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Abstract In this article we study the automorphism groups of binary cyclic codes. In
particular, we provide explicit constructions for codes whose automorphism groups
can be described as (a) direct products of two symmetric groups or (b) iterated wreath
products of several symmetric groups. Interestingly, some of the codes we consider
also arise in the context of regular lattice graphs and permutation decoding.
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1 Introduction

In coding theory one frequently establishes in a natural way a connection between
codes and groups. For instance, a group acting on a code may provide valuable in-
sights into the structure of the code, as with the Mathieu groups acting on the Golay
codes.

Let C be a binary linear code of length N over F2. Up to isomorphism, this simply
means that C is a subspace of the standard vector space F

N
2 of dimension N over the

prime field F2 of characteristic 2. There is a natural action of the symmetric group
Sym(N) of degree N on F

N
2 by means of coordinate permutations. The automor-

phism group Aut(C) of C is the subgroup of Sym(N) consisting of all permutations
which map the subspace C into itself. (In general, there are several ways of associating
an automorphism group to a linear code, but the distinctions between these variations
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disappear in the context of binary linear codes; cf. [3, Section 1.5].) It can be shown
that every finite group arises as the automorphism group of a suitable binary linear
code; cf. [9]. The question which finite permutation groups, i.e. finite groups with
a fixed faithful permutation representation, arise as automorphism groups of binary
linear codes is more subtle; a possible approach to this problem was indicated in [7].

Recall that the binary linear code C of length N is said to be cyclic if its automor-
phism group contains a regular cycle of length N . The class of binary cyclic codes is
both of theoretical and of practical interest, containing well-known families of codes
such as the quadratic residue codes. It turns out that the class of groups which oc-
cur as automorphism groups of cyclic codes is much more restricted. Indeed, one
motivating force behind our work is the natural and fundamental

Problem Determine the class of finite groups which arise as the automorphism
groups of (binary) cyclic codes.

We bracket the word ‘binary’, because it would be equally interesting to inves-
tigate the problem for other ground fields. Moreover, one can ask a corresponding
question for permutation groups rather than groups; cf. Theorem E below.

We now give a summary of our results. First we exhibit two explicit families of
groups which do not arise as automorphism groups of binary cyclic codes.

Proposition A The automorphism group of a binary cyclic code is not isomorphic
(as an abstract group) to a non-trivial cyclic group of odd order.

Theorem B The automorphism group of a binary cyclic code is not isomorphic
(as an abstract group) to an alternating group Alt(n) of degree n ∈ {3,4,5,6,7}
or n ≥ 9. The group Alt(8) occurs as the automorphism group of a binary cyclic
code of length 15.

The exceptional appearance of Alt(8) can be explained by the isomorphism Alt(8) ∼=
PSL(4,2) = P�L(4,2); cf. our remarks following Theorem E.

Extensive computer calculations show that the automorphism groups of binary
cyclic codes can often be described as iterated wreath products of symmetric groups;
see [2] for a systematic account of automorphism groups of binary cyclic codes up to
length 70. We provide an explicit construction of codes with a prescribed automor-
phism group of this type.

Theorem C Let r ∈ N, and let n1, . . . , nr ∈ N≥3 be odd. Let G := Sym(n1) � . . . �
Sym(nr) be the iterated wreath product of symmetric groups of degrees n1, . . . , nr .
Then there exists a binary cyclic code C of length N := n1 · · ·nr such that Aut(C) ∼=
G.

It remains an open problem to construct binary cyclic codes such that the corre-
sponding automorphism groups are iterated wreath products of symmetric groups of
arbitrary degrees. The computational evidence suggests that such products occur fre-
quently, but that extra care must be taken if the product is to involve as factors the
symmetric group of degree 2. A few explicit examples are given in Section 8.
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More rarely, one encounters codes whose automorphism group is a direct product
of two symmetric groups. Again we are able to offer an explicit construction of binary
linear codes C0(a, b), parameterised by a, b ∈ N with a ≤ b, whose automorphism
groups are of this type; for exceptional values of a, b the automorphism groups are,
in fact, slightly larger. A detailed description of the family of codes C0(a, b) is given
in Propositions 3.1, 3.2 and Corollary 3.3. As a consequence we record

Theorem D Let a, b ∈ N with 2 < a < b and gcd(a, b) = 1. Then there exist binary
cyclic codes C such that Aut(C) ∼= Sym(a) × Sym(b).

Interestingly, some of the codes C0(a, b) were recently studied by Key and Senevi-
ratne in the context of regular lattice graphs and permutation decoding. In fact, we
provide a new, unified treatment of a related family C1(a, b) of binary linear codes
whose study was initiated in [5]. Our approach leads to a complete description of the
automorphism groups of these codes, allowing us, for instance, to decide which of
the codes C1(a, b) are cyclic. A detailed description of the family of codes C1(a, b)

is given in Propositions 4.1, 4.2 and 4.3.
Finally, we use results from the well-developed theory of permutation groups and

modular permutation representations to give a description of the primitive permuta-
tion groups which occur as automorphism groups of binary cyclic codes.

Theorem E Let G ≤ Sym(N) be the automorphism group of a binary cyclic code
C , and suppose that G is a primitive permutation group. Then one of the following
holds.

(1) Cp � G � AGL(1,p) where p = N ≥ 5 is a prime.
(2) G = Sym(N); in this case C is one of four elementary codes.
(3) G = P�L(d, q) where d ≥ 3, q = 2k for k ∈ N and N = (qd − 1)/(q − 1).
(4) G = M23 and N = 23.

Moreover, each of the groups listed in (2)–(4) does occur as the automorphism group
of a suitable binary cyclic code.

It remains an open problem to find out precisely which subgroups of affine groups
occur as automorphism groups of binary cyclic codes. This appears to be essentially
a question in combinatorial number theory. Computer calculations show that, for
instance, there exists a binary cyclic [17,8,6]-code whose automorphism group is
C8 � C17 ≤ AGL(1,17). More explicit examples are given in Section 8.

Part (3) of Theorem E can be regarded as a generalisation of the well-known
fact that the automorphism group of the binary Hamming code of length 2d − 1 is
PSL(d,2) = P�L(d,2).

Organisation The paper is divided into eight sections. Section 2 contains a brief
summary of general notions and terminology as well as the constructions of the spe-
cific code families C0(a, b), C1(a, b) and K(n1, . . . , nr ). Propositions 3.1, 3.2 and
Corollary 3.3 in Section 3 describe the structure of the codes C0(a, b) and imply The-
orem D. Propositions 4.1, 4.2 and 4.3 in Section 4 describe the structure of the codes



36 J Algebr Comb (2010) 31: 33–52

C1(a, b) related to rectangular lattice graphs. In Section 5 we determine the auto-
morphism groups of the codes K(n1, . . . , nr ) and thereby prove Theorem C. Propo-
sition A and Theorem B are established in Section 6. In Section 7 we describe the
primitive permutation groups which occur as automorphism groups of binary cyclic
codes, thus proving Theorem E. Finally, in Section 8 we give several examples of
binary cyclic codes with automorphism groups which are not fully explained by the
results in this paper.

