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Abstract Infinite measures on von Neumann algebras are classified according to properties
analogous to those from classical measure theory. These properties are carefully examined
in case of semifinite von Neumann algebras. Some examples are also given and the direction
for further research indicated.
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1 Introduction

The aim of the paper is to look at weights on von Neumann algebras from the perspec-
tive of commutative measure theory, i.e. to treat them as infinite measures. Weights have
an important place in the theory of operator algebras. For example, the flow of weights
(see [9, Ch. XII, Section 4]) is an essential tool in the structural theory of type III von
Neumann algebras. The most important class of weights are the semifinite ones, defined
in a way adjusted to the noncommutative situation. In particular, the subalgebra on which
the weight is finite cannot be defined as it is in the commutative situation. Moreover,
the definition of semifiniteness cannot be translated to the noncommutative context in the
most direct way. We try to see what classes of weights one obtains when applying the
classical definitions concerned with infinite measures to the noncommutative situation.
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By translating the definition of semifiniteness we get a class of weights that we call densely
semifinite. On the other hand, an important subclass of semifinite measures, namely the
σ -finite ones, lead to the notion of orthogonally semifinite weight, with the provision that
‘countable’ is replaced by ‘arbitrary’ in the definition (compare Proposition 5). We also
consider a well established (see [7, S.10.9], [9, Ch. VIII, Section 2, Ex.1]) class of strictly
semifinite weights, introduced by Combes [2], that together with the integrable ones are used
substantially in the theory of type III algebras. This paper is the first attempt at comparison
of the various classes of weights. We concentrate on the semifinite case, since it allows us
to use methods that are elementary in the sense of not using the modular theory in a sub-
stantial way. Our results are complete for the full algebra B(H), a case of special interest to
physicists.

The proofs are deliberately a bit longer than they could have been, to make the paper
accessible to the people with only secondary interest in operator algebras. We hope that
the measure theoretic aspect of the paper might catch the attention of a wider audience.
The authors would like to thank Ken Dykema for directing their attention to the paper of
Herman and Takesaki [6], and the anonymous reviewers for their useful comments and
corrections.

2 Definitions

Assume ϕ is a normal faithful weight on a von Neumann algebra M (in what follows, the
assumption of faithfulness is not always used, but it does not hurt). We denote by ProjM the
set of orthogonal projections of M , and by {σϕ

t }t∈R the modular automorphism group of M

with respect to ϕ.
We use the following standard notation:

m+
ϕ = {x ∈ M+ : ϕ(x) < ∞}
nϕ = {x ∈ M : x∗x ∈ m+

ϕ }
mϕ = n∗

ϕnϕ = linear span of m+
ϕ

Mϕ = {x ∈ M : σ
ϕ
t (x) = x ∀t ∈ R}

= {x ∈ M : xmϕ ⊆ mϕ,mϕx ⊆ mϕ and ϕ(xy) = ϕ(yx) ∀y ∈ mϕ}

Let us recall (see [1] and [9, Ch.VII, Lemma 1.2]) that m+
ϕ is a hereditary subcone of M+,

nϕ is a left ideal of M , and mϕ is a ∗-subalgebra of M such that mϕ ∩M+ = m+
ϕ . Moreover,

Mϕ is a von Neumann subalgebra of M called the centralizer of ϕ in M .

Definition 1 We call the weight ϕ:

(1) semifinite if m+
ϕ generates M as a von Neumann algebra (equivalently, the ∗-algebra

mϕ is dense in M in any of the following topologies: weak, σ -weak, strong, σ -strong,
strong∗, σ -strong∗);

(2) orthogonally semifinite if there exists a family {ei} such that ei ∈ ProjM ∩ m+
ϕ for all

i, and
∑

ei = 1;



Int J Theor Phys (2015) 54:4341–4348 4343

(3) densely semifinite if for each non-zero e ∈ ProjM there exists f ∈ ProjM such that
0 �= f ≤ e and ϕ(f ) < ∞;

(4) strictly semifinite if there exists a family {ϕi} of positive normal functionals from M
(i.e. ϕi ∈ M+∗ for all i) with pairwise orthogonal supports such that

∑
suppϕi = 1

and ϕ = ∑
ϕi (pointwise). Equivalently, ϕ is strictly semifinite if its restriction to the

centralizer Mϕ is semifinite. (See [2, 3], [7, S.10.9], [9, Ch.VIII, Section 2, Ex.1]).

3 General algebras

Let us start with the comparison of the notions in the most general case.

