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Abstract In the tunneling framework of Hawking radiation, charged particle’s tunneling in
the modified Reissner-Nordstrom black hole from gravity’s rainbow is investigated. To this
end, following the Schwarzschild solution in gravity’s rainbow, the metric of the modified
Reissner-Nordstrom black hole is given. In the tunneling process, the metric fluctuation is
taken into account, due to not only the energy conservation and electric charge conservation,
but also the spacetime quantum effects. The calculation shows out that the emission rate
satisfies the first law of black hole thermodynamics and is consistent with an underlying
unitary theory. In addition, it is found that the entropy of the modified black hole is different
to the Benkestein-Hawking entropy and the quantum corrections of the entropy appears.

Keywords Quantum tunneling · Modified black hole · Quantum effect

1 Introduction

Hawking radiation is a central question concerning the quantum physics of black holes [1, 2].
In the tunneling framework [3–5] (for a review see [6]), Hawking radiation is presented
semi-classically as a tunneling process of outgoing particles from the event horizon. The
crucial point of the tunneling framework is that the self-gravitation of the tunneling particles
is taken into account and hence the background is allowed to fluctuate. By calculating the
imaginary part of the tunneling action, the emission rate is related to the change of black
hole entropies before and after the emission. This implies that information conservation of
black holes is possible. Thus, the method not only presented a description on Hawking radi-
ation originating from the tunneling effect of particle near the event horizon [1, 2], but also
give a way for a possible resolution of the information loss paradox [7, 8].

There are two methods for calculating the tunneling action, that is, the radial trajectory
method [4–6] and the Hamilton-Jacobi method [3, 6]. Using the radial trajectory method,
the tunneling research has been done in many cases including different black holes [9–12],
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different emitted particles [10–14] and cosmological horizons [13, 15, 16]. Also, using the
Hamilton-Jacobi method, the tunneling analysis has been carried out and expanded, for ex-
ample in Rindler spacetime [3, 17–22]. In these tunneling researches, the result that the
tunneling probability is related to the change of Benkestein-Hawking (B-H) entropies be-
fore and after the emission are obtained. But, it is well known that, the quantum effects of
spacetime should be considered and the B-H entropy can be endowed with quantum cor-
rections [23–25]. Thence, by the Hamilton-Jacobi method, the quantum correction to the
tunneling program was discussed and the quantum corrected entropy of black holes was
calculated [26–33]. Also, in the radial trajectory method, the quantum effects of spacetime
was considered and the emission rate was related the quantum corrected entropy of black
hole [34–43]. These results show that, considering the quantum corrections of black hole
entropy and spacetime, information conservation of black hole is still possible.

Further, some resent progress and insights for the tunneling program have been pro-
posed [19–22, 44–54]. Therein, with the aid of density matrix techniques, the tunneling
mechanism was reformulated to directly find the radiation spectrum [44, 45] and the ap-
proach was applied in different gravity to obtain the entropy spectrum of black holes [46]. It
is noteworthy that, by this approach, the black body spectrum was obtained [21, 22, 44, 45].
In addition, some proposals on the calculation of particle’s action and the acquisition of
black hole information have been proposed [47–54]. But, in the literatures, much less at-
tention was paid to the case of charged particle’s tunneling in the quantum corrected space-
time [42].

Recently, a Planck scale modified special relativity namely doubly special relativity
(DSR) has been put forward (for a review see [55]). In the context of DSR, the de-
formed spacetimes geometry has been investigated and some proposals have been put for-
ward [56–61]. Therein, a spacetime geometry named as gravity’s rainbow has been pre-
sented [56, 57]. The main feature of the deformed spacetime is that the geometry depend
on the energies of particles moving in it. The energy dependence can be seen as the quan-
tum effects of the deformed spacetime. The modified Schwarzschild solution in gravity’s
rainbow has been given [57]. Further, the thermodynamics [39, 40, 62–64] and geometry
structure [65–67] of the modified Schwarzschild black hole have been investigated.