2 Preliminaries and basic set-up

2.1 General notions

Let � be a finite set of size N := |�|. Consider an N -dimensional vector space V over
the field F2, with a fixed standard basis eω indexed by ω ∈ �. Binary linear codes C of
length N can then be constructed as subspaces of V with respect to the standard basis.
As the standard basis is indexed by elements of the set � we regard the automorphism
group Aut(C) of any linear code C ≤ V as a subgroup of Sym(�) ∼= Sym(N).

The support and the weight of v = ∑
ω∈� vωeω ∈ V are defined as

supp(v) := {ω ∈ � | vω �= 0} and wt(v) := |supp(v)|.
The common weight of v,w ∈ V is defined as

com(v,w) := |supp(v) ∩ supp(w)|,
Clearly, the weight and common weight functions are invariant under coordinate per-
mutations. The weight spectrum and the minimum distance of a linear code C ≤ V are
given by

wspec(C) := {wt(v) | v ∈ C} and d(C) := min(wspec(C) \ {0}).
The co-weight of v ∈ V is defined as

co-wt(v) := |� \ supp(v)| = N − wt(v).

We call d̂(C) := min{co-wt(v) | v ∈ C} the minimum co-distance of C .
We call an element v ∈ C decomposable if it can be written as v = w1 + w2 where

w1,w2 ∈ C \ {0} with supp(w1)∩ supp(w2) = ∅. An element of C is indecomposable
if it is non-zero and not decomposable. Clearly, any element of C of minimum weight
d(C) is indecomposable, and the set of indecomposable elements is invariant under
the action of Aut(C).

2.2 The codes C0(a, b) and C1(a, b)

Let a, b ∈ N with a ≤ b, and set � := {1, . . . , a} × {1, . . . , b} so that N := |�| = ab.
Consider the N -dimensional vector space V := Mat(a, b,F2) of all a × b matrices
over the field F2. As a standard basis of V we fix

{eij | (i, j) ∈ �}, where eij := (δikδjl)kl ∈ Mat(a, b,F2)
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denotes the elementary matrix whose (k, l)-entry equals 1 if (k, l) = (i, j) and 0
otherwise.

In order to construct specific binary linear codes C0(a, b) and C1(a, b) of length
N as subspaces of V we define the elementary row matrices

ri :=
b∑

j=1

eij =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 · · · · · · 0
. . . . . .

i→ 1 1 1 · · · · · · 1
. . . . . .

0 0 0 · · · · · · 0

⎞

⎟
⎟
⎟
⎟
⎠

for i ∈ {1, . . . , a},

and the elementary column matrices

cj :=
a∑

i=1

eij =
⎛

⎜
⎝

j↓
0 · · · 0 1 0 · · · 0
...

...
...

...
...

0 · · · 0 1 0 · · · 0

⎞

⎟
⎠ for j ∈ {1, . . . , b}.

Writing R := {ri | 1 ≤ i ≤ a} and C := {cj | 1 ≤ j ≤ b}, we define

C0 := C0(a, b) := span〈R ∪ C〉
to be the vector subspace of V spanned by the elementary row and column matrices.
Basic invariants of the code C0 and the structure of its automorphism group are de-
termined in Section 3. Here we record an inherent symmetry in the construction of
C0: we notice that Aut(C0) contains the group Sym(a) × Sym(b) which embeds into
Sym(�) via the imprimitive action

(i, j)(σ,τ) = (iσ , j τ ) for (i, j) ∈ � and (σ, τ ) ∈ Sym(a) × Sym(b). (2.1)

Indeed, in the corresponding action on V , the first factor Sym(a) permutes the el-
ements of R among themselves and fixes each elementary column matrix, whereas
the second factor Sym(b) permutes the elements of C and fixes each elementary row
matrix.

Interestingly, the code C0 = C0(a, b) also arises naturally in the study of binary
codes defined from rectangular lattice graphs by Key and Seneviratne [5]. They asso-
ciate a binary code C1 = C1(a, b) to the line graph L2(a, b) of the complete bipartite
graph Ka,b and show that for such a code permutation decoding can be used for full
error-correction. A key observation is that Aut(C1) contains Sym(a)×Sym(b). Using
the notation introduced above, one easily checks that

C1 = C1(a, b) = span〈ri + cj | (i, j) ∈ �〉
from which the inclusion Sym(a) × Sym(b) ⊆ Aut(C1) is now obvious.

2.3 A weight formula for elements of C0(a, b)

For later use we record a weight formula for elements of C0 and the weight spectra
of C0, C1. Let v ∈ C0. Then there are X ⊆ {1, . . . , a} and Y ⊆ {1, . . . , b} such that
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v = ∑
i∈X ri +∑

j∈Y cj . Writing x := |X| and y := |Y |, we find σ ∈ Sym(a) and τ ∈
Sym(b) such that Xσ = {1, . . . , x} and Y τ = {1, . . . , y}. Since the weight function is
invariant under the action of Sym(a) × Sym(b) on V , corresponding to the action on
� described in (2.1), this yields

wt(v) = wt(v(σ,τ )) = wt

(
x∑

i=1

ri +
y∑

j=1

cj

)

= (a − x)y + (b − y)x. (2.2)

Observe that v ∈ C1 if and only if x + y ≡2 0. Thus we obtain

wspec(C0) = {(a − x)y + (b − y)x | 0 ≤ x ≤ a, 0 ≤ y ≤ b},
wspec(C1) = {(a − x)y + (b − y)x | 0 ≤ x ≤ a, 0 ≤ y ≤ b, x + y ≡2 0}.

2.4 The codes K(n1, . . . , nr )

Let r ∈ N, and let n1, . . . , nr ∈ N≥3 be odd. We put n0 := 1. In this subsection we pro-
vide a recursive definition for a sequence of codes Ki = K(n1, . . . , ni), i ∈ {1, . . . , r},
whose automorphism groups are later shown to be iterated wreath products of sym-
metric groups; see Theorem 5.1. Set

�0 := {1} and �i := {1, . . . , ni} × �i−1 for i ∈ {1, . . . , r}.
For i ∈ {0, . . . , r} we fix an F2-vector space

Vi :=
⊕

ω∈�i

F2eω, dim(Vi ) = |�i | = n1 · · ·ni,

with standard basis eω indexed by ω ∈ �i and we set

Ai := span〈a(k,l)
i | k, l ∈ {1, . . . , ni} with k �= l〉 ≤ Vi

where a(k,l)
i := ∑

ω∈�i−1
e(k,ω) + e(l,ω) for any distinct k, l ∈ {1, . . . , ni}. We put

K0 := {0}, and for i ∈ {1, . . . , r} we define recursively

Ki := K(n1, . . . , ni) :=
{

K(1)
i−1 ⊕ . . . ⊕ K(ni )

i−1 ⊕ Ai if i ≡2 1,

K(1)
i−1 ⊕ . . . ⊕ K(ni )

i−1 if i ≡2 0,
(2.3)

where for each k ∈ {1, . . . , ni} the summand

K(k)
i−1 :=

{∑

ω∈�i−1
cωe(k,ω) |

∑

ω∈�i−1
cωeω ∈ Ki−1

}

≤ Vi (2.4)

is an isomorphic copy of Ki−1 with

supp(K(k)
i−1) = {k} × �i−1 if i ≥ 2.

