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Abstract We study a fermion-boson transformation. Our approach is based on the 3 × 3
equations which are subequations of both the Dirac and Duffin-Kemmer-Petiau equations
and thus provide a link between these equations. We show that solutions of the free Dirac
equation can be converted to solutions of spin-0 Duffin-Kemmer-Petiau equation and vice
versa. Mechanism of this transition assumes existence of a constant spinor.
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1 Introduction

Supersymmetry is a promising candidate for physics beyond the standard model and has
the remarkable feature of mixing bosons and fermions. Recently, several supersymmetric
equations related mainly to anyons in (2+1) dimensions [1–5] as well as to the (3+1)-
dimensional Majorana-Dirac-Staunton framework [6], uniting fermionic and bosonic fields,
have been studied. However, while supersymmetry predicts existence of supersymmetric
partners of known elementary particles, LHC experiments put their existence into doubt.
We would like to propose an alternative view of fermion-boson mixing based on the Fermi-
Bose (FB) duality. The FB duality was first discovered for zero-mass relativistic equations:
it was shown that some zero-mas equations, for example the massless Dirac equation, can
describe fermionic as well as bosonic states [7–11], see also [12]. Furthermore, Polyakov
discovered possibility of fermion-boson transmutation of elementary excitations of a scalar
field interacting with the topological Chern-Simons term in (2+1) dimensions [13]. The FB
duality was further studied for the massive Dirac equation [14, 15] (earlier results in this
direction, although limited to the stationary case, were published in Refs. [16, 17]).

In the present paper we attempt to find a fermion-boson transformation connecting solu-
tions of the Dirac and spin-0 Duffin-Kemmer-Petiau (DKP) equations. Our approach is
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based on the 3 × 3 equations, reviewed in the next Section, which are subequations of both
the Dirac and DKP equations [18] (see also [19] for the interacting case) and thus provide
a link between these equations. We interpret the 3 × 3 equations in Section 3, showing that
they can be transformed nonlocally into the form which can be obtained from the Dirac
equation by application of the unitary Melosh transformation. In the next Section we demon-
strate that, indeed, solutions of the free Dirac equation can be converted into solutions of
the free DKP equation and vice versa. Mechanism of this transition assumes existence of an
auxiliary constant spinor. We discuss our results in the last Section. In what follows we use
notation and conventions described in [18].

2 The 3 × 3 Equations

It has been shown in [18] that the Dirac equation:

pAḂηḂ = mξA

pAḂξ
A = mηḂ

}
, (1)

or γ μpμ� = m� , � = (ξ, η)T with γ μ matrices in spinor representation, can be splitted
into two 3 × 3 subequations:

p11̇η1̇ = mψ11̇
1̇

p21̇η1̇ = mψ21̇
1̇

p22̇ψ11̇
1̇

− p12̇ψ21̇
1̇

= mη1̇

⎫⎪⎬
⎪⎭ , (2)

p12̇η2̇ = mψ12̇
2̇

p22̇η2̇ = mψ22̇
2̇

−p21̇ψ12̇
2̇

+ p11̇ψ22̇
2̇

= mη2̇

⎫⎪⎬
⎪⎭ , (3)

cf. Eqns. (33) and (34) in [18], provided that the identities:

ψ11̇
1̇

+ ψ12̇
2̇

= ξ 1, (4)

ψ21̇
1̇

+ ψ22̇
2̇

= ξ 2, (5)

are fulfilled. It should be stressed that (2) and (3) can be written in covariant form as Dirac
equations with some projection operators due to identities p21̇ψ11̇ = p11̇ψ21̇, p22̇ψ12̇ =
p12̇ψ22̇ [18].

