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Abstract The paper has the form of a proposal concerned with the relationship between
the three mathematically rigorous approaches to quantum field theory: (1) local algebraic
formulation of Haag, (2) Wightman formulation and (3) the perturbative formulation based
on the microlocal renormalization method. In this project we investigate the relationship
between (1) and (3) and utilize the known relationships between (1) and (2). The main
goal of the proposal lies in obtaining obstructions for the existence of the adiabatic limit
(confinement problem in the phenomenological standard model approach). We extend the
method of deformation of Dütsch and Fredenhagen (in the Bordeman-Waldmann sense)
and apply Fedosov construction of the formal index—an analog of the index for deformed
symplectic manifolds, generalizing the Atiyah-Singer index. We present some first steps in
realization of the proposal.

Keywords Adiabatic limit · Microlocal renormalization · Deformation · Fedosov’ formal
index · Atiyah-Singer-Connes-Moscovici index

1 Introduction

The paper has the form of a proposal concerned with the relationship between the three
mathematically rigorous approaches to quantum field theory. Namely they are: (1) local
algebraic formulation of Haag, (2) Wightman formulation and (3) the approach based on
the microlocal causal renormalization method going back to Bogoliubov and Stückelberg,
promoted mostly by Fredenhagen and his co-workers. In this project we investigate the re-
lationship between (1) and (3) and utilize the known relationships between (1) and (2). The
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weakness of the (3)rd approach lies in its dependence on the existence of the adiabatic limit,
otherwise the formal power series are physically meaningless. With few exceptions only
(e.g. QED) the existence problem for the adiabatic limit is open, even no obstructions for
its existence are known. The main goal of the proposal lies in obtaining obstructions for
the existence of the adiabatic limit. The problem corresponds to the confinement problem
in the phenomenological standard model approach. We extend the method of deformation
in the Bordeman-Waldmann sense as worked out by Dütsch and Fredenhagen by noticing
the parallelism between deformation applied by Dütsch and Fredenhagen and the existence
of adiabatic limit on the one side and the deformations of symplectic manifolds and the
existence of the asymptotic representation of Fedosov on the other. It was suggested by Bor-
deman and Waldmann [1]. We extend their suggestion here. Fedosov constructed a formal
analog of the index for deformed symplectic manifolds, generalizing the Atiyah-Singer in-
dex, and has shown that the existence of the asymptotic representation is equivalent to the
integrality of the index. We notice further that the construction of his index may be applied
to the Dütsch and Fredenhagen deformations and that his construction of necessity and suffi-
ciency constraints may be carried to the Dütsch and Fredenhagen deformations provided we
could utilize a Fredholm module over a fixed subalgebra of free fields, which is canonically
connected to free fields. Quite independently we notice that in the local algebraic theory
the charges cannot superpose by principle, as they determine the selection sectors. More-
over in (1) there are two diverse kinds of non-superposing quantities, namely (A) such as
generalized charges and (B) such as spacetime coordinates, i.e. classical parameters with
direct physical meaning, allowing the theory to have physical interpretation. We propose to
treat them both more symmetrically in that the reason for the lack of coherent superposi-
tions for (B) should in principle be the same as for the lack of superpositions for (A). There-
fore (B) should also be represented by the elements of the algebra of fields which do not mix
the coherent selection sectors (of the Hilbert space acted on by all fields, also the charged
fields) and thus by elements which determine selection sectors. This leads us to the concept
of spacetime which is classical, i.e. whose points cannot superpose, but with noncommuta-
tive algebra of coordinates. In order to keep the geometric particle interpretation of Haag we
identify the algebra with the Haag’s algebra of detectors. Spacetime structure should deter-
mine its (pseudo-riemannian) spectral triple and (after “Wick rotation”) the corresponding
Fredholm module. We identify the last module with the Fredholm module necessary for
the construction (of the sufficiency condition) of the adiabatic limit. The first profit of this
assumption is that it allows us to keep the particle interpretation even on curved spacetime
without any time-like Killing vector field, a long standing problem in quantum field the-
ory on curved spacetimes. Another profit: we expect nontrivial limitations put on allowed
values of coupling constants, which are deformation parameters in the Dütsch-Fredenhagen
approach (integrality of Fedosov index assuring the existence of asymptotic representation
puts strong restrictions on possible values of deformation parameter). Last but not least we
get the time’s arrow for non-superposing quantities for free, as an immediate consequence
of non-commutativity of multiplication in the algebra of spacetime coordinates.

The proposal is divided into five tasks: I. To provide details of the proof of the stability
theorem under deformation of Dütsch and Fredenhagen with the modification in definition
of the algebra of observables meaning that we restrict ourselves to ghost-free fields in the
construction of the algebra and explain the relationship between the two definitions (see
Sect. 3 for details). II. To reconstruct the asymptotic behavior of the analog of Fedosov
asymptotic representation for QED utilizing the Blanchard-Seneor analysis and relation-
ships between (1) and (2). III. To formulate necessary conditions for the existence of the
asymptotic representation in QED in terms of the formal index. IV. Having given a compact
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spectral triple to construct a formal deformation of the triple in the sense of Bordeman-
Waldmann, and examine stability of the compact spectral triple structure under the defor-
mation. V. Having given a completely integrable Faddeev model to investigate more deeply
analytic properties of the linear representation of the quantum monodromy matrix on a dense
subset of the Fock space, given in the Korepin, Bogoliubov and Izergin monograph (Sect. 5).
Then incorporating the relationship between point-like fields and local algebras try to carry
the quantum group structure and their action on the corresponding spacetime algebra of
bounded operators.

2 A Tentative Hypothesis

In 1957 at the conference in Chapel Hill, Richard Feynman presented his famous Gedanken
Experiment supporting the claim, that the gravitational field has a quantum mechanical char-
acter in more or less the same sense as the electromagnetic field, and thus should be quan-
tized in more or less he same way as the electromagnetic field and other matter fields. The
postulate that all physical processes (all the more quantum mechanical processes) should
be described by amplitudes (and not probabilities themselves) was very natural at that time,
i.e. only three decades after the discovery of matrix mechanics. Thus naively speaking: one
can confine oneself to observables acting in a fixed Hilbert space and moreover there was
no reason visible at that time for taking into consideration other collections (algebras) of
observables than those which act irreducibly in the Hilbert space (Hermann Weyl in his fa-
mous book1 even referred to the Aristotelian nihil frustra principle, in order to support the
restriction to irreducible representations only). The mentioned postulate together with the
“natural” assumption that, say, an electron is a spacetime object (in more or less the same
sense as, say, a grain of sand) indeed gave a solid argument speaking for the quantum char-
acter of gravitational filed, i.e. in the sense that it should undergo the superposition principle,
and should be quantized similarly to matter fields. The warning, which Feynman gave on
that occasion, that quantum mechanics may not be correct for macroscopic objects, suggest-
ing some possibilities for other alternatives has apparently at least been ignored, universally
recognized as his scientific honesty at most. Nowadays, over half a century after the confer-
ence, the principal arguments of Feynman speaking for the quantum character of gravity, get
lost much of their cogency. First of all the simplified scheme: observables + Hilbert space in
which they act irreducibly, had to be substantially subtilized. According to the subsequent
investigations in QFT and quantum statistical mechanics, we have all the grounds to expect,
that the Hilbert space has to be divided into subspaces, called superselection sectors, and
the superposition of amplitudes cannot take place freely in the whole Hilbert space but only
within one and the same sector, whenever the system in question is more complex.2 In par-
ticular it seems hardly possible that two states with different (generalized) charge numbers
(e.g. different hadron numbers, or state with even half spin with a state with an odd half