The directness of the sums in (2.3) will be justified in the proof of the following
proposition.
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Proposition 2.1 Let i ∈ {1, . . . , r}. Then Ki = K(n1, . . . , ni) is a binary cyclic code
of length n1 · · ·ni . It has minimum distance d(Ki ) = 2 and minimum co-distance
d̂(Ki ) = ∏�i/2�

j=1 n2j . Its dimension is

dim(Ki ) =
{∑i+1

j=1(−1)j+1 ∏i
k=j nk if i ≡2 1,

∑i
j=1(−1)j+1 ∏i

k=j nk if i ≡2 0.

Proof Clearly, Ki is a binary linear code of length |�i | = n1 · · ·ni . A short induc-
tion argument shows that Aut(Ki ) contains the iterated wreath product Sym(n1) �
. . . � Sym(ni), in its natural imprimitive action on �i . The wreath product contains
a regular cyclic subgroup; cf. the treatment of the case 2 = a < b in the proof of
Corollary 3.3. Hence Ki is a cyclic code.

A straightforward induction shows that

d(Ki ) = 2 and Ki ⊆ {v ∈ Vi | wt(v) ≡2 0}.

Next we comment on the directness of the sums in (2.3). The sum Bi := K(1)
i−1 ⊕

. . . ⊕ K(ni )
i−1 is direct, since supp(K(k)

i−1) and supp(K(l)
i−1) are disjoint for any dis-

tinct k, l ∈ {1, . . . , ni}. It remains to explain that Bi ∩ Ai = {0}. Observe that
if a ∈ Ai is non-zero, then there exists k ∈ {1, . . . , ni} such that supp(K(k)

i−1) ⊆
{k} × �i−1 ⊆ supp(a). Hence a ∈ Bi would imply

∑
ω∈�i−1

e(k,ω) ∈ K(k)
i−1. But

wt(
∑

ω∈�i−1
e(k,ω)) = |�i−1| ≡2 1, whereas wt(v) ≡2 0 for any v ∈ K(k)

i−1. Therefore
a �∈ Bi , and Bi ∩ Ai = {0}.

From this we can easily compute the dimension of Ki . We have dim(Ki ) =
ni dim(Ki−1) + dim(Ai ) = ni dim(Ki−1) + (ni − 1) if i ≡2 1, and dim(Ki ) =
ni dim(Ki−1) if i ≡2 0. Induction gives the desired formula.

Finally, we determine the minimum co-distance of Ki . We contend that d̂(Ki ) =
d̂(Ki−1) if i ≡2 1, and d̂(Ki ) = ni d̂(Ki−1) if i ≡2 0. Induction then yields the de-
sired formula. For i ≡2 0 our claim follows directly from (2.3). Now suppose that
i ≡2 1. Recalling that ni ≡2 1, it is not difficult to see that a typical element realis-
ing minimum co-distance in Ki is v = v(1) + ∑�ni/2�

j=1 a(2j,2j+1)
i where v(1) ∈ K(1)

i−1
corresponds to an element realising minimum co-distance in Ki−1. �

3 The codes C0(a,b) and their automorphism groups

Let a, b ∈ N with a ≤ b. We make free use of the notation introduced in Sections 2.1,
2.2 and 2.3. The aim of this section is to establish the following results concerning
the binary linear code C0 = C0(a, b) and its automorphism group.

Proposition 3.1 The code C0 = C0(a, b) has dimension dim(C0) = a + b − 1 and
minimum distance d(C0) = a.

The special case a ∈ {1,2} allows the following explicit description.

(1) If 1 = a ≤ b, then C0 = V .



40 J Algebr Comb (2010) 31: 33–52

(2) If 2 = a = b, then C0 = {v ∈ V | wt(v) ≡2 0}.
(3) If 2 = a < b, then C0 = {∑ cij eij | ∀j, k : c1j + c2j = c1k + c2k}.

Proposition 3.2 Let C0 = C0(a, b) as above.

(1) If 1 = a ≤ b, then Aut(C0) = Sym(�) ∼= Sym(b).
(2) If 2 = a = b, then Aut(C0) = Sym(�) ∼= Sym(4).
(3) If 2 = a < b, then Aut(C0) = C2 � Sym(b).
(4) If 2 < a = b, then Aut(C0) = Sym(a) � C2.
(5) If 2 < a < b, then Aut(C0) = Sym(a) × Sym(b).

As a corollary, we record for which values of (a, b) the code C0 is cyclic, i.e.
for which (a, b) the permutation group Aut(C0) ≤ Sym(�) contains a regular cyclic
subgroup.

Corollary 3.3 Let C0 = C0(a, b) as above. Then C0 is cyclic, if and only if a ∈ {1,2}
or gcd(a, b) = 1.

Note that Theorem D follows from Proposition 3.2 and Corollary 3.3. We now
supply the proofs of the stated results.

Proof of Proposition 3.1 First we determine the dimension of C0 = span〈R ∪ C〉. For
each (i, j) ∈ � there are precisely two elements in R∪C which have a non-zero entry
in the (i, j)-position, namely ri and cj . Therefore

∑a
i=1 ri +∑b

j=1 cj = 0 and this is
the only non-trivial linear dependence relation among the a + b elementary row and
column matrices. Hence dim C0 = a + b − 1.

In order to determine d(C0) we employ the weight formula (2.2). Let v =∑
i∈X ri + ∑

j∈Y cj and write x := |X|, y := |Y |, as in Subsection 2.3. If x ∈
{1, . . . , a − 1}, then

wt(v) = (a − x)y + (b − y)x ≥ y + (b − y) = b,

with equality if and only if a = 2 or (x, y) ∈ {(1,0), (a − 1, b)}. In the latter case,
v ∈ R. If x ∈ {0, a}, then wt(v) = (a − x)y + (b − y)x is a multiple of a, and equal to
a if and only if (x, y) ∈ {(0,1), (a, b − 1)}, equivalently v ∈ C. This analysis shows,
in particular, that d(C0) = a.

It remains to justify the explicit description of C0 for a ∈ {1,2}. The cases 1 = a ≤
b and 2 = a = b are easily dealt with, noting that dim(C0) = b = N and dim(C0) =
3 = N − 1, respectively. Now suppose that 2 = a < b. The description of C0 can be
checked by counting: clearly, {∑ cij eij | ∀j, k : c1j + c2j = c1k + c2k} ⊆ C0 and both
sets contain the same number of elements, namely 2b + 2b = 2a+b−1 = 2dim(C0). �

Proof of Proposition 3.2 We treat the cases (1), (2); (3); and (4), (5).
(1), (2) From Proposition 3.1 it is clear that Aut(C0) = Sym(�), if 1 = a ≤ b or

2 = a = b.
(3) For 2 = a < b the explicit description of C0 in Proposition 3.1 shows that

Aut(C0) contains C2 � Sym(b) = Sym(b) � Cb
2 , where the action on (i, j) ∈ � of
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elements of the top group, respectively base group, of the wreath product is given by

(i, j)σ = (i, jσ ) if σ ∈ Sym(b),

(i, j)τ = (iτj , j) if τ = (τ1, . . . , τb) ∈ Cb
2 .