Proposition 2 (1) Every strictly semifinite weight is orthogonally semifinite.
(2) A weight is densely semifinite if and only if it is orthogonally semifinite on each

reduced von Neumann algebra eMe, where e ∈ ProjM . In particular, every densely
semifinite weight is orthogonally semifinite.

(3) Every orthogonally semifinite weight is semifinite.

Proof (1) Put ei = suppϕi .
(2) “⇒” Let {ei} be a maximal family of mutually orthogonal non-zero subprojections of

e of finite weight (use Zorn lemma and dense semifiniteness to show its existence). If∑
ei < e, then we could enlarge the family by adding to it a non-zero projection ≤ e−∑
ei , hence

∑
ei = e and ϕ|eMe is orthogonally semifinite. “⇐” Let 0 �= e ∈ ProjM .

If ϕ is orthogonally semifinite on eMe, then e = ∑
ei with ei ∈ ProjM, ϕ(ei) < ∞,

and at least one of the ei’s must be non-zero.
(3) Assume M acts on a Hilbert space H , and {ei}i∈I is the family from the definition. For

J ⊆ I , J finite, put fJ = ∑
i∈J ei . We are going to show that x ∈ M , fJ xfJ ∈ mϕ

and fJ xfJ → x strongly, which shows the semifiniteness of ϕ. In fact, for any i, j we
have ei, ej ∈ nϕ ∩n∗

ϕ and nϕ is a left ideal, so that eixej ∈ n∗
ϕnϕ = mϕ . Now, fJ → 1

strongly and, for any ξ ∈ H ,

‖(fJ xfJ − x)ξ‖ ≤ ‖fJ x(1 − fJ )ξ‖ + ‖(1 − fJ )xξ‖
≤ ‖x‖‖(1 − fJ )ξ‖ + ‖(1 − fJ )xξ‖ → 0,

which ends the proof.

4 Traces

It is easy to see that the four notions of semifiniteness given above coincide in the
commutative case. We show that in fact it is enough for the measure to be ‘commutative’.

Proposition 3 Let ϕ = τ be a faithful normal trace on a von Neumann algebra M . Then
conditions (1), (2), (3), (4) from Definition 1 are equivalent.

Proof We know from Proposition 2 that (3) ⇒ (2), (4) ⇒ (2) and (2) ⇒ (1).
(1) ⇒ (3). Let e ∈ ProjM . By the Kaplansky density theorem [8, Ch. II, §4], there is a

net (xi), xi ∈ M+, ‖xi‖ ≤ 1 such that xi → e strongly and τ(xi) < ∞ for all i. Then
τ(exie) = τ(x

1/2
i ex

1/2
i ) ≤ τ(xi) < ∞ for all i. Since exie → e strongly, there must exist
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an i0 such that exi0e �= 0. Hence, for some ε > 0, 0 �= εχ[ε,∞[(exi0e) ≤ exi0e ≤ e. Put
f = χ[ε,∞[(exi0e). Then 0 �= f ≤ (1/ε)e, so that f ≤ e and τ(f ) < ∞.

(2) ⇒ (4). Take {ei} with τ(ei) < ∞ and
∑

ei = 1. Then, for all i, j , ej xei ∈ mϕ

(cf. proof of part (3) of Proposition 2) and τ(x) = supn

∑n
i,j τ (ej xei) = ∑

i τ (eixei). Put
τi = eiτei (where eτe means τ(e · e)). Then suppτi = ei and τ = ∑

τi .

5 σ -finite algebras

In the classical measure theory we usually assume a measure to be σ -finite. There is a
natural way of defining such a measure in the noncommutative measure theory:

Definition 4 A (faithful normal) weight on M is σ -finite if there is a sequence {en} of
mutually orthogonal projections from M with

∑∞
n=1 en = 1 such that ϕ(en) < ∞ for all n.

It turns our that the definition is, in fact, not needed — the proper notion, namely
that of an orthogonally semifinite weight, has already been defined. This follows from the
proposition below.

Proposition 5 (1) If ϕ is σ -finite, then it is orthogonally semifinite.
(2) If ϕ is orthogonally semifinite and the algebra M is σ -finite, then ϕ is σ -finite.
(3) There are no (faithful normal) σ -finite weights on a non-σ -finite von Neumann

algebra.

Proof (1) This is trivial.
(2) Let {ei} be a family of projections from the definition of orthogonal semifiniteness.