1See [2], 238; moreover, he derives the Schrödinger equation from the irreducibility, compare Ibidem,
Chap. IV.D.
2Introduction of superselection sectors is not confined to high energy physics. For example it is an everyday
practice of quantum chemists, e.g. there are two versions, namely left and right, of the thalidomide. As
follows from the laboratory practice the two different versions do not superpose, but superpositions within
one and the same version are possible. In fact the right version is effective against morning sickness in
pregnant women. On the other hand the left specie produces foetal deformations, so that the possibility of
superpositions between the two would have fatal biological consequences. Theory of quantum measurement
is another example.
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spin) can superpose. Beyond doubt the assumption that such states cannot superpose is a
“good approximation” in the light of nowadays knowledge, independently of the possible
disputes on how is in “reality”. Similarly we have all the grounds to suppose, that states
with different electric charge numbers do not superpose (although there exists in this case
an alternative theory of A. Staruszkiewicz, compare discussion below).3 From the investiga-
tions of Haag and his school [5] (algebraic quantum field theory) it follows that the charge
structure (global gauge symmetry groups) can be obtained from the structure of the equiva-
lence classes of representations of the algebra of observables, where all the representations
in question come out of a special natural class fulfilling the so called superselection con-
dition.4 The algebra of (quasi-local) observables has the property (among other properties)
that transforms sector into the same sector (of the Hilbert space of point-like fields in the
sense of Wightman, corresponding to the algebra of quasi-local observables, in which all
the point-like fields—also the charge carrying fields with nontrivial gauge—act, whenever
such corresponding fields do exist5). Thus no element of the observable algebra6 leads us
out of a coherent subspace (selection sector). Roughly speaking the superselection condition
allowing us to select the natural class of representations tells that in space-like infinity each
representation of the class behaves like the vacuum representation (there are some important
troubles7 just with this condition for the electric charge). This suggests that the quantities
which do not undergo the superposition principle, such as charges, are characterized by a
decomposition parameters of representations of the observable algebra (or some subalgebra
of the corresponding algebra of smeared out fields, whenever they exist) into irreducible
representations. Roughly but suggestively speaking: non-superposing quantities are decom-
position parameters of the representation of the smeared out fields corresponding to ob-
servables or some other distinguished subalgebra of fields into irreducible representations.
Similarly in the quantum statistical mechanics the quantities which do not superpose shows
up as decomposition parameters of representations of the same algebra into irreducible rep-
resentations, but this time for representations of the statistical and not the vacuum sector.

3It should be emphasized here that this is an assumption (or hypothesis) of experimental tentative character
and it cannot be mathematically inferred from the ordinary quantum mechanics contrary to what is sometimes
misstated. All “proofs” of the theorems “that such and such quantity is classical in the sense that it does not
undergo the superposition principle” turned up ultimately to be ineffective and contained serious gaps, e.g.
that the argument of [3] falls short of the claim was subsequently shown in [4]. Essentially on the same
footing the “proof” of Lifshitz and Pitaevski, that the Coulomb field is classical as well as other similar
“proofs” fall short of their goals because the superselection structure goes beyond the competencies of the
ordinary quantum mechanics.
4One can reconstruct in this way e.g. the isospin group. However some subtle difficulties arise in case of the
electric charge in choosing the suitable selection rule and the suitable class of representations in this case.
They are caused by the unlimited range of the electromagnetic interactions (zero rest mass of the photon) and
with the construction of the “Hilbert space” with the indefinite product—within the algebraic formalism it
is difficult to construct such space and to distinguish the Hilbert space of “physical states” in it. Below we
return to this problem.
5Compare discussion below; the relation between quasi-local algebra in the sense of Haag and pointlike fields
in the sense of Wightman is essential for the whole proposal.
6More precisely: no Wigtman point-like filed smeared out over a compact domain, corresponding to an ele-
ment of the local algebra of observables leads us out of the superselection sector.
7From time to time opinions arise claiming that the troubles have only technical character and are not fun-
damental, compare e.g. [6]. Some knew perspectives was presented in [7]. But this status quo lasts since the
early seventies of the previous century without any breakthrough visible in the solution. It seems that it will
be difficult to avoid the analysis of the relation of the algebraic (Haag’s) and Wightman formulation with the
perturbative formulation of QFT, compare [7, 10, 23].
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Haag’s approach and his school partially based on observable algebra understood in the
classical sense (introduced by Dirac in his famous handbook on quantum mechanics) but
taking into account division into selection sectors, thus based on representation theory of
one and the same algebraic structure, was not able as yet to explain in the same manner
the structure of local gauge group symmetries; not to mention the difficulties with electric
charge and indefinite product. In my opinion the fundamental reason for the lack of success
here lies in this: The algebraic theory introduces two kinds of non-superposing quantities
with no deeper interrelation between them: (1) such as charges and (2) such as spacetime
coordinates, which are classical quantities with direct physical interpretation, enabling the
algebraic theory to have a physical interpretation, yet the local gauge symmetries connect
the two kinds of quantities. Here I propose the

POSTULATE Not only generalized charges, but all non-superposing quantities, includ-
ing classical directly observable parameters, should be decomposition parameters of rep-
resentations of some fixed subalgebra of the algebra of smeared out point-like fields into
irreducible representations.

This is of course a hypothesis of tentative character. In order to keep the physical in-
terpretation and in order to enable concrete computations, we have to supply the postulate
and have to point out the subalgebra which corresponds to the algebra of spacetime coordi-
nates. Namely we supply the postulate with the hypothesis that the subalgebra is given by
the so called ∗-algebra of detectors A (not unital; roughly speaking it is generated by the
elements of the observable algebra of the form L∗L, where L are quasi local annihilators,
which differ from the Doplicher annihilators only by the property that the ideal which they
form is not norm closed).8 Therefore we admit the classical quantities to possess their own
subalgebra, which determines their own superselection sectors. At the preliminary stage at
least it seems reasonable to assume that the algebra of spacetime coordinates determines
the universal structure of superselection sectors for all macroscopic quantities (compare the
geometric physical interpretation proposed by Haag [5]). The physical motivation for this
definition follows from the geometric particle interpretation of the algebraic theory pro-
posed by Haag as well as the role of classical spacetime coordinates and the algebra of
detectors (Doplicher annihilators) in this interpretation [5]. Actually a similar postulate was
put foreword by Haag himself, when expressing the conjecture that local gauge groups can
be explained within the algebraic formulation similarly as the global groups, allowing a
wider class of representations of observable algebra, in particular going out of all the sectors
of the Hilbert space in which the algebra of corresponding (smeared out) point-like fields
(including charge carrying fields) acts. Haag’s postulate, however, does not give any explicit
computational hints (which, among other things, is confirmed by the lack of its realization);
in particular it is not clear how to look for the additional representations. Such additional
representations would be necessary if no other subalgebra besides the observable algebra
would be allowed to determine the superselection sectors. Although some restriction of this
kind has to be put on the allowed subalgebra in order to give an objective sense to a non-
superposing quantity, the algebra of observables is too big and we have to seek a smaller
one. If no other algebra fixing the superselection sectors than the algebra of observables
were allowed, no local superselection sectors would be left, by the local normality princi-
ple.9 However there is no indication (within the algebraic theory) that the algebra of observ-