In this paper, charged particle’s tunneling in the modified Reissner-Nordstrom (R-N)
black hole from gravity’s rainbow is investigated. Our main aim is to investigate the influ-
ence of the spacetime quantum effect to the tunneling of charged particles. On the other
hand, we also hope to give a look over on the modified black hole. For this, following [57],
we firstly write the metric of the modified R-N black hole from gravity’s rainbow. Further,
some thermodynamic quantities of the modified black hole are given. Next, using the ra-
dial trajectory method of tunneling framework, the emission rate of charged particle in the
modified R-N spacetime is calculated. Here, while charged particles tunnel though the event
horizon, the metric fluctuation is taken into account, due to not only the energy conservation
and electric charge conservation but also the quantum effects of the spacetime. The calcu-
lation shows out that, the emission rate satisfies the first law of black hole thermodynamics
and is consistent with an underlying unitary theory. In addition, it is found that the entropy
of the modified black hole is different to B-H entropy and the quantum corrections of the
entropy is discussed.

The paper is organized as follows. In Sect. 2, the modified R-N solution from gravity’s
rainbow is given. Then in Sect. 3, using the radial trajectories method of tunneling frame-
work, the emission rate of charged particle from the modified R-N black hole is calculated.
Also, the entropy with quantum corrections for the modified black hole is investigated. The
last part is the summary and discussion.
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2 The Modified R-N Black Holes from Gravity’s Rainbow

DSR was proposed to preserve the relativity of inertial frames when keeping the Planck
energy as a universal constant for all inertial observers [55]. It’s staring point and main
result is the modified dispersion relation (MDR) as

E2f 2
1 (E;Ep) − p2f 2

2 (E;Ep) = m2
0, (1)

where f1 and f2 are two energy functions from which rotational symmetry can be preserved,
and Ep = 1/

√
8π is the Planck energy. Here and in this paper, the unit of c = G = � = k = 1

is used.
In the context of DSR, different deformed spacetimes have been proposed [56–61].

Among them, it is posed that the flat spacetimes has the invariant [56]

ds2 = −dt2

f 2
1

+ dr2

f 2
2

+ r2

f 2
2

dΩ2. (2)

Then, the geometry are described by one parameter family of metric as a function of particle
energy observed by an inertial observer. That is to say, particles with different energies will
probe different DSR spacetime. Thus, the DSR spacetime is endowed with an energy de-
pendent quadratic invariant, namely rainbow metric. In the low energy realm i.e. E/Ep� 1,
f1 and f2 approach to unit and the DSR spacetime can turn to the usual flat spacetime. This
is consistent with the correspondence principle.

By extending DSR and rainbow metric to incorporate curvature, a one parameter family
of energy-momentum tensors Tμν(E) are defined and the Einstein equations can be modified
as [57]

Gμν(E) = 8πG(E)Tμν(E) + gμν(E)Λ(E), (3)

where G(E) is an energy dependent Newton’s constant. The energy dependence of G(E)

implies that the effective gravitational coupling will depend on the energy of test particle
and will satisfy a renormalization group equation. Using probes of energy E = 0, the G(E)

are turn to the physical Newton’s constant G(0) = G = 1. Also, the Λ(E) is defined as the
energy dependent cosmological constants and is consistent with the correspondence princi-
ple. Accordingly, gravity’s rainbow was presented and the modified Schwarzschild solution
was given as [57]

ds2 = − 1

f 2
1

(
1−2M

r

)
dt2

s + 1

f 2
2

(
1−2M

r

)−1

dr2 + r2

f 2
2

dΩ2. (4)

Now, following (4) , we give the modified R-N black hole in gravity’s rainbow. The
general form for a spherically symmetric metric in gravity’s rainbow is

ds2 = −F ′(r ′)
f 2

1

dt ′2 + H ′(r ′)
f 2

2

dr ′2 + r ′2

f 2
2

(
dθ2 + sin2 θdϕ2

)
, (5)

where t ′, r ′, θ and ϕ are energy independent coordinates. The energy dependent area and
time coordinates are, respectively,

r(E) = r ′

f2
, t (E) = t ′

f1
. (6)

It is seen that, the energy dependence of the metric and coordinates is expressed by the
energy functions f1 and f2. Further, the energy dependent metric functions can be defined
as

F
(
r(E),E

) = F ′(r ′), H
(
r(E),E

) = H ′(r ′). (7)
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Then the metric (5) can be written as

ds2 = −F
(
r(E),E

)
dt2 + H

(
r(E),E

)
dr2 + r2dΩ2. (8)