Since it is an orthogonal family and the algebra is σ -finite, all but a countable number
of the projections must be zero.

(3) Let {fi}i∈I such that for all i ∈ I , 0 �= fi ∈ ProjM,
∑

i∈I fi = 1 and cardI > ℵ0.

Suppose that there is a countable family {en} of mutually orthogonal projections from
M such that ϕ(en) < ∞ for all n and

∑
en = 1. As in the proof of part (3) of Propo-

sition 2, enfien ∈ mϕ for any i, n. Since
∑

i∈I ϕ(enfien) = ϕ(en(
∑

i∈I fi)en) =
ϕ(en) < ∞, for each n there is a set In such that cardI \ In ≤ ℵ0 and ϕ(enfien) = 0
for i ∈ In. Thus the intersection of In’s is non-empty and there is i0 ∈ I such
that ϕ(enfi0en) = 0 for all n. The faithfulness of ϕ implies (fi0en)

∗(fi0en) =
0, hence fi0enfi0 = 0 for all n. Summing over n gives fi0 = 0, which is
a contradiction.

6 Semifinite algebras

Here we gather the properties of weights that hold in all semifinite von Neumann algebras.
Let M be a semifinite von Neumann algebra with a faithful normal semifinite (f.n.s.) trace
τ , and let ϕ be a faithful normal weight on M . We denote by h the density of ϕ with respect
to τ (for existence, see [9, Ch. VIII, Thm. 3.14]), i.e. ϕ(·) = τ(h·) in the sense explained
in [9, Ch.VIII, Section 2, Lemma 2.7], . Recall that h is τ -measurable if, for some n ∈ N,
τ(χ[n,∞[(h)) < ∞. In the sequel, we say that the positive operator h has pure point spectrum
if there exists an orthogonal family {ei} of projections from M and a family of positive
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numbers {λi} such that h = ∑
λiei . It is clear that the spectrum of h is in this case the

closure of the set of eigenvalues of h.

Theorem 6 With the assumptions above, we have:

(1) If ϕ is semifinite, then it is orthogonally semifinite.
(2) If h is τ -measurable (for some f.n.s. trace on M), then ϕ is densely semifinite.
(3) If h has pure point spectrum, then ϕ is strictly semifinite.

Proof (1) Put en = χ[n,n+1[(h). Since all the notions of semifiniteness coincide for a
trace (Proposition 3), for each n there is a family {f (n)

i }i∈In such that for all n and i ∈
In, τ(f

(n)
i ) < ∞ and, for all n, en = ∑

i∈In
f

(n)
i . Note that ϕ(f

(n)
i ) = τ(h(f

(n)
i )) ≤

(n + 1)τ (f
(n)
i ) < ∞, which means that ϕ is orthogonally semifinite.

(2) Assume h is τ -measurable. Let 0 �= p ∈ ProjM . Since τ is densely semifinite (see
Proposition 3), there is a non-zero projection q ≤ p with τ(q) < ∞. Put en =
χ[0,n[(h). Then 1 − en → 0 strongly, and, from measurability of h, τ(1 − en) < ∞ for
sufficiently large n, hence τ(1 − en) → 0. Put rn = q ∧ en. If rn = 0 then q ≺ 1 − en

(see [8, Ch.V, Prop. 1.6]), so that τ(q) ≤ τ(1−en). It follows that for some n0, rn0 �= 0,
otherwise τ(q) = 0, which gives q = 0, a contradiction. Note that rn0 ≤ q ≤ p and

ϕ(rn0) = τ(h(q ∧ en0)) ≤ n0τ(q ∧ en0) ≤ n0τ(q) < ∞.

(3) If h has pure point spectrum, then h = ∑
λiei , where λi > 0 and ei form an orthog-

onal family of non-zero projections from M . Then ϕ = ∑
ϕi , where ϕi = τ(λiei ·).

By Proposition 3, for each i the projection ei decomposes into an orthogonal sum of
projections with finite trace, hence each ϕi decomposes into a sum of positive normal
functionals with mutually orthogonal supports. This shows that ϕ is strictly semifinite.

7 Finite algebras

Let M be a finite von Neumann algebra, and let ϕ be a faithful normal weight on M . If M

is σ -finite, then there exists a faithful normal finite trace on M , and this is the trace that we
use in this case, with h being the density of ϕ with respect to the trace.

Proposition 7 For a finite von Neumann algebra, all the notions from Definition 1 coincide.