8Compare [5], p. 283, algebra of detectors is denoted there by C .
9[5], p. 131.
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ables determines all relevant selection sectors, e.g. all sectors sufficient to define all relevant
non-superposing macroscopic quantities, sufficient for the physical interpretation of the the-
ory. Even contrary: for the geometric particle interpretation at least all information comes
from the use of the subalgebra of detectors and coincidence arrangements of detectors,10

indicating that the subalgebra of detectors is sufficient to pick up all relevant sectors, thus
suggesting that the whole algebra of observables mix too many sectors of objective physical
meaning. Moreover the assumption that non-superposing quantities (including macroscopic
quantities) should be construable via the selection sectors inside the Hilbert space acted on
by the corresponding11 (smeared out) point-like fields (exactly as for the charges and the
algebra of observables) finds a justification in the fact that the quantum theory of fields is in
agreement at least with the phenomenological theory12 of quantum measurement, assuming
that the detectors determine their own selection sectors (assumption which cannot be derived
from the ordinary quantum mechanics, as was emphasized e.g. by Penrose).

Perhaps we should explain that the classical character of spacetime (in the physical sense
used here) and the non-commutative character of the algebra of spacetime coordinates (A)
are not a priori inconsistent. The term classical used here means that the superposition takes
place only within one and the same sector (of the sector structure in the Hilbert space acted
on by the fields, determined by the smeared out fields corresponding to A). Therefore no su-
perposition exist between (elements of spaces of) in-equivalent irreducible representations
of A; thus no “superposition” of two different spacetime “points” can exist; as the “points”
of A correspond to equivalence classes of irreducible representations of A.13 Parameters
numbering the irreducible representations are in a one-to-one correspondence with the spec-
trum of a commutative subalgebra Acl . Assume for a moment (only for heuristic aims) that
Acl is a subalgebra of A and therefore it is equal to the center of A.14 We can therefore
localize A with respect to Acl . Heuristically the elements A(x) of the localization with x

ranging over open subsets U of the spectrum of Acl are the elements of the algebra of de-
tectors A(U ) on15 U . This “approximation” is, however, too coarse and unrealistic. In the
geometric particle interpretation at least, we consider detectors (asymptotically) localized
within compact subsets. Although the subsets are small in comparison to distances between
localization centers and two detectors with different localization centers (asymptotically)
commute, in all relevant coincidence arrangements of detectors, see [5] p. 272, they cannot
be shrunk to points. Here points are used in ordinary commutative sense, and have imme-
diate physical meaning of spacetime points used in algebraic quantum field theory (which
we intend to identify with elements of the spectrum of Acl). Therefore we are forced to use

10[5], p. 272.
11Whenever such fields do exists and the correspondence mentioned in footnote 5 is meaningful, compare
discussion below.
12I mean the well known FAPP-type methods of H. Żurek and his school.
13Therefore the “parameters” numbering irreducible representations of the spacetime algebra cannot su-
perpose. In passing: also the classical manifold (in the sense: commutative) can be described by a non-
commutative algebra Morita equivalent to the commutative algebra of smooth functions on the manifold,
compare e.g. [8]. Of course this case is trivial from the physical point of view, and by this, it is not very
interesting for physicists.
14In general for decompositions into irreducible representations Acl is a maximal commutative subalgebra in
the commutant of A. Here we assume that the algebra A acts in a fixed Hilbert space, the same in which the
corresponding Wightman fields act, and assume that the action defines a faithful representation of A which
is to be decomposed.
15This is only heuristic, as detectors are localizable only asymptotically.
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a non-commutative localization, say of Ore type, with respect to a commutative subalgebra
Acl of A not contained in the center of A. Of course these are heuristic remarks only, mo-
tivated on the geometric interpretation of Haag, suggesting that in general realistic situation
there should exist a commutative subalgebra Acl in the algebra of detectors A whose spec-
trum elements are parameters with immediate physical interpretation.16 In order to check the
consequences of the above postulate (suitably supplemented) one have to introduce (natural)
analytic structures allowing concrete computations. We shell describe only some first steps
towards this goal, based on the (rigorous) micro-local perturbative approach of Brunetti and
Fredenhagen and formulate its connection to local algebraic approach of Haag in terms of
formal index theorem of Fedosov and asymptotic representations (generalizing the asymp-
totic representations of Fedosov). This allows us to introduce spectral triple formalism of
Connes, via its construction for free fields.

3 Spacetime and QFT

Here we formulate the hypothesis of the previous section in more concrete mathematical
terms. We use the tools of non-commutative geometry, and introduce a natural structure of
spacetime in terms of this geometry, which may be adopted to this operator-algebraic situa-
tion and explain its natural connection to structures which one finds in quantum field theory.
We will use the local perturbative construction of the algebra of observables in gauge the-
ories as proposed by Dütsch, Fredenhagen and Brunetti [9, 10]. But first we remind that
the analog17 (A,D, H) of the Connes’ spectral triple for pseudo-riemannian manifold, as
proposed by Strohmaier [11], is given by a pre-C∗-algebra A with involution ∗ acting as an
algebra of bounded operators not in the ordinary Hilbert space but in a Krein space18 [14]
H. The involution is represented by taking the Krein adjoint, the Dirac operator D is self-
adjoint in the Krein sense. Important role is played by the so called fundamental symmetries
of the Krein space H. These are operators: J : H → H, such that: J2 = 1 and (·,J·) = (J·, ·),
where (·, ·) is the indefinite inner product in the Krein space H. With the help of J, one can