This is a one parameter family of metrics. For each E, by the extended Birkoff’s theorem
that any spherically symmetric solution of the electromagnetic vacuum field equations must
be the R-N metric, we have

F
(
r(E),E

) = H−1
(
r(E),E

) =
(

1 − C(E)

r(E)
+ D(E)

r2(E)

)
, (9)

where the integration constants of C(E) and D(E) are now energy dependent. From (6), we
can express the energy dependence of C(E) and D(E) in the energy functions f1 and f2,
that is

F
(
r(E),E

) = H−1
(
r(E),E

) =
(

1 − C(E)f2

r ′(E)
+ D(E)f 2

2

r ′2(E)

)
= F ′(r ′). (10)

According to correspondence principle, at E = 0, we must have G(0) = G = 1 and

C = 2M, D = Q2. (11)

Thus we obtain

C(E) = 2M

f2
, D(E) = Q2

f 2
2

, (12)

where M and Q denote the energy independent mass parameter and electric charge param-
eter, respectively. Then, substituting (12) and (9) into (8) and using the energy independent
coordinates, the modified R-N metric from gravity’s rainbow is obtained as

ds2 = − 1

f 2
1

(
1−2M

r
+ Q2

r2

)
dt2

s + 1

f 2
2

(
1−2M

r
+ Q2

r2

)−1

dr2 + r2

f 2
2

dΩ2. (13)

We see that, by way of energy functions f1 and f2, the modified R-N spacetime depend
on the energy of probe particle. That is, if a given observer probes the spacetime using the
quanta with different energies, the observer will conclude that the spacetime geometry have
different effective descriptions. Then, the modified black hole is endowed with quantum
effects behaved as the energy dependence.

In addition, the explicit MDR models and forms of f1 and f2 have been proposed [68].
Here, for convenience, we take

f1 = f −1
2 = √

f . (14)

Then, metric (13) can be simplified as

ds2 = − 1

f

(
1−2M

r
+ Q2

r2

)
dt2

s + f

(
1−2M

r
+ Q2

r2

)−1

dr2 + f r2dΩ2. (15)

From the metric (15), we can see the event horizon r+ and the inner horizon r− of the
modified R-N black hole are

r± = M±
√

M2 − Q2. (16)

Obviously, they are universal for all observers and are the usual values in the usual R-N
black hole. However, the area of the event horizon

A = f 4πr2
+ (17)

is energy dependent and is different to the area of the usual black hole.
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In addition, from (15), the surface gravity on the event horizon can be obtained as

κ = −1

2
lim

r→r+

√
−grr

gtt

1

gtt

∂gtt

∂r
=

√
M2 − Q2

2f (M + √
M2 − Q2 )2

. (18)

Further, for gravity’s rainbow, Hawking temperature can be obtained from the surface grav-
ity [62]. Then, considering (16), the temperature of the modified black hole can be written
as

T = κ

2π
= 1

4πf

r+ − r−
r2+

. (19)

We see that, the Hawking temperature is also energy dependent. That is, using the par-
ticles with different energies, an observer at infinity will probe different effective tempera-
tures. It can be said, the energy dependence of the temperature and area of the black hole is
originated in the quantum effects of gravity’s rainbow. Further, it can be expected that, the
quantum effects of the spacetime should has some influence on particle’s tunneling.

Besides, it is seen that, the modified R-N black hole is asymptotically DSR. Then, con-
sidering the asymptotically DSR spacetimes has equality with the usual asymptotically flat
spacetimes [65], we obtain the total Arnowitt-Deser-Misner (ADM) mass MADM for the
modified black hole (15) as

MADM = − lim
r→∞

1

8π

∫
s

εabcd∇cξ d = M. (20)

Also, the ADM charge of the spacetimes can be expressed by

QADM = 1

4π

∫
s

εabcdF
cd = Q. (21)

That is, the ADM mass and charge of the modified R-N black hole are the same as from the
usual R-N black hole.

3 Emission Rate of Charged Particle in the Modified R-N Black Hole

Gravity’s rainbow should be seen as a low energy effect of quantum gravity. It is that, the
modified black hole of (15) can be seen as a coarse grained model of spacetime at semi-
classical level. Here, for investigating Hawking radiation in the modified R-N black holes,
we assume the tunneling program as a semi-classical method studying Hawking radiation
can be still used in gravity’s rainbow.