(3.1)

It remains to show that the automorphism group is not larger than the wreath product.
Consider ϕ ∈ Sym(�) \ (C2 � Sym(b)). The group C2 � Sym(b) acts transitively on
�. In fact, the top group acts as the full symmetric group on column-coordinates, and
elements of the base group allow us to flip row-coordinates independently for each
fixed column-coordinate; see (3.1). Therefore, multiplying ϕ by a suitable element of
C2 � Sym(b), we may assume that (1,1)ϕ = (1,1) and (2,1)ϕ = (1,2). Pictorially, ϕ

acts on a ‘generic’ element
∑

i,j cij eij ∈ V as follows:

(
c11 c12 · · · c1b

c21 c22 · · · c2b

)ϕ

=
(

c11 c21 ∗ · · · ∗
∗ ∗ ∗ · · · ∗

)

.

In particular, the image of c1 under ϕ is

cϕ
1 =

(
1 0 · · · 0
1 0 · · · 0

)ϕ

=
(

1 1 0 · · · 0
0 0 0 · · · 0

)

.

Because the two entries in the first column of cϕ
1 sum to 1, but the two entries in the

third column sum to 0, we conclude that cϕ
1 �∈ C0. Thus ϕ �∈ Aut(C0).

(4), (5) Finally, we consider the case 2 < a ≤ b. Clearly, any automorphism of C0
is uniquely determined by its effect on the elements of R ∪ C.

First suppose that 2 < a < b, and recall the weight formula (2.2) and the argument
given in the proof of Proposition 3.1. From the latter we deduce that C = {v ∈ C0 |
wt(v) = a} is invariant under Aut(C0), and furthermore that

R = {v ∈ C0 | wt(v) = b} \
{∑

j∈Y
cj | Y ⊆ {1, . . . , b}

}

is Aut(C0)-invariant. Hence both sets R and C are invariant under the action of
Aut(C0). Comparing with the action described in (2.1), this implies that Aut(C0) =
Sym(a) × Sym(b).

Now consider the case 2 < a = b. A similar argument as above shows that the
union R ∪ C = {v ∈ C0 | wt(v) = a} is invariant under the action of Aut(C0). Next
observe that for any distinct ri , rk ∈ R and any distinct cj , cl ∈ C we have

wt(ri + rk) = wt(cj + cl) = 2a, but wt(ri + cj ) = 2a − 2.

This implies that R,C form a system of imprimitivity for the action of Aut(C0) on
R∪C. Comparing with the action described in (2.1) and noticing that ordinary matrix
transposition yields an involution which swaps elementary row and column matrices,
this implies that Aut(C0) = Sym(a) � C2. �

Proof of Corollary 3.3 We use without further ado the description of Aut(C0) pro-
vided by Proposition 3.2. Clearly, it suffices to examine the situation where 2 ≤ a ≤ b,
but b �= 2.
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First consider the case 2 = a < b, where Aut(C0) = C2 � Sym(b). Let σ :=
(1 2 . . . b) ∈ Sym(b) be a regular cycle in the top group, and let τ := (1,0, . . . ,0) ∈
Cb

2 be an element of the base group acting non-trivially precisely in the first column.
Then στ generates a regular cyclic subgroup. Indeed, one checks easily that the ac-
tion of στ on � is given by (i, j)στ = (i, j + 1) if (i, j) ∈ � with j < b, and by
(1, b)στ = (2,1), (2, b)στ = (1,1) in the remaining two cases.

Next consider the case 2 < a < b, where Aut(C0) = Sym(a) × Sym(b). Let
(σ, τ ) ∈ Sym(a)× Sym(b). The number of orbits of (σ, τ ) on � is at least as large as
the number of orbits of σ times the number of orbits of τ . Hence, if (σ, τ ) is to gen-
erate a regular cyclic permutation group on �, then σ and τ are necessarily regular
cycles of length a and b, respectively. But in this case the order of (σ, τ ) is ab = |�|
precisely if gcd(a, b) = 1.

Finally consider the case 2 < a = b where Aut(C0) = Sym(a) � C2. Assume for a
contradiction that Sym(a) � C2 contains a regular cyclic subgroup. Then Sym(a) ×
Sym(a) contains a cyclic subgroup 〈(σ, τ )〉 with two orbits, each of length a2/2.
Since the number of orbits of (σ, τ ) is at least as large as the number of orbits of
σ times the number of orbits of τ , we may assume without loss of generality that
σ is a regular cycle of length a and that τ is the product of two disjoint cycles of
length a − c and c, say. Since the number of orbits of (σ, τ ) is two, we deduce that
1 = gcd(a, a − c) = gcd(a, c) = gcd(a − c, c). Hence the order of τ is (a − c)c, and
the order of (σ, τ ) equals (a − c)ac. Comparing with the orbit lengths, this gives
a2/2 = (a − c)ac. Then gcd(a, a − c) = gcd(a, c) = 1 implies (a, c) = (2,1), in
contradiction to 2 < a. �

4 Binary codes associated to rectangular lattice graphs

Let a, b ∈ N with a ≤ b. We make free use of the notation introduced in Sections 2.1,
2.2 and 2.3. The aim of this section is to establish the following results concerning
the binary linear code C1(a, b) and its automorphism group.

Proposition 4.1 If a + b ≡2 1, then C1(a, b) = C0(a, b).

Proposition 4.2 Suppose that a + b ≡2 0. Then C1 = C1(a, b) has dimension
dim(C1) = dim(C0(a, b)) − 1 = a + b − 2. Moreover, the minimum distance of C1

is d(C1) = 2a if 1 ≤ a < b, and d(C1) = 2a − 2 if 1 < a = b.
In special cases we have the following explicit description of C1.

(1) If 1 = a = b, then C1 = {0}.
(2) If 2 = a = b, then C1 = {( 0 0

0 0

)
,
( 0 1

1 0

)
,
( 1 0

0 1

)
,
( 1 1

1 1

)}
.

(3) If 1 ≡2 a ≡2 b, then C1 = {v ∈ C0 | wt(v) ≡2 0}.
(4) If (a, b) = (2,4), then C1 is the extended Hamming code of length 8.

Proposition 4.3 Suppose that a + b ≡2 0. Let C1 = C1(a, b) and C0 = C0(a, b) as
above. If (a, b) = (2,4), then Aut(C1) = AGL(3,2). If (a, b) �= (2,4), then Aut(C1) ≤
Aut(C0), with equality if 1 ≡2 a ≡2 b or 2 < a. In the remaining cases we have
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(1) If 2 = a = b, then Aut(C1) = D8 is a dihedral group of order 8 in its natural
action of degree 4.

(2) If a = 2 and b > 4 with b ≡2 0, then Aut(C1) = Sym(b) � B , where B =
{(τ1, . . . , τb) ∈ Cb

2 | ∑b
j=1 τj = 0}; consequently, Aut(C1) has index 2 in

Aut(C0) = C2 � Sym(b).

We recall that the structure of C0(a, b) and its automorphism group are described
in Section 3. We now give the proofs of the stated results. As before we write C1 =
C1(a, b) and C0 = C0(a, b). Moreover, we define

a :=
a∑

i=1

ri =
b∑

j=1

cj =
⎛

⎝
1 1 · · · 1
...