16In general we cannot, however, expect that the spectrum of Acl will be sufficient to designate all points
of A, for example the representation of Acl induced by an irreducible representation of A is not irreducible in
general if Acl does not lie in the center of A. Algebraically speaking: possibly many different localizations
are needed to reconstruct the algebra A and its relevant spectrum, giving different types of coincidence
arrangements of detectors. Most of all we should be interested in the coincidence arrangements of detectors
encountered in particle physics, of course.
17There are several competitive proposals for this analogue, some of them propose to include (the smooth)
fundamental symmetries into the construction of the operator D acting in ordinary Hilbert space (for exam-
ple Connes and Marcolli [12] propose to construct a spectral triple in ordinary Hilbert space abandoning,
however, (ordinary) self-adjointness of D, but keeping the self-adjointness of D2). We rejected those propo-
sitions whose construction is based on foliations into Cauchy hyper-surfaces, which seem to be less general.
The non-compact riemannian case (non-unital A) is worked out in [13]. Actually first steps has been prepared
only in this non-compact direction, but no fundamental difficulties are expected here. An extension of spectral
triple formalism to type III algebras has been proposed in [15].
18Let us remind briefly that the Krein space [14] H is a linear space with indefinite non-degenerate inner
product (·, ·) which admits a direct sum decomposition H+ ⊕ H− into subspaces H+ and H− on which
(·, ·) is positive definite and respectively negative definite and such that H+ and H− are closed in norm
topology induced on them by the inner product (·, ·). Thus (·, ·) induces on H+ and H− the structure of
ordinary Hilbert spaces. For any such decomposition H = H+⊕ H− , one defines the operator of fundamental
symmetry J putting it equal to +1 on H+ , and −1 on H− . Moreover 〈·, ·〉J = (·,J·) is an ordinary positive
definite inner product inducing on H an ordinarily Hilbert space structure. Norms induced by these inner
products defined by any two symmetries J are equivalent.
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obtain ordinary (riemannian) spectral triples from pseudo-riemannian spectral triples in a
similar way as this is done in quantum field theory by “Wick rotation”, when passing to rie-
mannian signature. After this digression we go back to the perturbative construction of the
algebra of observables as proposed in [9, 10]. We start from free fields in a theory with gauge
symmetry. Afterwards we construct the algebra of fields (and algebras of observables and
detectors) without performing the adiabatic limit, noticing that their construction depends
locally on interaction. It is based on the old ideas of Bogoliubov and Stückelberg, developed
by Epstein and Glaser, and then by Dütsch, Brunetti and Fredenhagen, who applied to it the
Hörmander’s microlocal analysis of wave fronts for hyperbolic operators. The prise we pay
for the clear separation of local aspects (renormalization) from the global (adiabatic limit)
lies in this: algebras thus constructed are formal power series algebras only, with mathe-
matically well defined coefficients built of free fields, and are deformations of the free filed
algebras in the sense of Bordeman-Waldmann [1]. Therefore only a halfway is thus reached:
the existence of adiabatic limit remains to be examined. We return to the existence problem
below, but first we give some details of the construction of Dütsch and Fredenhagen. The
local algebra F (U ) of free fields with gauge symmetry (as well as interacting fields, if one
assumes the existence of adiabatic limit) does not act in ordinary Hilbert space, but in a space
with indefinite inner product, compare the Gupta-Bleuler formalism. In order to give a math-
ematical sense to some operator manipulations performed by physicists some assumptions
of topology-analytic character are necessary (to make the various kinds of taking adjoint of
an operator more precise, etc.). We assume in particular that H is a Krein space (indefinite
inner product is non-degenerate and the subspaces H+ and H− of footnote 18 are closed
in norms induced by the indefinite inner product). Thus the Gupta-Bleuler operator19 η is
a fundamental symmetry of the Krein space H (one of many such, and which was denoted
above by J). It is clear that also in this situation we can repeat the general argument of Haag,
that the elements of the algebra of fields which represent observables cannot lead us out of
coherent subspaces of H. This time, however, situation is more complicated, as we identify
two vectors of H which differ by the so called “admixture”, a vector on which the indefinite
inner products is zero and, moreover, not all vectors of H are regarded as physical (in par-
ticular the indefinite inner product must be positive on them). In order to reconstruct the so
called physical Hilbert space H we have to use the full BRST formalism (or its equivalent,
Dütsch and Fredenhagen use the Kugo-Ojima operator Q). In particular the net U → F (U )

of local fields is such that every local algebra F (U ) is a ∗-algebra with a Z2-gradation.
A graded derivation s acts on the algebra F = ⋃

U F (U ) of quasi-local fields, such that
s2 = 0, s(F (U )) ⊆ F (U ), s(F ∗) = −(−1)δ(F )s(F )∗, s(AB) = s(A)B + (−1)δ(A)As(B),
where the Z2-gradation is defined by F → (−1)δ(F )F (δ(F ) is the ghost number of the
field F , and s is the BRST transformation). From the properties of s it follows that the ker-
nel ker s = A0 as well as the image s(F ) = A00 of derivation s are ∗-sub-algebras of F .
Dütsch and Fredenhagen define then the algebra of quasi-local observables and the net of
local observables as follows:

A0 modA00 and U −→ A0 ∩ F (U )modA00 ∩ F (U ),

which makes sense because s2 = 0 and A0 ⊇ A00. The action of field operators on H is
such that the involution is represented by the Krein adjoint. We assume additionally that the
gradation on F can be represented by a Z2-gradation on H, such that A

(0)

0 , A
(0)

00 and A
(1)

0 ,

19This operator was denoted by η in the Polish translation of the book: W. Heitler, “The Quantum Theory of
Radiation”, Clarendon Press, Oxford, 1954, §II.10.
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A
(1)

00 are subspaces in A0 and A00 of grade 0 and 1 respectively. We adopt this gradation as
the gradation of the (even) pseudo-riemannian spectral tipple (A,D, H) mentioned above.
We propose also a slight modification in the above definition of the algebra of observables
(quasi-local and local) and we put instead:

A = A
(0)

0 modA
(0)

00 and U −→ A(U ) = A
(0)

0 ∩ F (U )modA
(0)

00 ∩ F (U ),

thus confining ourselves in their definition to fields with even ghost number. The algebra
A of spacetime coordinates is not directly identified with the algebra of detectors, but with
the sub-algebra A of A

(0)

0 for which A modA
(0)

00 is the algebra of detectors (this is the iden-
tification proposed above with the necessary modification caused by the fact that not all
vectors of the Krein space H are physical and by the identification of vectors differing by an
“admixture”). We construct the representation of the algebra of observables in the ordinary
(physical) Hilbert space H exactly as Dütsch and Fredenhagen. If the graded commutator
with an operator Q represents s (in short: if Q represents s), i.e.

s(F ) = QF − (−1)δ(A)FQ,

then Q has to be self-adjoint in the sense of Krein and Q2 = 0 (in order to ensure fulfillment
of the following conditions s(F ∗) = −(−1)δ(F )s(F )∗ and s2 = 0). Because the physical
vectors should be s-invariant Dütsch and Fredenhagen introduce the following definitions:
H0 = kerQ and H00 = ImQ. Then they assume:

(i) (ϕ,ϕ) ≥ 0 for every ϕ ∈ H0 (Positivity),
(ii) [ϕ ∈ H0 ∧ (ϕ,ϕ) = 0] =⇒ ϕ ∈ H00;

and put

H = H0 mod H00,

with the following inner product on H :

〈[ϕ1], [ϕ2]
〉
H

= (ψ1,ψ2), ψj ∈ [ϕj ] = ϕj + H00.

H with so defined inner product is a pre-Hilbert space (the closure turns H into a Hilbert
space). Next, the formula

π
([A])[ϕ] = [Aϕ], where [A] = A + A

(0)

00 and A ∈ A
(0)

0 ,

define a ∗-representation of the algebra of observables with involution ∗ represented by the
ordinarily adjoint. Dütsch and Fredenhagen consider only the case [A] = A + A00, A ∈ A0.
Next we prove after Dütsch and Fredenhagen that the construction of the algebra of observ-
ables and its representation is stable under Bordeman-Waldmann deformations, i.e. after the
interaction is “switched on”. Thus if one starts from free fields acting on the Krein space
H, and then construct the deformation of the algebra of fields, i.e. build the formal power
series of free fields via the microlocal method of Brunetti-Fredenhagen [10], then one can
extend naturally the above construction of representation of observables (and detectors) for
free fields to a formal Bordeman-Waldmann-type representation of deformed algebras of ob-
servables and detectors. To formulate strictly the “stability” theorem we need to introduce
some further definitions. Namely in order to construct the deformation we replace every
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element F ∈ F with a formal power series20 F̃ = ∑
n gnFn, in which F0 = F , Fn ∈ F ,

δ(Fn) = const. We replace s and Q with a similar power series s̃ = ∑
n gnsn (every sn is a

graded derivation), Q̃ = ∑
n gnQn, Qn ∈ L(H), s0 = s, Q0 = Q, thus

s̃2 = 0, Q̃2 = 0, (Q̃φ,ψ) = (φ, Q̃ψ), s̃(F̃ ) = Q̃F̃ − (−1)δ(F̃ )F̃ Q̃.

