤k

ni,j −
∑

j<k

ni+1,j <
∑

j≤k

mi,j −
∑

j<k

mi+1,j .

But the computation in the proof of Theorem 3.1 shows that in this case we obtain
∑

j≤k

mi,j −
∑

j<k

mi+1,j =
∑

j≤k−1

ni,j −
∑

j<k−1

mi+1,j

and since mi+1,k−n+i = 0,mi,k−n+i−1 = 0 we get

ϕi(M) = pi,k−1(N).

The other possibility to get pi,k(N) < pi,k(M) is
∑

j≤k

ni,j −
∑

j<k

ni+1,j =
∑

j≤k

mi,j −
∑

j<k

mi+1,j

and
∑

j≤k

ni+1,j−n+i −
∑

j<k

ni,j−n+i <
∑

j≤k

mi+1,j−n+i −
∑

j<k

mi,j−n+i .
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The first equation implies 0 
= m
(1)
i,k > m

(1)
i+1,k−1 and the inequality yields

0 
= m
(2)

i,k−n+i
> m

(2)

i+1,k−n+i+1
.

But the existence of 0 
= m
(1)
i,k and 0 
= m

(2)

i,k−n+i
provides a contradiction to

Lemma 5.2.
Now we consider the case mi+1,k−n+i 
= 0. Since M is reduced we get mi+1,k = 0

and in particular m
(2)
i+1,k = 0. Therefore the only chance to have pi,k(N) < pi,k(M)

is m
(1)
i,k 
= 0 and 0 
= m

(2)

i,k−n+i
> m

(2)

i+1,k−n+i+1
, which is again a contradiction to

Lemma 5.2.
Overall we get

ϕi(M) ≤ ϕi(N).

It remains to show that

ϕi(M) ≥ ϕi(N).

Suppose ϕi(M) < ϕi(N), which means there is a t ∈ Z with

pi,t (N) > ϕi(M).

We distinguish the same cases as above. At first we assume

∑

j≤t

ni,j −
∑

j<t

ni+1,j >
∑

j≤t

mi,j −
∑

j<t

mi+1,j .

That is only possible if m
(2)
i,t+1 > m

(2)
i+1,t . In particular we obtain mi,t+1 
= 0 and hence

mi,p−n+i = 0. From the An-case we know that the following inequality holds in this
case:

∑

j≤t

ni,j −
∑

j<t

ni+1,j ≤
∑

j≤t+1

mi,j −
∑

j<t+1

mi+1,j .

Combining this with mi,p−n+i = 0 and pi,t (N) > ϕi(M) we see

pi,t+1(M) > ϕi(M),

which is a contradiction to the choice of k.
Now suppose that

∑

j≤t

ni+1,j−n+i −
∑

j<t

ni,j−n+i >
∑

j≤t

mi+1,j−n+i −
∑

j<t

mi,j−n+i .

That means 0 
= m
(2)

i+1,t−n+i+1
> m

(2)

i,t−n+i
and the An-case implies again

∑

j≤t

ni,j−n+i −
∑

j<t

ni,j−n+i ≤
∑

j≤t+1

mi,j−n+i −
∑

j<t+1

mi,j−n+i .
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If mi,p+1 = 0 we obtain the same contradiction as in the above case. So we assume

mi,p+1 
= 0. But in order to get pi,t (N) > ϕi(M) we need m
(1)
i,p+1 
= 0 because other-

wise

pi,t (N) ≤ pi,t+1(M) ≤ ϕi(M).

But m
(1)
i,p+1 
= 0 and m

(2)

i+1,t−n+i+1

= 0 provide a contradiction to Lemma 5.2.

Hence

ϕi(M) ≥ ϕi(N).

Moreover these arguments also show that either k or k − 1 is minimal such that either

ϕi(N) = pi,k(N)

or

ϕi(N) = pi,k−1(N).

Finally Remark 5.2 and the An-case imply (iv), which finishes our proof. �

Example 5.1 For g of type C3 we consider the monomial

M = Y1(0)Y1(2)Y1(1)−1Y1(5)−1Y1(3)−1Y1(4)−2Y2(0)Y2(3)Y2(5)−2Y3(0)Y3(4).

We can write M as

M = X1(0)X1(2)X1(−2)X1(2)X1(0)X1(1)2X2(0)X1(1)X2(3)X1(4)X2(3)2

X1(2)2X3(0)X2(1)X1(2)X3(4)X2(5)X1(6)

with reduced version matrix

[mi,j ] =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 2 0 0
1 1 0 1 0
1 0 0 0 1
0 0 0 0 0
0 0 0 1 0
1 1 2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

We observe its lower decomposition by

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 2 0 0
1 1 0 1 0
1 0 0 0 1
0 0 0 0 0
0 0 0 1 0
1 1 2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0
1 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 1 0
0 1 2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
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and therefore

[mi,j ](1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 1 0
1 1 1 0
1 0 0 1
0 0 0 0
0 0 1 0
2 2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
= [[mi,j ](1)

]
.

One further step yields the desired matrix in N:

Φ
(
Ψ (M)

) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 2 0
1 0 1
0 0 0
0 1 0
4 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

and by application of Ψ −1 we get the monomial

N = X1(0)X1(1)X1(2)X2(0)X2(1)2X2(2)X2(0)X3(0)4

= Y1(0)Y2(0)Y2(1)2Y1(3)−1Y3(1)−4Y2(1)4 ∈ M0(3Λ1 + 2Λ2 + 2Λ3).