In the tunneling program, using the WKB approximation, the emission rate of tunneling
particle can be obtained from the imaginary part of the action for the tunneling trajectory,
namely [3–5]

Γ ∼ exp(−2 Im I ). (22)

Further, the imaginary part of the action in Schwarzschild black hole can be derived as

Im I = Im
∫

prdr. (23)

It should be pointed that, there are some views and insights on the relations (22) and
(23) [47–52]. It have been proposed that the action I = ∫

prdr is not invariant under canon-
ical transformations. The canonical invariant is I = ∮

prdr and the formula (22) with a
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factor of 1/2 in the exponent is canonically invariant. But, using the canonical invariant,
the obtained temperature was higher than the Hawking temperature by a factor of 2 and the
“factor 2 problem” was presented. But, in terms of an overlooked temporal contribution to
the tunneling amplitude, this problem was given a resolution. That is, when the temporal
contribution was considered, the correct temperature was obtained by using the canonically
invariant tunneling amplitude.

In addition, when we calculate the action of charged particle in the modified R-N black
holes (15), the effect of electro-magnetic field should be taken into account. That is, we
should consider the matter-gravity system consisting of the black hole and the electromag-
netic field outside the black hole. For the electromagnetic field in the spacetimes, treating the
black hole as a charged conducting sphere [69], the non-zero component of electro-magnetic
potential is

At = Q

r
. (24)

The Lagrangian function for the matter-gravity system is

L = Lm + Le, (25)

where Le = − 1
4FμνF

μν is the Lagrangian function of the electromagnetic field correspond-
ing to the generalized coordinates At [70]. Considering At is an ignorable coordinate, to
eliminate this degree of freedom completely, the Lagrangian function of the matter-gravity

system should be written as L−PAt

·
At , in which PAt is the canonical momentum conjugate

to At . Thus, we can obtain the action of the matter-gravity system as

I =
∫ tf

ti

(L − PAt

·
At)dt =

∫ tf

ti

(Pt + Pr

·
r −PAt

·
At)dt, (26)

where pt and pr and are the conjugate momentum corresponding to Painleve’s coordinates
t and r , ti and tf the Painleve coordinate times before and after the charged particle’s emis-
sion, respectively. Considering only the second and third term in (26) contribute to the imag-
inary part of the action, then we can obtain

Im I = Im
∫ tf

ti

(Pr

·
r −PAt

·
At)dt = Im

∫ rf

ri

(
Pr − PAt

·
At

·
r

)
dr

= Im
∫ rf

ri

∫ (Pr ,PAt )

(0,0)

(
dp′

r −
·
At

·
r

dP ′
At

)
dr, (27)

where ri and rf are the locations of the horizons corresponding ti and tf , respectively.
To proceed with an explicit computation on (27), the coordinate singularity at the horizon

must be removed. For the modified R-N black holes, following [72], we carry on a Painleve
type coordinate transformation. That is, letting

dts = dt − F(r)dr (28)

and

f

(
1−2M

r
+ Q2

r2

)−1

− 1

f

(
1−2M

r
+ Q2

r2

)
F 2(r) = 1, (29)



66 Int J Theor Phys (2014) 53:60–71

we have

ds2 = − 1

f

(
1−2M

r
+ Q2

r2

)
dt2 + 2

√
1 − 1

f

(
1−2M

r
+ Q2

r2

)
dtdr + dr2

+ f r2
(
dθ2 + sin2 θdϕ2

)
. (30)

It is easy to find that, to implement the calculation on the emission rate of particle tunneling
through the event horizon, the Painleve-like metric of the Planck scale corrected spacetime
has a number of attractive features. Firstly, as expected, none of the components of either
the metric or the inverse metric diverges at the horizon. Secondly, the coordinate system has
Killing vector ∂/∂t . Thirdly, in the new form of the line element, constant time slices are
just flat Euclidean in radial. Fourthly, the components of the new metric satisfy Landau’s
condition of the coordinate clock synchronization [73], namely

∂

∂xi

(
g0j

g00

)
= ∂

∂xj

(
g0i

g00

)
(i, j = 1,2,3). (31)

Finally, the metric has the Planck scale effects showed as the energy dependence. This de-
notes that, even if the black hole has a fixed mass parameter, the emitted particles with
different energies will be affected by different metric.