Next we define the formal algebra of observables21 by (ker s̃)(0) mod(Im s̃)(0), and then
replace H0 and H00 with H̃0 = ker Q̃ and H̃00 = Im Q̃ and define H̃ = ker Q̃mod Im Q̃.
The inner product in H induces an inner product in H̃ which assumes values in a formal
power series field over C. It follows from the above construction that the formal algebra of
observables has a natural formal representation π̃ on H̃. Dütsch and Fredenhagen adopt the
definition that a formal power series b̃ = ∑

n gnbn, bn ∈ C, is positive iff there exists another
power series c̃ = ∑

n gncn, cn ∈ C, such that c̃∗c̃ = b̃, i.e. such that bn = ∑n

k=0 c̄ncn−k .
In this situation Dütsch and Fredenhagen proved the following stability theorem under

deformation:22 If the positivity assumption is fulfilled, then

(i) (ϕ̃, ϕ̃) ≥ 0 for every ϕ̃ ∈ H̃0

(ii) [ϕ̃ ∈ H̃0 ∧ (ϕ̃, ϕ̃) = 0] =⇒ ϕ̃ ∈ H̃00;
(iii) For every ϕ ∈ H0 there exists ϕ̃ ∈ H̃0, such that (ϕ̃)0 = ϕ.
(iv) Let π and π̃ be the representation of free field algebra constructed above and the formal

representation of its deformation in H or H̃ respectively. Then

π̃(Ã) �= 0 if π
(
(Ã)0

) �= 0.

A state ω on the algebra of observables Ã(U ) is defined by the following conditions
(compare [1, 9])

(i) ω: Ã(U ) → C̃ is linear, i.e. ω(ã[Ã] + [B̃]) = ãω([Ã]) + ω([B̃]),
(ii) ω([Ã]∗) = ω([Ã])∗ for all [Ã] ∈ Ã(U ),

(iii) ω([Ã]∗[Ã]) ≥ 0 for all [Ã] ∈ Ã(U ) and
(iv) ω(1̃) = 1̃.

The physical vector-states constructed in [9] define naturally states in the Bordeman-
Waldmann sense [1]:

ωφ̃

([Ã]) = 〈[φ̃], [Ã][φ̃]〉
H̃
, [φ̃] ∈ H̃,

where positivity follows from the positivity of Wightman distributions of gauge invariant
fields, see [9].

We have thus arrived at the first preliminary task of our proposal: to provide details
of the proof of the stability theorem under deformation formulated above with the
modifications indicated (i.e. with the modification in definition of observable algebra
and explain relationship between the two definitions).

20It is not important here but in computational practice, i.e. in the formal power series of the microlocal renor-
malization method of Brunetti-Fredenhagen, g is a smooth function on the spacetime manifold (understood
in the ordinarily sense) with compact support—local coupling “constant”.
21M. Dütsch and K. Fredenhagen define here: (ker s̃)mod(Im s̃).
22With a slightly different definition of the algebra of observables, as has already been indicated above.
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Actually the first part of this task follows from the proof of the stability theorem as
presented in [9], because s preserves gradation. Only the comparison of the two definitions
of the algebra of observables needs a closer inspection, but again, the relation between the
two definitions for the free theory underlying QED may essentially be read of from [9]. In
this case the representation π of our algebra of observables constructed above, in contrary
to the algebra of observables of Dütsch and Fredenhagen, is faithful, and it is generated by
[Fμν], [ψ], [ψ̄] and Wick monomials thereof (of course here [·] are understood as classes
modulo elements of the ideal A

(0)

00 ), whereas the “canonical” representatives of H are vectors
(of H) containing transversal photons, electrons and positrons only, as follows from [9]. Our
definition of the algebra of observables is therefore justified in the free theory underlying
QED at least and we can in this case confine ourselves to fields with even ghost number when
constructing observables. What remains to be investigated in the first task is the relation
between the two definitions of the algebra of observables for theories with more involved
gauge freedom.

Now we pass to the existence problem for the adiabatic limit, which in the formulation
of Dütsch and Fredenhagen is equivalent to the following question: under what (accessi-
ble) conditions the formal seres are convergent, and thus when the formal representation
of the deformed algebra turns into an actual representation of an actual (C∗-)algebra in an
ordinarily Hilbert space? But on the other hand Fedosov [16] proved an interesting theo-
rem in the theory of deformations of symplectic (or even Poisson) manifolds. Namely he
showed that the deformed algebra admits a so called asymptotic operator representation in
ordinary Hilbert space iff his (Fedosov’) formal index fulfills some integrality conditions.
His formal index is a formal analog of the Atiyah-Singer index (better: it is a generaliza-
tion of the Atiyah-Singer index adopted to deformed algebras and their formal represen-
tations), in particular it is a topological invariant of the symplectic manifold, so it is an
invariant of the algebra (of smooth functions on the manifold), which is subject to defor-
mation as well as of the deformed algebra (the latter in the general non-commutative sense:
it is a formal K-theory invariant). The formal (Fedosov’) index can be carried on defor-
mations considered here. The algebra of free fields (or rather the non-commutative algebra
A of spacetime defined above, corresponding to free fields) plays the role of the algebra
of smooth functions on the symplectic manifold subject to deformation. Next we confine
ourselves to the QED case (in the above deformation formulation, compare e.g. [9]). We
know that in this case the adiabatic limit does exist, i.e. Wightman distributions do exist (or
Green functions), according to the Blachard-Seneor [17] theorem. We may therefore recon-
struct the action of smeared out fields (a construction by now rather well known formally
analogous to the Gelfand-Naimark-Segal construction of representation from a state, firstly
applied by Wightman). Having given this and the machinery of constructing local alge-
bras (of bounded operators) from fields [18] we intend to read of the asymptotic conditions
fulfilled by the representation so constructed which are induced by the asymptotic condi-
tions of Blanchard and Seneor’s paper, fulfilled by Green functions. We may thus construct
the analog of Fedosov’ asymptotic representation with the explicit asymptotic conditions
fulfilled by power series of which we a priori know that they admit an actual representa-
tion.