There is also alternative splitting:

p11̇θ1
11̇

+ p12̇θ1
12̇

= mξ 1

p11̇ξ
1 = mθ1

11̇
p12̇ξ

1 = mθ1
12̇

⎫⎪⎬
⎪⎭ , (6)

p21̇θ2
21̇

+ p22̇θ2
22̇

= mξ 2

p21̇ξ
2 = mθ2

21̇
p22̇ξ

2 = mθ2
22̇

⎫⎪⎬
⎪⎭ , (7)
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with identities involving spinor ηȦ:

θ1
11̇

+ θ2
11̇

= η1̇, (8)

θ1
12̇

+ θ2
22̇

= η2̇. (9)

Note that some components of spinors ψAḂ
Ċ

and θA
BĊ

are missing in (2), (3) and (6), (7).
We shall address this problem in Section 4.

3 The 3 × 3 Equations and the Melosh Transformation

In this Section we show that from the 3 × 3 equations (2) and (3) the Melosh form of the
Dirac equation follows.

Unitary non-local transformations of the Dirac equation, performed to elucidate its
physical meaning, have a long history. The most known is the Foldy-Wouthuysen (FW)
transformation [20, 21]. Another important transformation was introduced by Melosh [22].
This transformation, also known as the Wigner-Melosh rotation, was used to interpret deep-
inelastic scattering within the quark model [22–24]. The Melosh transformed Dirac equation
reads:

p0� =
(
α3p3 + β

√
p2⊥ +m2

)
�, (10)

where p⊥ = (p1, p2) and � = (�1,�2,�3, �4)
T .

Since there are several matrices commuting with the Melosh hamiltonian there are sev-
eral possibilities of projecting it onto two component subspaces. For example, applying
projection operatos P± = 1

2

(
1 ± iα1α2

)
we get in the spinor representation of Dirac

matrices:

p0�A =
(
−σ 3p3 + σ 1

√
p2⊥ +m2

)
�A, (11)

p0�B =
(
+σ 3p3 + σ 1

√
p2⊥ +m2

)
�B, (12)

where �A = (�2,�4)
T and �B = (�1,�3)

T .
To show the connection with our theory we substitute ψ21̇

1̇
computed from the second of

(2) to the third one to get:

p11̇η1̇ = mψ11̇
1̇

p22̇ψ11̇
1̇

= m

(
1 + p12̇p21̇

m2

)
η1̇

⎫⎬
⎭ . (13)

After a non-local substitution,
√

1 + p12̇p21̇

m2 η1̇ = ϕ, we obtain equation:

p11̇ϕ = m

√
1 + p12̇p21̇

m2 ψ11̇
1̇

p22̇ψ11̇
1̇

= m

√
1 + p12̇p21̇

m2 ϕ

⎫⎪⎬
⎪⎭ , (14)
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or

p0�A =
(
−σ 3p3 + σ 1

√
m2 + p2⊥

)
�A. (15)

where �A = (ϕ,ψ11̇
1̇
)T .

It follows that, starting from (2), we have obtained the first Melosh equation (11) for
the wavefunction �A. Analogously, the second Melosh equation (12) follows easily from
(3). The procedure described above bears some analogy to the lightlike reduction of the
(3+1)-dimensional massless Dirac equation yielding the Levy-Leblond equation in (2+1)
dimensions, which can be further splitted into two two-component equations [25].

4 Mechanism of Fermion—Boson Transition

Let us demand that spinors ψAḂ
Ċ

, ηȦ(x) can be expressed as:

ηȦ(x) = χ(x)α̂Ȧ, ψAḂ
Ċ

(x) = ψAḂ (x) α̂Ċ, (16)

where α̂Ȧ is a constant spinor (i.e. independent on x). Substituting (16) into (2) and (3) we
get:

p11̇χ(x)α̂1̇ = mψ11̇(x)α̂1̇

p21̇χ(x)α̂1̇ = mψ21̇(x)α̂1̇

p22̇ψ11̇(x)α̂1̇ − p12̇ψ21̇(x)α̂1̇ = mχ (x) α̂1̇

⎫⎪⎬
⎪⎭ , (17)

p12̇χ(x)α̂2̇ = mψ12̇(x)α̂2̇

p22̇χ(x)α̂2̇ = mψ22̇(x)α̂2̇

−p21̇ψ12̇(x)α̂2̇ + p11̇ψ22̇(x)α̂2̇ = mχ (x) α̂2̇

⎫⎪⎬
⎪⎭ . (18)