Proof (1) Assume first that the algebra in question is σ -finite. We need to show that if ϕ is
semifinite, then it is both densely and strictly semifinite. Note that any positive densely
defined operator affiliated with a finite σ -finite von Neumann algebra is measurable,
hence the weight is densely semifinite by Theorem 6, (2). Put en = χ[n,n+1[(h). Then∑∞

n=0 en = 1, and ϕ(en) = τ(hen) ≤ (n + 1)τ (en) < ∞. Thus enϕen are positive
normal functionals on M with mutually orthogonal supports. We shall show that ϕ =∑

enϕen. First of all, for a fixed x ∈ M+, enxen ≤ ‖x‖en, so that enxen ∈ m+
ϕ . Hence

x1/2en ∈ nϕ for all n, so that emxen ∈ mϕ for all m, n. If m �= n,
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ϕ(emxen) = τ(h1/2emxenh
1/2) = τ(x1/2enh

1/2h1/2emx1/2)

= τ(x1/2enh
1/2enemh1/2emx1/2) = 0.

Consequently, ϕ(x) = ∑
(enϕen)(x), which shows that ϕ is strictly semifinite.

(2) Let now M be an arbitrary finite von Neumann algebra. Then there exists a family
{zi} of non-zero central projections in M such that

∑
zi = 1 and each of the reduced

von Neumann algebras ziMzi = Mzi is σ -finite. Note that mϕ|Mzi
= mϕzi . In fact, if

x ∈ m+
ϕ zi , then x ∈ Mzi and ϕ(x) < ∞, so that x ∈ mϕ|Mzi

. If, on the other hand,
x ∈ (Mzi)+ and ϕ(x) < ∞, then x ∈ m+

ϕ zi . Hence, for any i, ϕ|Mz+
i is semifinite.

By (1), it is also strictly and densely semifinite. It follows directly from the definition
of strict semifiniteness that ϕ is also strictly semifinite. If now e ∈ ProjM is such that
ϕ(e) = ∞, then for some i we have ezi �= 0. By dense semifiniteness of ϕ|(Mzi)+,
there is a 0 �= f ∈ Proj(Mzi) such that f ≤ ezi and ϕ(f ) < ∞. We conclude that ϕ

is densely semifinite.
Obviously, ϕ is also orthogonally semifinite, either by Proposition 2 or by Theorem

6, (1).

8 Semifinite factors

Let M be a semifinite factor, and τ a faithful normal semifinite trace on M . If M is a type
I∞ factor, we use for τ the standard, normalized trace tr (i.e. tr(e) = 1 for any minimal
projection e ∈ M). As before, we denote by h the density of ϕ with respect to the chosen
trace τ .

Proposition 8 If M is a type I factor, then ϕ is strictly semifinite if and only if its density h

with respect to the standard trace tr has pure point spectrum.

Proof If ϕ is strictly semifinite, then there exists a family ϕi of positive normal linear
functionals {ϕi} with mutually orthogonal supports and with

∑
ϕi = ϕ. Then ϕi = tr(hi ·)

with trace class, hence also compact, densities hi , with
∑

hi = h strongly. Since each hi

has pure point spectrum, so does their sum h. The other direction has already been proved
in Theorem 6.

The next theorem is of interest only for infinite factors.

Theorem 9 If M is a semifinite factor, then ϕ is densely semifinite if and only if h is mea-
surable. In particular, if M is a type I factor, then it is densely semifinite if and only if its
density h with respect to the trace tr is bounded.

Proof Assume that h is not τ -measurable. Let (nk) be an increasing sequence of natural
numbers with n1 = 1, such that τ(χ[nk,nk+1[(h)) ≥ 1 (assured by non-measurability of h).
Let ek ∈ ProjM be such that for all k, ek ≤ χ[nk,nk+1[(h) and τ(ek) = 1. The possibility of
choosing ek in such a way is obvious for type I∞ factors, by the convention stated at the
beginning of the section, and is easy to show for finite algebras, see for example [4]. For a
type II∞ factor, we can assume, by dense semifiniteness of τ , that χ[nk,nk+1[(h) majorizes a
finite projection in M with trace ≥ 1, and then use the result for finite algebras. In particular,
since we are in a factor, all the projections ek are equivalent. Choose uk ∈ M so that
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u∗
kuk = e1, uku

∗
k = ek . Let (αk) be a sequence of positive real numbers such that

∑
α2

k = 1
and

∑
α2

knk = +∞ (this is easy — just note that nk ≥ k for all k). Put v = ∑
αkuk . It

is easy to check that v is well defined and belongs to M (in fact, the sum exists in norm
topology). Define p = vv∗. Since v∗v = e1, p �= 0. We shall show that if 0 �= q ≤ p, then
ϕ(q) = ∞. Put g = v∗qv. Then g ≤ v∗v = e1 and q = vgv∗. We calculate:

ϕ(q) = τ(hq) = τ(hvgv∗)
= τ(v∗hvg) = τ((

∑

j

αju
∗
j )h(

∑

k

αkuk)g)

≥ τ(
∑

k,j

αju
∗
j njαkukg) = τ(

∑

k

α2
knkg) = +∞.