Thus we arrive at the second task of our proposal: to formulate necessary conditions
for the existence of the asymptotic representation of deformation in QED in terms of
the formal index.
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To this end we intend to mimic the argument of Fedosov which he applies in the con-
struction of the analogous necessary condition:23 just as in the case of Fedosov’s necessary
conditions we expect that they will ultimately depend on (ordinary) K-theory invariant of
the algebra subject to deformation (in our case this is the algebra A for free fields and its
representation constructed as above). We expect to obtain in this way integrality-type con-
ditions for the index on A (for free fields) which we propose to compare with the index map
induced by the ordinary spectral triple (AJ,DJ, HJ) corresponding to (A,D, H) via the
“Wick rotation” induced by an admissible24 fundamental symmetry J: i.e. we propose the
Dirac operator D to be so chosen that the index map induced by DJ on A coincides with the
index map in the construction of the necessary conditions. However this topological-type
condition embracing only the global aspect of the theory may be insufficient for reconstruc-
tion of D (even in this undeformed, i.e. free-field case). One may hope to reconstruct in this
way only the sign25 F = DJ|DJ|−1 of DJ.26 We expect, however, that the full reconstruc-
tion of D in the undeformed (i.e. free field) case will be difficult—we indicate a method
of reconstruction of undeformed (A,D, H) on Minkowski spacetime in Sect. 4. The local
information which shows up in the microlocal renormalization is useless for the reconstruc-
tion of “undeformed” D. But if the undeformed D was unknown, then any effort to proceed
the other way round after Fedosov and investigate the sufficiency condition for the existence
of the asymptotic representation would be hopeless (still in QED). It should be stressed
that already in solving the second task we will need to know the undeformed (A,D, H) on
Minkowski background in order to reformulate the asymptotic conditions of Blanchard and
Seneor in terms of symbol calculus—the immediate analogue of the asymptotic properties
of the Weyl representation on R

2n. We propose to make only first steps towards this goal.
We assume that we have undeformed ordinary (riemannian) spectral tripe (A,DJ, HJ) and
that it is compact (A unital). Now we could incorporate the microlocal renormalization of
Brunetti and Fredenhagen [10] to utilize the local information.

Thus we have arrived at the third task of our proposal: to construct a formal deforma-
tion (ÃJ, D̃J, H̃J) of (AJ,DJ, HJ) along the lines of Dütsch and Fredenhagen (or
Bordeman and Waldmann), thus to investigate stability of the spectral triple structure
(A,DJ, HJ) under deformation, i.e. try to prove the analog of the above stability
theorem for compact spectral triple.

If the stability is preserved, then we can expect to have the full analog of the Fedosov
theorem (in compact case only) and imitate the main steps of Fedosov having the full ab-
stract calculus of symbols worked out by Connes and Moscovici [20] for the undeformed
(A,DJ, HJ). Again we expect that even in this simplified case (QED: existence of Green
functions assured) the full analog of Fedosov theorem will be difficult to work out, as the

23Compare Theorem 7.1.2 and its proof in Ref. [16].
24Compare [11].
25Of course modulo a trivial modification on the kernel, but preserving the index, so that index F = indexDJ ,
compare e.g. [8].
26Independently of this many examples of Fredholm modules—bounded versions of ordinary riemannian
spectral triples, connected to free (quantum) fields has been constructed, at least for fields without any gauge
freedom. Compare e.g. [19], where it is shown how the free fermion charged fields give rise to natural con-
structions of Fredholm modules. In the same book [19], Chap. IV.13, connection of the adiabatic limit and the
Bogoliubov-Epstein-Glaser local renormalization with the local index formula is noticed and emphasized.
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non-compact triples involve much more technicalities.27 Yet the full version (necessity and
sufficiency) would be very desirable as we expect in this case that the integrality of the in-
dex (necessity and sufficiency condition) puts strong limitations on the allowable values of
the deformation parameter, i.e. on the coupling constant g. This goes outside our proposal,
but we expect that in general situation (not only for QED) an analog of Fedosov theorem
holds: namely that the actual asymptotic representation does exist (and so the adiabatic limit
exist) whenever the index induced by (A,D, H)28 fulfills some integrality conditions. By
what we already know of the charge structure from the algebraic quantum field theory29 we
expect that such index describes charge structure of the theory. Because on the other hand
the properties of the index reflect universal properties of the (non-commutative but clas-
sical) spacetime, the charge structure30 would come out of (non-commutative) spacetime
properties. At this place I quote a problem posed by Staruszkiewicz [21]:

How is it possible at all that the electric charges in general, and the electric charges
of particles so much diverse as leptons and hadrons in particular, are all equal to the
multiples of one and the same universal unit charge? How is it possible that the electric
charge of electron and the electric charge of proton are equal with an unusually small
experimental error, such that their ratio is equal to 1 with the experimental error less
than 10−21?

We agree with A. Staruszkiewicz that the simplest explanation of this problem is to assume
that the electric charges of proton and electron are mathematically equal and that the charge
structure (in particular the property of the electric charge cited above) reflects a property of
spacetime and not properties of particles themselves, just as for spin, whose properties reflect
the rotation symmetries—a subgroup of spacetime symmetries, and result from the proper-
ties of irreducible unitary representations of the subgroup. The problem of Staruszkiewicz
is an important motivation for this proposal. However the hypothesis presented here differs
significantly from the theory proposed by Staruszkiewicz [22]. Here we intend to reconcile
the puzzle of Staruszkiewicz with the observed fact that the electric charge (and generalized
charges, such as baryon number, lepton number, generalized isospin, . . . ) do not super-
pose similarly as macroscopic immediately observable quantities, and propose a tentative
hypotheses that the generalized charges do not superpose. Staruszkiewicz adopts the initial
assumption that the electric charge can in principle at least superpose,31 and consequently,
that the phase of wave function—a degree of freedom canonically conjugate to the charge
emerging from the U(1)-gauge, is subject to quantization. Thus he lives open the question:
why we do not observe any coherent superpositions of electric charges? These assumptions
(of this proposal and that of Staruszkiewicz) lead to different conceptions of spacetime.

What are the conceptual and computational gains of the hypothesis proposed here and of
the conception of non-commutative spacetime adopted here? Perhaps it is worth to empha-
size that the inclusion of the algebra of spacetime coordinates as a structural ingredient of the

27In fact Fedosov proved his theorem on sufficiency for the existence of asymptotic representation for com-
pact manifolds only. But an analogue theorem is certainly true for the non-compact case as well (after some
reasonable assumptions of course).
28More exactly: by the corresponding (A,DJ, HJ).
29Compare the Doplicher, Haag and Roberts analysis in Ref. [5].
30As far as reflected by the index.
31This is rather an artifact of the (possibly an oversimplifying) assumption that the regime of validity of the
ordinary quantum mechanics is unrestricted then of the Staruszkiewicz’s theory itself (one has to assume at
least that the Coulomb field falls within the regime). In this approach an ad hoc “vector reduction mechanism”
is needed.
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theory along the lines proposed here allows in principle to keep the particle interpretation on
curved spacetime, even if the spacetime does not posses any time-like Killing vector fields,
considering the relationship between the algebra of spacetime coordinates and the algebra
of detectors. This allows (potentially) to make a practical use of the renormalization theory
of Brunetti and Fredenhagen. Indeed we can, in principle at least, pick up the vacuum-like
states by incorporating the relationship between annihilators and detectors. This would give
a solution to the well known problem set for e.g. by Buchholz in Sect. 8 of his review arti-
cle [23]. We should emphasize that the geometric method proposed here introduces a whole
variety of non-commutative geometry tools and connects them with the existence problem
for the adiabatic limit, a problem which is still open (to the author’s knowledge) for the-
ories with non-Abelian gauge symmetry (confinement). Last but not least: we get for free
the time’s arrow for non-superposing quantities, as a consequence of the non-commutative
character of the algebra of spacetime coordinates. It is expected of any ‘reliable’ theory em-
bracing macroscopic non-superposing quantities not only by theorists like Haag or Penrose,
but most of all by those theoreticians who have everyday contact with quantum chemical and
optical laboratory, see e.g. [44] Compare also the “complementarity concept” of Bohr [45].