...
...

1 1 · · · 1

⎞

⎠ .

Proof of Proposition 4.1 Suppose that a ≡2 1 and b ≡2 0. Since the underlying field
has characteristic 2, we have

cj = a + (a + cj ) =
b∑

l=1

(r1 + cl) +
a∑

i=1

(ri + cj ) ∈ C1 for 1 ≤ j ≤ b.

Moreover, from c1 ∈ C1 we deduce that ri = (ri + c1) + c1 ∈ C1 for 1 ≤ i ≤ a. It
follows that R ∪ C ⊆ C1, hence C1 = span〈R ∪ C〉 = C0. The argument for a ≡2 0,
b ≡2 1 is very similar. �

Proof of Proposition 4.2 The special cases 1 = a = b and 2 = a = b are eas-
ily dealt with. Now suppose that 2 < b, and assume for the moment that we can
prove the assertion concerning d(C1). Observe that the claimed value for d(C1) is
strictly larger than d(C0) = a; cf. Proposition 3.1. On the other hand, we clearly have
C1 + span〈c1〉 = C0, and it follows that dim(C1) = dim(C0) − 1 = a + b − 2. More-
over, we have wt(ri + cj ) = a + b − 2 ≡2 0 for all (i, j) ∈ �, and thus C1 ⊆ W
where W := {v ∈ C0 | wt(v) ≡2 0}. Note that in the special case 1 ≡2 a ≡2 b the vec-
tor c1 ∈ C0 has weight wt(c1) = a ≡2 1 so that dim(W ) = dim(C0) − 1 = dim(C1).
From this we obtain C1 = W as wanted. Similarly one easily computes C1 in the
special case (a, b) = (2,4).

Hence it suffices to prove that d(C1) = 2a if 1 ≤ a < b, and d(C1) = 2a − 2 if
1 < a = b. As explained, we shall assume that 2 < b throughout.

Recall the weight formula (2.2). As stated in Subsection 2.3, the elements of C1
are of the form v = ∑

i∈X ri + ∑
j∈Y cj where x := |X| and y := |Y | satisfy the

condition x + y ≡2 0. Since a + a = 0, we deduce for any such v that

v =
(∑

i∈X
ri + a

)
+

(
a +

∑

j∈Y
cj

)
=

∑

i �∈X
ri +

∑

j �∈Y
cj .

For our analysis we may therefore assume that x ≤ �a/2�. Of course, we shall also
assume that v �= 0.

If x = 0, then y ≥ 2 and wt(v) = ay ≥ 2a, with equality if and only if y = 2. In
this case, v = cj + cl for suitable j �= l. Likewise, if x ≥ 2, then

wt(v) = (a − x)y + (b − y)x = (a − 2x)y + (bx − 2a) + 2a ≥ 2a,
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with equality if and only if (a, b, x) = (4,4,2) or (a, x, y) = (b,2,0). In the latter
case, v = ri + rk for suitable i �= k. Finally, if x = 1 (and consequently 1 < a and
y ≡2 1), then

wt(v) = (a − 1)y + (b − y) = (a − 2)y + b.

The last expression takes its minimum non-zero value for y = 1: in this case v =
ri + cj for suitable i, j and

(i) wt(v) = 2a − 2 < 2a if 1 < a = b;
(ii) wt(v) = a + b − 2 ≥ 2a if 1 < a < b, with equality if and only if b = a + 2.

This analysis shows that d(C1) = 2a if 1 ≤ a < b, and d(C1) = 2a − 2 if 1 < a = b,
as wanted. �

Proof of Proposition 4.3 If (a, b) = (2,4) then Aut(C1) can be computed from the
description of C1 in Proposition 4.2. Now consider the situation for (a, b) �= (2,4).
First we treat the special cases (1) and (2). Then we deal with the remaining cases (3)
1 ≡2 a ≡2 b and (4) 2 < a ≤ b with a ≡2 b ≡2 0.

(1) If 2 = a = b, the group Aut(C1) is easily calculated from the explicit descrip-
tion of C1 in Proposition 4.2.

(2) Next consider the case a = 2 and b > 4 with b ≡2 0. From the weight analysis
in the second half of the proof of Proposition 4.2 we see that C1 contains only one type
of elements of minimum weight 2a = 4, namely those of the form cj + cl . Therefore
the set

C � C := {cj + cl | 1 ≤ j, l ≤ b with j �= l}
is invariant under Aut(C1). Furthermore, we observe that the set C can be described
as

C = {v ∈ V | wt(v) = 2 and ∃w1,w2 ∈ C � C :
com(w1,w2) = com(v,w1) = com(v,w2) = 2}.

Hence C is invariant under Aut(C1). As C1 is complemented in C0 by span〈cj 〉 for any
j ∈ {1, . . . , b}, this shows that Aut(C1) ≤ Aut(C0). Now Aut(C0) = C2 � Sym(b) by
Proposition 3.2. Note that Sym(b)�B , where B = {(τ1, . . . , τb) ∈ Cb

2 | ∑b
i=1 τi = 0},

is a subgroup of index 2 in C2 � Sym(b). From C � C ⊆ C1 it is easily seen that
Sym(b) � B ≤ Aut(C1), and in order to prove equality it suffices to exhibit a single
element in C2 � Sym(b) which does not leave C1 invariant. Take τ := (1,0, . . . ,0) ∈
Cb

2 . One readily computes that (r1 + c2)
τ + (r1 + c2) = c1 �∈ C1, hence C1 is not

invariant under the action of τ , as wanted.
(3) Consider the case 1 ≡2 a ≡2 b. From the explicit description of C1 in Propo-

sition 4.2 we see that Aut(C0) ≤ Aut(C1). It remains to prove the reverse inclusion.
Since wt(a) = ab ≡2 1, we have C0 = C1 + span〈a〉. Since both summands in this
decomposition are Aut(C1)-invariant, it follows that Aut(C1) ≤ Aut(C0).

(4) The final case to consider is 2 < a ≤ b and a ≡2 b ≡2 0. From Proposition 3.2
it is clear that Aut(C0) ≤ Aut(C1). It remains to prove the reverse inclusion. We claim
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that R + C = {ri + cj | (i, j) ∈ �} is invariant under Aut(C1). Indeed, we contend
that this set is equal to

S := {v ∈ C1 | wt(v) = a + b − 2 and

∀w ∈ C1 : wt(w) = a + b − 2 ⇒ com(v,w) ≥ 1}.
We use again the weight formula (2.2) and an analysis similar to the one in the proof
of Proposition 4.2. Elements of weight a + b − 2 in C1 are obtained from solutions
(x, y) of the equation (a − x)y + (b − y)x = a + b − 2 satisfying the extra condition
x + y ≡2 0. As described earlier we may assume that x ≤ a/2. We consider three
cases

(i) If x = 0, then ay = a +b−2 has a permissible solution y = 1+ (b−2)/a if this
number is an even positive integer. A corresponding element of C1 would have
the form

∑
j∈Y cj where |Y | = 1 + (b − 2)/a. Since 2(1 + (b − 2)/a) ≤ b, for

any such element v there would be a similar element w such that com(v,w) = 0.
Hence none of these elements would belong to the set S.