Let B(M) be the connected component of M ∈ M.

Corollary 5.1 For M ∈ M and Φ(Ψ (M)) =: ni,j ∈ N we consider s ∈ Z maximal
such that ni,j = 0 for all j < s and i ∈ {1, . . . , n, n, . . .1} = B. Furthermore for
k = 1, . . . , n we define the quantities:

ak :=
∑

i∈B

ni,k+s−1 −
∑

i∈B

ni,k+s ≥ 0.

Then we have

κ(M) ∈ Ms

(
n∑

k=1

akΛk

)

and by restricting our morphism to the connected component we get

κ|B(M) : B(M) → Ms

(
n∑

k=1

akΛk

)

is a crystal isomorphism.

Kim and Shin [7] also gave a realization of the crystal bases in the sense of re-
versed Young tableaux for Lie algebras of type C. In this case they obtained S(λ)

as the set of all semistandard reversed Young tableaux of shape λ with entries
1, . . . , n,n, . . . ,1 satisfying some conditions (for details see [7]). Moreover Kang et
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al. [3] constructed a morphism between M1(λ) and those tableaux for g of type Cn.
This is similar to the one in Sect. 2 and can also be generalized to a crystal morphism
between arbitrary monomials and tableaux in S(λ) via compression.

Let M be in M1(λ) for an integral dominant weight λ and mi,j its associated
reduced matrix. For i ∈ B we define again S(M) to be the reversed tableaux with
mi,j many is in the j th row. In order to get a tableaux that satisfies the condition of
S(λ) we have to apply the rules (al-1) and (al-2) which are due to [3]. If we denote by
[S(M)] the reversed tableaux we obtain from S(M) by applying those rules we can
state the following.

Proposition 5.5 [3] The map

� : M1(λ) → S(λ)

M �→ [S(M)]
is a crystal isomorphism.

As in the An-case we continue this morphism to Ms(λ). Let M ∈ Ms(λ) be a mono-
mial and mij the associated reduced matrix in N. We set S(M) to be the semistandard
reversed tableaux with mij , the number of i entries in the j − s + 1st row, and get the
morphism

� :
⋃

λ∈P,s∈Z

Ms(λ) →
⋃

λ∈P

S(λ)

M �→ [S(M)].
If we combine this result with Theorem 5.1 we get a morphism between Nakajima
monomials and tableaux:

Corollary 5.2 The map

� ◦ κ : M →
⋃

λ∈P

S(λ)

is a crystal morphism.

Let us consider an example.

Example 5.2 For g of type C3 consider the monomial

M = Y2(2)2Y2(1)−1Y3(0)Y1(0)Y3(3)−1.

Via compression we get Φ(Ψ (M)) by
⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 1 0
1 1 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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This yields the following tableau:

S(κ(M)) = (al-1)= = [S(κ(M))] ∈ S(λ).

6 Insertion scheme for monomials in type C

In this section we define a C-analogue of the bumping rule for Nakajima monomi-
als given in Sect. 4. Let M1,M2 ∈ Mat2n×Z(Z≥0) be two reduced version matrices
of monomials in M. As in the An-case we need to associate a matrix M1 ∗ M2 ∈
Mat2n×Z(Z≥0) to M1 ⊗ M2. In order to ensure that M1 ∗ M2 is in reduced form
we need more zero columns between M1 and M2 in this case. Namely we insert n

zero-columns and define

M1 ∗ M2 =

⎛

⎜⎜⎜⎜⎜⎝

0 . . . 0
0 0

M2
...

... M1
0 0
0 . . . 0

⎞

⎟⎟⎟⎟⎟⎠
∈ Mat2n×Z(Z≥0).

With the tensor product rule and the same arguments as in Proposition 4.1 we observe:

Proposition 6.1 The map

Mat2n×Z(Z≥0)/ ∼ ⊗Mat2n×Z(Z≥0)/ ∼ → Mat2n×Z(Z≥0)/ ∼
M1 ⊗ M2 �→ M1 ∗ M2

is a crystal morphism.

Furthermore for M1,M2 ∈ M we can define the bumping M2 → M1 via compres-
sion analogously to the An-case:

M1 → M2 := Ψ −1(Φ
(
Ψ (M1) ∗ Ψ (M2)

))
,

where Ψ is the crystal isomorphism between M and Mat2n×Z(Z≥0)/ ∼ and Φ :
Mat2n×Z(Z≥0)/ ∼→ N/ ∼ the matrix compression. Theorem 5.1 and Proposition
6.1 imply

Theorem 6.1 Let g be of type C. Then the map

M ⊗ M →
⋃

λ∈P,s∈Z

Ms(λ)

M1 ⊗ M2 �→ M1 → M2

is a crystal morphism.



690 J Algebr Comb (2012) 35:649–690

Kim and Shin [7, 8] also defined a bumping rule for reversed tableaux in type C.
Therefore it is natural to compare [S(M1 → M2)] and [S(M1)] → [S(M2)] as in
Sect. 3, where [S(M1 → M2)], [S(M1)] and [S(M2)] are the corresponding tableaux
in

⋃
λ S(λ) due to Corollary 5.2. Theorem 6.1 together with Corollary 5.2 implies

again
[
S(M1 → M2)

] = [
S(M1)

] → [
S(M2)

]
.
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