On other hand, if we enforce energy conservation and charge conservation of the space-
times, when the particle tunnels out the horizon, the mass and charge of the black hole
should vary. That is, the self-gravitation of emitted particle should affect the background ge-
ometry. In spherical symmetry spacetime, the self-gravitation effects of emitted shell have
been investigated in detail [69]. Here, we assume the tunneling particle has energy ω and
electric charge q measured at infinity. Then, considering (20) and (21), when the tunneling
particle treated as a spherical shell radiate outside the event horizon, the parameters M and
Q in the black hole (30) should be replaced with M − ω and Q − q , respectively [3–5, 69].
In fact, this is consistent with Birkhoff’s theorem. The theorem tell us that, in the spheri-
cal symmetry spacetime, the only effect on the geometry due to the s-wave is to provide a
junction condition for matching the total mass inside and outside the shell. Then we get the
geometry between the horizon and the spherical shell as

ds2 = − 1

f

(
1−2(M − ω)

r
+ (Q − q)2

r2

)
dt2

+ 2

√
1 − 1

f

(
1−2(M − ω)

r
+ (Q − q)2

r2

)
dtdr

+ dr2 + f r2
(
dθ2 + sin2 θdϕ2

)
. (32)

Thus, we see that, the event horizons before and after the particle’s emission are ri =
r+(M,Q) = M + √

M2 − Q2 and rf = r+(M−ω,Q − q) = (M−ω) +√
(M−ω)2 − (Q − q)2, respectively. That is, by the shrinking of the black hole, the tun-

neling barrier is created by the emitted particle itself due to the energy conservation and
charge conservation of the spacetime. Moreover, the barrier location is not affected by the
Planck scale effects of the black hole-emitted particle system.

Next, we apply the Hamilton’s equation

·
r=

(
dH

dpr

)
(r;At ,PAt )

= dM ′
ADM

dpr

,
·

At=
(

dH

dpAt

)
(At ;r,pr )

= dE′
Q

dpAt

. (33)
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Here M ′
ADM = M ′ = (M −ω′) is the mass of the modified black hole after emitting a particle

with energy E′ = ω′, E′
Q represents the energy of the electro-magnetic field and

dE′
Q = Q′

r ′+
dQ′, (34)

Q′ = Q − q ′ is the electric charge of the black hole after emitting electric charge q ′. Then,
substituting (33) and (34) into (27) and switching the integral order, the imaginary part of
the action reads

Im I = Im
∫ rf

ri

∫ (M−ω,Q−q)

(M,Q)

dM ′ − dE′
Q

·
r

dr

= Im
∫ (M−ω,Q−q)

(M,Q)

∫ rf

ri

(
dM ′ − Q′

r ′+
dQ′

)
dr

·
r

. (35)

In addition, in term of quantum mechanics, tunneling across potential barrier is an instan-
taneous process. That is, the particle tunneling into and out the barrier are two simultaneous
events. Then, according to Landau’s condition of the coordinate clock synchronization, the
coordinate time difference of these two events is

�t = −gtr

gtt

�r, (36)

where �r is the potential barrier width. Therefore, the radial trajectory of the outgoing
charged particle with energy ω′ and electric charge q ′ can be obtained as

ṙ = dr

dt
= −1

2

gtt (M
′,Q′)

gtr (M ′,Q′)
= 1

2f

(1− 2M ′
r

+ Q′2
r2 )√

1 − 1
f
(1− 2M ′

r
+ Q′2

r2 )

= 1

2f

(r − r ′+)(r − r ′−)

r
√

r2 − 1
f
(r − r ′+)(r − r ′−)

, (37)

where r ′+ = M ′ + √
(M ′)2 − (Q′)2 is the location of horizon after the emission.