4 Undeformed (A,D,H)

As we have mentioned above to give the asymptotic conditions of Blanchard and Seneor
the shape of asymptotic conditions of Fedosov (for the asymptotic operator representation)
i.e. in terms of asymptotic conditions imposed on the symbols of operators, we need two
things: (1) to pass from Green functions to operators (after Wightman); (2) then wee need
“undeformed” (A,D, H) on Minkowski spacetime, i.e. for free QED on Minkowski back-
ground (the immediate analogue of the Weyl representation WD(R2n) on the symplectic
manifold R

2n). To this end the knowledge of the “undeformed” (A,D, H) (for free QED on
Minkowski background) is sufficient provided the spectral triple (A,D, H) is stable under
deformation.

Here we concentrate on the most difficult part of our proposal, and indicate a way of con-
structing undeformed (A,D, H). Here we restrict attention to the case based on Minkowski
background, i.e. for free QED on Minkowski background, as we are primarily interested in
reformulating the asymptotic conditions of Blanchard and Seneor in geometric terms explic-
itly involving the triple (A,D, H) and the abstract symbol calculus.

From general principles of QFT and especially from the experimental verification of the
celebrated “dispersion relation” we expect the spacetime algebra A, or rather its geometric
structure encoded in (A,D, H) to be “fairly classical”. What is important here is to give
it the spectral operator format (A,D, H) allowing to a noncommutative deformation. In
particular one can expect A to be already (Morita equivalent to) a commutative algebra
in the free field case and try to identify it within the field algebra together with the Dirac
operator D in the free field Krein space H.32

Remark 1 It should be stressed that the microlocal renormalization of Brunetti and Freden-
hagen works well also for general curved globally hyperbolic spacetimes. In fact we expect

32However we cannot expect a priori that the algebra A is cyclic as represented in H, and if every element
of [D, A] preserves the cyclic subspaces, allowing to reducibility of the spectral triple (A,D, H) and thus
several (infinite and discrete or continuous) sum of disjoint connected components of sp A (or so to say:
discrete sum or “continuous sum” of classical spacetime copies) with high multiplicity.
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that topology of (A,D, H) for free QED on Minkowski spacetime trivializes (we expect that
we recover spectrally exactly the ordinary spacetime geometry). It is in the general case with
curved spacetime with non-trivial topology where we expect that the index type conditions
will show up. Of course to realize our proposal in QED case, we will need to construct the
undeformed (A,D, H) in every case where the deformation works, i.e. for general globally
hyperbolic spacetimes. But this is of course unnecessary for the geometric Fedosov-type
formulation of Blanchard-Seneor asymptotic conditions on Minkowski spacetime.

Remark 2 One can argue perhaps that the proposed method gives only a (rather sophis-
ticated) geometric form to the Blanchard-Seneor theorem about Green functions in QED
capable of investigation of the adiabatic limit for QED in the Brunetti-Fredenhagen renor-
malization on curved globally hyperbolic spacetimes. And argue further that without the
respective analogue of Blanchard-Seneor for gauge field theories with confinement it will
give us nothing towards confinement. But this opinion would be premature for at least one
reason. The proposed geometric reformulation of what we essentially know about asymp-
totics in QED on Minkowski spacetime has the important property that it depends on the
undeformed triple (A,D, H), and this triple in turn depends on the free theory in question
which has an immediate influence upon the construction of symbols in the asymptotic con-
ditions formulated geometrically after Fedosov. We can not exclude at this stage before our
proposal is completed just for QED, that the replacement of (A,D, H) (with that corre-
sponding to respective free field(s) with confinement) in the symbol calculus of geometric
asymptotic conditions will do work. That the Fedosov theorem is empty in case of flat sym-
plectic manifold R

2n, as the topology of R
2n is trivial, and all deformation parameters within

the interval [0,1) are allowed (just as we expect in our case for Minkowski spacetime, with
the weakest restriction on the coupling constant(s)) is completely unimportant here.

Construction of undeformed (A,D, H) on Minkowski background proposed here is re-
duced to the construction of a “Fourier transform” on a uniform (pseudo)riemannian man-
ifold acted on by the Poincaré group. This is suggested by the following three sources:
(1) free field construction for particles with strictly positive mass, or better for fields con-
structed out of these irreducible (unitary) representations of the Poincaré group which have
strictly positive mass operator; (2) by the Haag-Ruelle formulation of scattering theory for
QFT with the vacuum strictly separated from all other states by a mass gap; and (3) by
the nonrelativistic quantum field theory. Indeed the construction of free field (out of the ir-
reducible representations of the Poincaré group with strictly positive mass) as well as the
construction of one-particle states in Haag-Ruelle theory (with a positive lower bound in the
spectrum of the mass operator in the subspace orthogonal to the vacuum) is strictly analo-
gous to the construction of an “inverse Fourier transform” relating the spectrum of momen-
tum operators (translation generators) with the spectrum of the Schwartz algebra S(M) on
the Minkowski manifold M, i.e. with spacetime points.

In order to explain this we remind the rudiments of harmonic analysis on uniform man-
ifolds. Suppose we have a uniform differential riemannian (or pseudoriemannian) manifold
M of dimension n (in fact we consider also manifolds M with more degenerate geometric
structure, such as e.g. the Galilean spacetime with the Galilean group acting on it) acted
on by a Lie group G, with a (pseudo)metric form g invariant under G. Then we consider
the Hilbert space33 H = L2(M, dυ) of square integrable functions with respect to the in-
variant volume form dυ (as is standard in works of Gelfand, Harish-Chandra and others

33In fact we intent here a more general case of Krein-type space, but for a while the reader may initially
assume H to be ordinary Hilbert space.
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on harmonic analysis), however we will be primarily interested in Hilbert spaces H (or
Krein spaces) of square integrable spinors or sections of more general Clifford modules
over T ∗M, although this is unimportant in presenting the general idea. One then consider
the unitary regular right representation T of G acting in H and an appropriate algebra S(M)

of functions of fast decrease with nuclear34 Fréchet space as a linear topological space (just
the algebra of smooth functions in case of compact M). We can consider also the algebra
S(M) as acting in H as a multiplication algebra with point wise multiplication. The regular
representation Tg induces the transformation a �→ TgaT −1

g of a ∈ S(M) coinciding with
the ordinary group action TgaT −1

g (x) = a(g−1x) for functions on M. Harmonic analysis
(“Fourier transform” on M) corresponds to a decomposition of the regular right represen-
tation T acting in H into continuous sum (integral) of irreducible sub representations. To
this decomposition there corresponds a decomposition of every element f of H into contin-
uous sum (integral) of its components belonging to the irreducible generalized subspaces—
the “inverse Fourier integral of f ”. For example the (inverse) Gelfand Fourier transform
on Lobachevsky space (acted on by SL(2,C)) together with the respective algebra S(M)

has been constructed in [24].35 Now it is important that in general such situation one can
construct decomposition of elements f of H (inverse Fourier transform) in purely spectral
manner. We consider a maximal commutative algebra Â generated by representors of gen-
erators of one parameter subgroups (or their functions). Let Â be generated by P1, . . . ,Pn

and consider their joint spectrum sp(P1, . . . ,Pn) (in particular for the Euclidean n-space R
n

these could be chosen to be translation generators along the canonical coordinates’ in case
of SL(2,R) acting on the Lobachevsky plane L2 we may chose P1 to be the Casimir oper-
ator, i.e. the Laplacian on the Lobachevsky plane, and for P2 we may chose a generator of
a one-parameter boost subgroup; in our case we will consider translation generators). Then
we will have

f (x) =
∫

sp(P1,...,Pn)