(ii) If x = 1, then (a − 1)y + (b − y) = a + b − 2 only admits the solution y = 1,
corresponding to elements of the form ri + cj which we want to characterise.

(iii) If x ≥ 2, then (a − x)y + (b − y)x = a + b − 2 implies

0 = (a − 2x)y + b(x − 1) − a + 2 ≥ 0 + b − a + 2 ≥ 2,

a contradiction.

This analysis shows that R + C = S is invariant under Aut(C1) as claimed. Observe
that for all i, k ∈ {1, . . . , a} and j, l ∈ {1, . . . , b},

wt((ri + cj ) + (rk + cl)) =

⎧
⎪⎨

⎪⎩

2a + 2b − 4 if i �= k and j �= l,
2a if i = k and j �= l,
2b if i �= k and j = l,
0 if i = k and j = l.

Since 2 < a ≤ b, we have 0 < 2a ≤ 2b < 2a + 2b − 4. Suppose first that a < b. A
simple computation shows that the set R+C can be partitioned uniquely into subsets
S1, . . . ,Sa , each of size b, such that for every i ∈ {1, . . . , a} and all v,w ∈ Si one
has wt(v + w) = 2a. Moreover, we can order the sets S1, . . . ,Sa such that for every
i ∈ {1, . . . , a} the vector ri is characterised as the unique element v ∈ V with wt(v) =
b and com(v,w) = b − 1 for all w ∈ Si . This shows that R is Aut(C1)-invariant.
If a = b a similar argument proves that the union R ∪ C is Aut(C1)-invariant. Since
C0 = C1 + span〈v〉 for any v ∈ R∪C, this implies that in any case Aut(C1) ≤ Aut(C0),
as wanted. �

5 The codes K(n1, . . . ,nr) and their automorphism groups

Let r ∈ N, and let n1, . . . , nr ∈ N≥3 be odd. Theorem C is an immediate conse-
quence of the following description of the automorphism group of the code Kr =
Kr (n1, . . . , nr ), which was defined in Section 2.4.
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Theorem 5.1 Let r ∈ N, and let n1, . . . , nr ∈ N≥3 be odd. Then Kr = Kr (n1, . . . , nr)

satisfies Aut(Kr ) = Sym(n1) � . . . � Sym(nr), where the wreath product acts imprimi-
tively as a permutation group of degree n1 · · ·nr .

We make free use of the notation introduced in Sections 2.1 and 2.4. Let i ∈
{3, . . . , r} with i ≡2 1, and let k ∈ {1, . . . , ni}. Since K(k)

i−1 is an isomorphic copy

of Ki−1, we can use the decomposition Ki−1 = K(1)
i−2 ⊕ . . . ⊕ K(ni−1)

i−2 given by (2.3)
to write

K(k)
i−1 = K(k,1)

i−2 ⊕ . . . ⊕ K(k,ni−1)

i−2 (5.1)

where K(k,m)
i−2 , similarly defined as in (2.4), is an isomorphic copy of Ki−2 with

supp(K(k,m)
i−2 ) = {(k,m)} × �i−2 for m ∈ {1, . . . , ni−1}.

Our strategy for understanding the structure of Aut(Ki ) is based on the description
of certain indecomposable elements in Ki .

Lemma 5.2 Let i ∈ {3, . . . , r} with i ≡2 1.
(1) Let k, l ∈ {1, . . . , ni} with k �= l. Then there exists an indecomposable element
v ∈ Ki such that

(i) v ∈ a(k,l)
i + K(k)

i−1 + K(l)
i−1,

(ii) wt(v) = 2d̂(Ki−1) = 2n2n4 · · ·ni−1,
(iii) supp(v) ∩ {(k,m)} × �i−2 �= ∅ for all m ∈ {1, . . . , ni−1},
(iv) supp(v) ∩ {(l,m)} × �i−2 �= ∅ for all m ∈ {1, . . . , ni−1},
(2) Let v ∈ Ki , and let a := π(v) where π : Ki → Ai denotes the natural projection
induced by the direct decomposition (2.3). Then

wt(v) ≥ (wt(a)/|�i−1|) · d̂(Ki−1).

In particular, if a �= 0, then wt(v) ≥ 2d̂(Ki−1).
(3) If v ∈ Ki is indecomposable with wt(v) ≤ 2d̂(Ki−1), then

(a) v ∈ a(k,l)
i + K(k)

i−1 + K(l)
i−1 for suitable k, l ∈ {1, . . . , ni} with k �= l and wt(v) =

2d̂(Ki−1), or
(b) v ∈ K(k,m)

i−2 for suitable k ∈ {1, . . . , ni} and m ∈ {1, . . . , ni−1}.

Proof Everything follows from the decompositions (2.3) and (5.1), together with the
fact that 2d̂(Ki−1) = 2ni−1d̂(Ki−2) = 2n2n4 · · ·ni−1; see Proposition 2.1. �

Proof of Theorem 5.1 In Section 2.4 it was observed that the wreath product, with its
natural imprimitive action, is contained in Aut(Kr ). Hence, by induction, it suffices
to show that the collection

supp(K(k)
r−1) = {k} × �r−1, k ∈ {1, . . . , nr}, (5.2)
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constitutes a system of blocks for the action of Aut(Kr ) on �r . For r = 1 this is
clearly the case. Hence suppose that r ≥ 2.

For t ∈ N ∪ {∞} we define an undirected graph �t(Kr ) with the following vertex
set and edge set: V�t(Kr ) := �r , and E�t(Kr ) consists of edges, joining ω1 and ω2

whenever there exists an indecomposable element v ∈ Kr such that wt(v) ≤ t and
{ω1,ω2} ⊆ supp(v). Clearly, Aut(Kr ) preserves the graph structure of �t(Kr ).

By a simple induction argument we deduce from Lemma 5.2 (1) that

(i) �∞(Kr ) is connected if r ≡2 1,
(ii) �∞(Kr ) has precisely nr connected components if r ≡2 0.

Moreover, in the case r ≡2 0, the vertex sets of the connected components of �∞(Kr )

are exactly the sets listed in (5.2) which thus form a system of blocks, as wanted.
Now suppose that r ≡2 1 and put t (r) := 2n2n4 · · ·nr−1. Again by induction we

draw from Lemma 5.2 the more precise conclusion that �t(r)(Kr ) is connected, while
�t(r)−1(Kr ) falls into nrnr−1 connected components whose vertex sets are precisely
the sets

supp(K(k,m)
r−2 ) = {(k,m)} × �r−2, (k,m) ∈ {1, . . . , nr} × {1, . . . , nr−1}. (5.3)

In order to proceed we define a variation of the graphs considered thus far. For
v ∈ Kr let �̃v(Kr ) denote the graph which is obtained from �t(r)−1(Kr ) by adding
possibly extra edges, connecting ω1 and ω2 whenever {ω1,ω2} ⊆ supp(v). Let 
v :=

v(Kr ) denote the vertex set of the connected component in �̃v(Kr ) which contains
supp(v).