Substituting (37) into (35), the imaginary part of the action can be obtained as

Im I = Im
∫ (M−ω,Q−q)

(M,Q)

∫ rf

ri

(
dM ′ − Q′

r ′+
dQ′

)
2f

r
√

r2 − f 2(r − r ′+)(r − r ′−)

(r − r ′+)(r − r ′−)
dr. (38)

Considering the particle tunneling through the horizon, it is seen that r ′+ is a single pole in
(38). Then the integral can be evaluated by deforming the contour around the pole. In this
way, we finished the integral over r and get

Im I = −2π

∫ (M−ω,Q−q)

(M,Q)

f
r ′2+

r ′+ − r ′−

(
dM ′ − Q′

r ′+
dQ′

)
. (39)

Now, for the modified black hole in the tunneling process, we apply the first law of black
hole thermodynamics

dM ′ − Q′

r ′+
dQ′ = T ′dS ′. (40)

Then, substituting (40) into (39) and considering the temperature formula (19), we have

2πf
r ′2+

r ′+ − r ′−

(
dM ′ − Q′

r ′+
dQ′

)
= 1

2
dS ′, (41)
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and

Im I = −1

2

∫ S+	S

S

dS ′ = −1

2
�S, (42)

where �S = S(M − ω,Q − q) − S(M,Q) is the difference of the black hole entropies for
the modified black hole before and after the emission.

Substituting (42) into (22), the tunneling probability of charged particles in the gravity’s
rainbow is obtained as

Γ = exp(−2 Im I ) = exp(�S) = exp
[
S(M − ω,Q − q) − S(M,Q)

]
. (43)

It is seen that, the emission rate is related to the change of the entropies of the modified black
hole. This is consistent with an underlying unitary theory. In addition, the result is identical
to the previous results in the literatures [3–6, 9–13, 15–43]. Further, on the tunneling result,
a rigorous proof has been given [33]. But, for the modified black hole, the entropy and the
obtained emission rate should include quantum corrections arising from the quantum effects
of the spacetime.

From (41), the differential entropy for the modified black holes can be obtained as

dS = 4πf
r2+

r+ − r−

(
dM − Q

r+
dQ

)
= 4πf

r+
r+ − r−

(r+dM − QdQ). (44)

By means of the identity

r+dM − QdQ = 1

2
(r+ − r−)dr+ (45)

and considering (17), we have

dS = 2πf dr2
+ = dA

4
− A

4

df

f
. (46)

It is seen that, the B-H entropy SBH = A
4 of the black hole can be derived from the first part

of (46). The second part is particle energy dependent and should be seen as the quantum
correction SQC to the B-H entropy. Then, the entropy of the modified black hole is written
as

S = SBH + SQC = A

4
+

∫
A

4

df

f
. (47)

This is a different result with the case in the usual R-N black hole, in which S = A
4 appear

in the emission rate of charged particles [10]. Then, from (43) and (47), it is implied that, in-
formation conservation of black hole is still possible when the quantum corrections of black
hole entropy are considered. In addition, the corrected item SQC of the black hole entropy
can be calculated by giving the specific form of the energy function f [39, 40, 62, 68]. Then,
from (43), the radiation spectrum with quantum corrections and the information deposited
by the spectrum can be investigated further.

4 Discussion and Summary

In tunneling framework of Hawking radiation [3–5], charged particle’s tunneling in the
modified R-N black hole from gravity’s rainbow is investigated. Firstly, following the
Schwarzschild solution in gravity’s rainbow [57], the modified R-N black hole from grav-
ity’s rainbow is given. Also, the quantum effects of the modified spacetime is discussed
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and the thermodynamic quantities of the modified black hole are calculated. Then, using
the radial trajectory method [4, 5] of the tunneling framework, the tunneling probability of
charged particle in the modified black hole is calculated. In the present tunneling, metric
fluctuations are taken into account, due to not only energy conservation and electric charge
conservation, but also the spacetime quantum effects. Also, the first law of black hole ther-
modynamics is applied. The emission rate of charged particle is related to the change of
black hole entropies before and after the emission. The result is consistent with an un-
derlying unitary theory. Due to the Planck scale effects, the entropy of the modified R-N
black hole is different to the B-H entropy and the quantum corrections to the B-H entropy
is discussed. The investigation implies that, considering quantum corrections of black hole
entropy and spacetime, information conservation of black holes is still possible. In support-
ing the tunneling program, the research can provide a evidence via the charged particle’s
tunneling in the quantum corrected spacetime.
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