Consequently, ϕ is not densely semifinite. The other direction has already been proved in
Theorem 6.

9 Counterexamples

The examples given below show that the conditions from Theorem 6, although sufficient,
are not necessary. Although not most general possible, the examples indicate the direction
of future work — finding necessary and sufficient conditions for weights to be, respectively,
densely and strictly semifinite. The latter may turn out to be unfeasible, but certainly some
more interesting conditions guaranteeing strict semifiniteness can be found.

Example 10 Let N be a semifinite von Neumann algebra with faithful normal semifinite
trace τN , and let K be a σ -finite non-atomic commutative von Neumann algebra. Put M =
N⊗̄K and τ = τN ⊗ μ, where μ corresponds to the Lebesgue measure in the isomorphism
between K and L∞([0, 1], Leb). Then there exists a strictly semifinite weight on M whose
density with respect to τ does not have a pure point spectrum.

Proof Let mf be a multiplication operator on L2([0, 1], Leb) with f (t) = t for t ∈ [0, 1].
Put h = 1 ⊗mf . It is clear that the spectrum of h is not a pure point one. On the other hand,
the weight ϕ with density h with respect to τ is, in fact, a trace, hence it is strictly semifinite
by Proposition 3.

Example 11 Let M be a semifinite von Neumann algebra and τ an infinite faithful normal
semifinite trace on M . Suppose that the restriction of τ to Z(M) is semifinite (which implies
that the center of M is infinite dimensional). Then there exists a densely semifinite weight
ϕ on M such that its density with respect to τ is non-τ -measurable.

Proof By Proposition 3, the restriction of τ to (the positive part of) the center of M is
densely semifinite, hence there exists a family {zi} of non-zero projections from Z(M)

such that τ(zi) < +∞ for all i, and
∑

zi = 1. Since τ(1) = +∞, the family is infi-
nite, and we can suppose (grouping the projections if necessary) that the family is countable
(indexed by k ∈ N), and that τ(zk) ≥ 1 for all k. Let h = ∑

kzk . Then h is well
and densely defined, and obviously affiliated with M . Note that h is not τ -measurable:
τ(χ[n,∞[(h) = τ(

∑
k≥n zk) = +∞. On the other hand, h is bounded, hence measurable,

on each Mzk , which means that the weight ϕ given by ϕ = τ(h·) is densely semifinite on
each Mzk , by Theorem 6. Consequently, ϕ is densely semifinite (see the second part of the
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proof of Proposition 7). Thus, we have a densely defined semifinite weight (even a trace)
with density which is not τ -measurable.

Any von Neumann algebra can be equipped with a faithful normal strictly semifinite
weight. This result is both classical and easy. It is not a priori evident that there exist non-
strictly semifinite weights on type II∞ or type III algebras, but there are two non-trivial
examples guaranteeing their existence. First, Haagerup [5] proved that there is a densely
defined positive operator h affiliated with type II∞ von Neumann algebra such that the von
Neumann algebra {h}′ consisting of operators commuting with h is of type III . Note that
the algebra is in fact a centralizer of the weight ϕ = τ(h·), which means that the weight
cannot be strictly semifinite (otherwise its restriction to the type III algebra would be a
semifinite trace). Secondly, Herman and Takesaki [6] showed that one can built a faithful
normal semifinite weight on a type III algebra with trivial centralizer. Again, such a weight
cannot be strictly semifinite.

The situation concerning dense and orthogonal semifiniteness in type III algebras is a
mystery. We do not know if there exist semifinite weights that are not orthogonally semifi-
nite. We do not know whether there exist densely semifinite weights in factors of type III,
and we do not know whether there exist weights that are not densely semifinite in such fac-
tors. The simple nature of the definitions suggests that clearing up the circumstances can be
useful when proving theorems in type III algebras.
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