Lemma 5.2 shows that, if v ∈ Kr is indecomposable with wt(v) = t (r), then either
|
v| = 2|�r−1| or |
v| = |�r−2|. Indeed, in the former case 
v is the union of two
distinct sets listed in (5.2), while in the latter case 
v is one of the sets listed in (5.3).
This implies that the sets in (5.2) can be characterised as intersections 
v,w := 
v ∩

w where v,w ∈ Kr are indecomposable with wt(v) = wt(w) = t (r) and |
v,w| =
|�r−1|. From this description it follows that the sets in (5.2) form a system of blocks,
as wanted. �

6 Symmetric, alternating and cyclic groups

Let N ∈ N, and let V = ⊕N
i=1 F2ei be an F2-vector space of dimension N , with

fixed standard basis ei indexed by i ∈ {1, . . . ,N}. Put a := ∑N
i=1 ei . We refer to the

following four codes as elementary codes:

E0 := {0}, E1 := F2a, E2 := {v ∈ V | wt(v) ≡2 0}, E3 := V .

If N = 1, then E0 = E2 and E1 = E3; if N = 2, then E1 = E2. Otherwise the four codes
are distinct. But note that E0 and E3, respectively E1 and E2, are orthogonal to one
another with respect to the standard inner product. Clearly, the automorphism group
of any of the elementary codes is the full symmetric group Sym(N). We record the
following observation and, for completeness, indicate a short proof; cf. [7, Section 4].
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Proposition 6.1 Let C be a binary linear code of length N . If Alt(N) ≤ Aut(C) and
N �= 2, then C is one of the elementary codes E0, . . . , E3.

Proof Suppose that Alt(N) ≤ Aut(C) and N ≥ 3. We may assume that C �⊆ E1 so that
we find v ∈ C with 0 < wt(v) < N . Put k := wt(v). As Alt(N) acts k-homogeneously,
we may assume that v = ∑k

i=1 ei where 1 ≤ k < N . If k = 1, then C = E3. If k ≥ 2,
then applying the 3-cycle σ := (1, k, k + 1) ∈ Alt(N), we see that e1 + ek+1 = v +
vσ ∈ C , hence E2 ⊆ C . �

Corollary 6.2 Let C be a binary linear code of length N ≥ 3. Then Aut(C) �= Alt(N).

Now we prove Proposition A and Theorem B.

Proof of Proposition A Let C be a binary cyclic code of length N such that G =
Aut(C) is cyclic of odd order. Since G contains a regular cyclic subgroup of order N

and since any transitive cyclic subgroup of Sym(N) has order precisely N , we deduce
that Aut(C) = CN . We may realise a code isomorphic to C as an ideal I of the finite
ring R := F2[X]/(XN − 1), equipped with the standard basis 1,X, . . . ,XN−1. The
ideal I is principal and invariant under the Frobenius automorphism of R. The latter
induces a permutation π of the standard basis, given by Xm �→ X2m where exponents
are to be read as integers modulo N . As π fixes the basis element 1, it can only belong
to a regular cyclic group, if it is trivial. Thus N = 1 or N = 2. Since N is odd, we
conclude that C = {0}, and Aut(C) is trivial. �

Proof of Theorem B Let C be a binary cyclic code of length N such that Aut(C)

is isomorphic to an alternating group Alt(n) of degree n ≥ 3. An exact factorisa-
tion of Alt(n) consists of two subgroups G,H ≤ Alt(n) such that Alt(n) = GH and
G∩H = 1. Since Aut(C) contains a regular cyclic subgroup of order N which is com-
plemented by any point stabiliser, this provides an exact factorisation Alt(n) = GH

with one of the groups G,H cyclic of order N . Exact factorisations of alternating
groups were studied by Wiegold and Williamson [10]. Adhering to the notation in
[10, Theorem A], our setting allows for two possibilities. It could be that G is cyclic
of odd order n = N and H ∼= Alt(n− 1), but this would contradict Corollary 6.2. The
only other possibility is that n = 8, that G ∼= AGL(3,2) is an affine group and H is
cyclic of order N = 15. Noting that Alt(8) ∼= PSL(4,2) = P�L(4,2), we observe that
this group does indeed arise as the automorphism group of the binary Hamming code
of length 24 − 1 = 15. �

7 Primitive permutation groups

In this section we prove Theorem E, using results from the well-developed theory of
permutation groups and modular permutation representations.

Let N ∈ N. Let G ≤ Sym(N) be the automorphism group of a binary cyclic code
C , and suppose that G is a primitive permutation group. Then G contains a regular
cyclic subgroup and hence one of the following holds; see [4, Theorem 3].
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(1) Cp ≤ G ≤ AGL(1,p) where p = N is prime.
(2) G = Sym(N), or G = Alt(N) where N ≥ 3 is odd.
(3) PGL(d, q) ≤ G ≤ P�L(d, q) where d ≥ 2, q = pk is a prime power and N =

(qd − 1)/(q − 1).
(4) G = PSL(2,11), M11 or M23 where N = 11, 11 or 23 respectively.

Proof of Theorem E We consider the four cases listed above.
(1) Suppose that Cp ≤ G ≤ AGL(1,p) where p = N is prime. Here AGL(1,p)

denotes the affine group of degree 1. If p = 2 then G = Sym(2) will be covered
by case (2) below. So suppose that p ≥ 3. Proposition A shows that Cp � G. If
p = 3, then G = AGL(1,3) = Sym(3) will be covered by case (2) below. Now
suppose that p ≥ 5. For a contradiction assume that G = AGL(1,p). From [8, Ta-
ble 1 and Lemma 2] we deduce that the underlying code C is elementary, and hence
G = Aut(C) = Sym(p), a contradiction.

(2) In Section 6 it was shown that the symmetric group Sym(N) occurs as the
automorphism group of the elementary codes. According to Corollary 6.2 the alter-
nating group Alt(N), N ≥ 3, does not occur as the automorphism group of a binary
linear code of length N .

(3) Suppose that PGL(d, q) ≤ G ≤ P�L(d, q) where d ≥ 2, q = pk is a prime
power and N = (qd − 1)/(q − 1). First we assume that d = 2 and arrive at a contra-
diction. As PGL(2, q) acts 3-transitively on 1-dimensional projective space P

1(Fq),
we deduce from [8, Table 1 and Lemma 2] that the underlying code C is elementary,
and hence G = Aut(C) = Sym(N), a contradiction. Hence d ≥ 3, and, similarly, we
deduce from [8, Table 1 and Lemma 2] that p = 2 and hence q = 2k .

Let V denote the permutation module over F2, associated to the natural ac-
tion of PGL(d, q) on (d − 1)-dimensional projective space P

d−1(Fq). Let U1 be a
PGL(d, q)-submodule of V . We claim that U1 is automatically P�L(d, q)-invariant.
Indeed, let σ be a generator of the cyclic group P�L(d, q)/PGL(d, q) ∼= Aut(Fq |F2).
Then U2 := U σ

1 , regarded as a PGL(d, q)-module, is simply a twist of U1. Writing
F2 for the algebraic closure of F2, we conclude that the composition factors of the
F2PGL(d, q)-modules U1 := F2 ⊗ U1 and U2 := F2 ⊗ U2 are the same. The submod-
ules of the F2PGL(d, q)-module V := F2 ⊗ V are uniquely determined by their com-
position factors; see [1]. Hence we conclude that U1 = U2 and this implies U1 = U2.
We obtain G = P�L(d, q), as wanted.