Equations (17) and (18) are proportional to α̂1̇, α̂2̇, respectively. Therefore, these equa-
tions are obviously fulfilled if the following 3× 3 equations, obtained by neglecting factors
α̂1̇, α̂2̇:

p11̇χ(x) = mψ11̇(x)

p21̇χ(x) = mψ21̇(x)

p22̇ψ11̇(x)− p12̇ψ21̇(x) = mχ(x)

⎫⎪⎬
⎪⎭ , (19)

p12̇χ(x) = mψ12̇(x)

p22̇χ(x) = mψ22̇(x)

−p21̇ψ12̇(x)+ p11̇ψ22̇(x) = mχ(x)

⎫⎪⎬
⎪⎭ , (20)

hold. It follows that (19) and (20) are the 3 × 3 equations obtained by splitting the DKP
equation, cf. Eqns. (12) and (13) in [18]. Moreover, the problem mentioned at the end of
Section 2 is solved due to ansatz (16)—all components of spinors ψAḂ , α̂Ȧ are present in
(17) and (18). Equations (19) and (20) can be also written as the Dirac equations with some
projection operators [18].

Components of the ψBĊ

Ḋ
have still to fulfill the identities (4) and (5). Substituting the

ansatz (16) into (4) and (5) and taking into account equations (17) and (18) we arrive at
consistency conditions:

p11̇χ(x)α̂1̇ + p12̇χ(x)α̂2̇ = ξ 1(x), (21)

p21̇χ(x)α̂1̇ + p22̇χ(x)α̂2̇ = ξ 2(x), (22)
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or pAḂχ(x)α̂Ḃ = ξA (x), which expresses spinor ξA(x) in terms of the scalar χ(x) and a
constant spinor α̂Ȧ.

5 Discussion

We have shown that it is possible, starting with the Dirac equation (1), to obtain the
following chain of equations:

1. splitted Dirac equations (2) and (3),
2. transformed splitted Dirac equations (17) and (18),
3. (19) and (20) (i.e. splitted DKP Eqns. (12) and (13) of Ref. [18]),
4. and, finally, the spin-0 DKP equation (5) of Ref. [18].

Moreover, solutions of the Dirac equation are transformed into solutions of the DKP
equation, provided that the ansatz (16) and conditions (21) and (22) hold. The ansatz reduces
also number of spinor components so that (17) and (18) contain all components of spinors
ψAḂ , α̂Ȧ. Let us also notice that although 3 × 3 equations can be written in covariant form
as Dirac equations with some projection operators [18] both are needed to ensure Lorentz
invariance.

It follows that in order to perform the fermion-boson transformation, described in
Section 4, we have to postulate existence of a constant spinor α̂Ȧ. In alternative formu-
lation based on (6–9) we have to introduce a constant spinor β̂A (we put in this case
θA
BĊ

(x) = θBĊ (x) β̂A, ξA(x) = χ(x)β̂A). Existence of constant Grassmann spinors (i.e.
with anticommuting components) is postulated in supersymmetry [26]. Assuming now that
α̂Ȧ is the Grassmann spinor we arrive at a suggestion of supersymmetry. Of course, the
problem of connection of the present formalism with supersymmetry needs further work.

The Melosh rotation has been used to understand better the results of deep inelastic
scattering which probes the light-cone (current) quarks rather than the constituent quarks
defined in rest frame of the nucleon [22–24]. The Melosh rotation transforms the con-
stituent quark picture to the light-cone formalism. Since the Melosh transformed Dirac
equation arises naturally in our theory it seems that fermion-boson transformation described
in Section 4 applies to the deep inelasting scattering setting.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.
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