For d ≥ 3 and q = 2k we still need to justify that the permutation group P�L(d, q)

does indeed occur as the automorphism group of a suitable binary cyclic code K. The
explicit description of permutation modules of PGL(d, q) in [1] guarantees the exis-
tence of a non-elementary binary cyclic code K of length N = (qn − 1)/(q − 1) such
that PGL(d, q) ≤ Aut(K). From [6] we conclude that either Aut(K) ⊆ P�L(d, q)

or Alt(N) ⊆ Aut(K). Proposition 6.1 rules out the second possibility, and hence our
argument above implies that Aut(K) = P�L(d, q).

(4) A finite computation shows that of the three possible permutation groups pre-
cisely one, namely the Mathieu group M23 acting as a permutation group of degree
23, occurs as the automorphism group of a binary cyclic code, namely the binary
Golay code. �
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Table 1 Selected examples of automorphism groups of binary cyclic codes

Ref. no. [N,k, d]-code C Aut(C) Ref. in [2]

1 [40,35,2] Sym(5) � Sym(2) � Sym(4) E.11-4

2 [48,43,2] Sym(6) � Sym(2) � Sym(4) E.17-6

3 [48,34,2] Sym(2) � Sym(2) � Sym(6) � Sym(2) E.17-17

4 [35,20,3] PSL(3,2) � Sym(5) E.7-6

5 [35,28,4] Sym(5) × PSL(3,2) E.7-4

6 [45,27,4] (Sym(5) × Sym(3)) � Sym(3) E.15-16

7 [48,32,4] (Sym(8) � Sym(2)) × Sym(3) E.17-21

8 [35,20,6] Sym(5) × (C3 � C7) E.7-7

9 [85,73,4] Sym(5) × (C8 � C17) cf. B.3

8 Examples

In this section we give several explicit examples of binary cyclic codes with auto-
morphism groups whose appearance can not be fully explained by the results in this
paper. The examples are based on computer calculations carried out by the first author
as part of his PhD project [2].

8.1 Other types of groups

In [2, Appendices B-I] one finds, in particular, a systematic listing of the non-soluble
groups which occur as automorphism groups of binary cyclic codes up to length 70.
In Table 1 we select nine single examples, in order to illustrate that groups more
complicated than those covered by Theorems C, D and E occur.

The first three examples indicate that one should be able to generalise Theorem C
to include symmetric groups of even degree. However, the experimental evidence in
[2] also suggests that the automorphism group of a binary cyclic group is never an
iterated wreath product of symmetric groups ending in Sym(2) � Sym(2).

8.2 Automorphism groups of affine type

Theorem E gives a description of the primitive permutation groups which occur as
automorphism groups of binary cyclic codes. However, it remains an open problem
to find out precisely which subgroups of the affine groups AGL(1,p) occur, where
p ≥ 5 is prime.

Let p be a prime. Then every binary cyclic code of length N = p can be realised
as an ideal of the residue class ring R := F2[X]/(Xp − 1). Let f denote the order
of 2 in the multiplicative group F

∗
p and put e := (p − 1)/f . Then Xp − 1 factorises

over F2 as a product of X − 1 and e distinct irreducible polynomials of degree f .
Accordingly, R decomposes as a direct sum of the field F2 and e copies of the field
F2f . Hence the number of ideals of R is 2e+1. The binary cyclic codes corresponding
to these ideals fall into a certain number of isomorphism classes. The dimensions of
the codes range over the values kf and kf + 1, where k ∈ {0, . . . , e}. In the special
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Table 2 Subgroups of AGL(1,p) as automorphism groups of binary cyclic codes of length N = p in the
range 5 ≤ p ≤ 79

p p − 1 param. m such that [N,k, d]-parameters for codes C
Aut(C) ∼= Cm � Cp (in pairs, corresponding to dual codes)

17 16 = 24 8 = 23 [17,8,6], [17,9,5]
31 30 = 2·3·5 5 [31,10,12], [31,21,5]; [31,11,11], [31,20,6];

[31,15,6], [31,16,5]; [31,15,8], [31,16,6]
10 = 2·5 [31,10,10], [31,21,5]; [31,11,10], [31,20,6]
15 = 3·5 [31,15,8], [31,16,7]

41 40 = 23 ·5 20 = 22 ·5 [41,20,10], [41,21,9]
43 42 = 2·3·7 14 = 2·7 [43,14,14], [43,29,6]; [43,15,13], [43,28,6]
47 46 = 2·23 23 [47,23,12], [47,24,11]
71 70 = 2·5·7 35 = 5·7 [71,35,12], [71,36,11]
73 72 = 23 ·32 9 = 32 [73,9,28], [73,64,3]; [73,10,28], [73,63,4];

[73,18,24], [73,55,6]; [73,19,21], [73,54,6];
[73,27,16], [73,46,8]; [73,27,16], [73,46,9];
[73,27,18], [73,46,9]; [73,27,20], [73,46,9];
[73,28,13], [73,45,8]; [73,28,16], [73,45,10];
[73,28,17], [73,45,10]; [73,36,10], [73,37,9];
[73,36,12], [73,37,9]; [73,36,12], [73,37,10];
[73,36,14], [73,37,9]; [73,36,14], [73,37,12];
[73,36,14], [73,37,13]

18 = 2·32 [73,18,24], [73,55,6]; [73,19,19], [73,54,6];
[73,36,12], [73,37,12]

36 = 22 ·32 [73,36,14], [73,37,13]
79 78 = 2·3·13 39 = 3·13 [79,39,16], [79,40,15]

case where e = 1, there are only four codes, namely the elementary codes discussed
in Section 6. Considering a different example, if p = 2l − 1 is a Mersenne prime,
then e = (p − 1)/ l and f = l so that there are 2((2l−2)/ l)+1 ≈ 2p/ log(p) ideals and a
priori an equal number of corresponding binary cyclic codes of length p to consider.
Clearly, as p increases efficient algorithms are required to study such a large number
of codes.

Computer calculations show that, in the range 5 ≤ p ≤ 79, there exists a binary
cyclic code C of prime length N = p such that Aut(C) is a subgroup of the affine
group AGL(1,p) if and only if p ∈ {17,31,41,43,47,71,73,79}. For primes p in
this range, Table 2 lists the basic parameters [N,k, d] of all binary cyclic codes C
of length N = p such that Aut(C) ∼= Cm � Cp is a subgroup of the affine group
AGL(1,p). For convenience the prime factorisations of p − 1 and m are exhibited.
For p ∈ {5,7,11,13,19,23,29,37,53,59,61,67} there exists no binary cyclic code
C of prime length N = p such that Aut(C) is a subgroup of AGL(1,p). Except for
p = 7 and p = 23, this fact can be explained by the observation that the polynomial
Xp − 1 admits over F2 only one irreducible factor in addition to the trivial factor
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X−1: according to the argument given above this implies that all binary cyclic codes
of the lengths in question are elementary.
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