F f (s)Θ(x; s)dν(s); F f (s) =
∫

M
f (x)Θ(x; s)dυ(x) (1)

where Θ(x; s) is a complete set of common generalized proper functions of the operators
P1, . . . ,Pn corresponding to the joint spectral point s of spP1, . . . ,Pn, and dν(s) is their
joint spectral measure. In fact the Fourier transform on the Lobachevsky plane or space
in [24] has not this clear spectral form as no generators (besides the Laplacian) P1, . . . ,Pn

of the algebra of operators, which are simultaneously diagonalized by the Fourier transform
are explicitly constructed.36 Existence of Fourier transforms diagonalizing say the Lapla-
cian on L2 and generator of one of boost subgroups follows from general theory presented
in [24, 25], and by the same theory existence of Fourier transforms is assured, diagonalizing
any maximal algebra Â of functions of generators of the regular representation T . (In a sub-
sequent paper we give an explicit construction of the Fourier transform on L2 diagonalizing

34Wed need nuclearity to construct generalized proper vectors (or explicit decompositions into continuous
sums/integrals) as weak derivations of vector valued spectral measures of the appropriate differential selfad-
joint operators invariant under G, and thus commuting with T , compare [24].
35Gelfand and his co-workers [24] consider regular representations acting on square integrable functions.
One can do the same of course for regular representations acting e.g. on spinors. For example every known
spectral triple explicitly constructed on a manifold uniform for a Lie group has been constructed with an
implicit or explicit help of harmonic analysis.
36However one can easily modify their Fourier transform to obtain one diagonalizing generator of rotation
and the Laplacian.
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the Laplacian and a generator of boosts.) Of course from the continuous sum (integral) de-
composition one can recover the decomposition into irreducible generalized subspaces, in
particular in the case of the classical groups considered here, we decompose the joint spec-
trum manifold sp(P1, . . . ,Pn) into sub manifolds sub(λ) of constant values λ of the Casimir
operator of the whole Group. Then the integral

fλ(x) =
∫

sub(λ)

F f (s)Θ(x; s)dνλ(s); F f (s) =
∫

M
f (x)Θ(x; s)dυ(x) (2)

over the sub manifold sub(λ) with the measure dνλ(s) induced by dν(s) gives the general-
ized invariant subspace corresponding to the proper value λ of the Casimir operator C. Now
we may write the decomposition (1) in the following form

f (x) =
∫

spC

fλ(x)dλ; fλ(x) =
∫

sub(λ)

F f (s)Θ(x; s)dνλ(s) (3)

obtaining the decomposition of the Hilbert space H as a continuous sum/integral

H =
∫

spC

Hλdλ

of irreducible subspaces Hλ of generalized functions of the form

fλ(x) =
∫

sub(λ)

F f (s)Θ(x; s)dνλ(s); f ∈ L2(M, dυ).

Thus the “Fourier transform” provides a unitary transformation diagonalizing the operators
of the algebra Â and the “inverse Fourier transform” diagonalize the algebra S(M) viewed
as multiplication algebra in H. In this sense the algebras S(M) and Â are dual to each other.

In general the manifold sp(P1, . . . ,Pn) is discrete sum of connected components, and
thus have a mixed character: continuous and discrete, depending on the choice of the gener-
ators Pi . However it is purely discrete only for compact M. In general in decomposition of
an element f ∈ L2(M, dυ) there participate all irreducible subspaces Hλ of all irreducible
sub representations of T . The same will be true for the Minkowski spacetime M acted on
by the Poincaré group represented in the Clifford bundle used in [11] of square integrable
sections (with the algebra C∞(M) replaced with S(M)).

However in some situations (we will give physically important examples below) the full
harmonic analysis on the whole spacetime manifold M involving all irreducible sub rep-
resentations of T is unnecessary in recovering the dual relationship between the spectra
of S(M) and Â. In particular it may happen that after restricting the integration in (1)
over sp(P1, . . . ,Pn) to an integration over a fixed sub manifold, say to the sub manifold
sub(λ), corresponding to the irreducible subspace Hλ (irreducible sub representation Tλ

of T ), and after restricting the argument x in the integrand of (1) to a sub manifold sub(μ)
of M, one obtains a Fourier transform i.e. a unitary map between L2(sub(μ), dυsub(μ)) and
L2(sub(λ), dνsub(λ)). Besides the sub manifolds sub(μ) of M compose a one-parameter fo-
liation (codimension one foliation) of M, parametrized by the real number μ. This is a
rather very exceptional situation, strongly depending on the group structure of the group G

in question and on the uniform manifold M acted on by G. It may even happen that al-
though one has to use a Krein-type space H in order to encode the algebra S(M) together
with the metric structure of M spectrally in the Connes-Strohmaier format the irreducible
subspace Hλ degenerates to an ordinary Hilbert space. Of course in the restricted integral

fλ(x) =
∫

sub(λ)

F f (s)Θ(x; s)dνλ(s)
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one can consider the function (cross section of the respective Clifford module) f with
the argument ranging all over the manifold M not restricted to any of the sub manifolds
sub(μ) with fixed value of μ. But then the function/cross section f will not be square inte-
grable and will not belong to H but will fulfil a differential “wave equation” corresponding
to the irreducible sub representation Tλ of T . Of course this restricted Fourier transform
works for all sub manifolds sub(μ) of M for each μ separately. In recovering f ∈ H on
the whole spacetime M, as in (1), using just one irreducible subspace Hλ (for fixed λ)
is of course insufficient and in general all the irreducible subspaces Hλ will participate in
the decomposition (1). Such exceptional situation allowing to a construction of “restricted
Fourier transform” we encounter in case of Bargmann central extension37 G of inhomo-
geneous Galilean group acting on the Galilean spacetime M. The sub manifold sub(λ)
corresponds to the paraboloid of constant mass equal λ in the four-momentum space38

sp(P0,P1 . . . ,P3,P4 = M) and the sub manifolds sub(μ) of M correspond to the simul-
taneity hyperplanes t = μ. In fact if we want to describe the Galilean spacetime spectrally
and explain in addition its connection to non-relativistic quantum fields, it is the central
Bargmann extension39 G of the inhomogeneous Galilean group which is more natural here
as a symmetry group. Indeed the appropriate Dirac operator40 we should use here is the
non relativistic Dirac operator −i∂t ⊗ A − i∂i ⊗ Bi + 1 ⊗ C found by Lévy-Leblond [27],
where A,Bi,C are elements of a Clifford algebra over the (five dimensional) extension41

of tangent space with a positive definite and singular quadratic form in it. Indeed, in this

37Although action of the extension on the Galilean spacetime degenerates to the ordinary action of the inho-
mogeneous Galilean group, using of the Bargmann extension is essential if one intents to describe spectrally
the Galilean spacetime manifold, see below for some further comments.
38Where the generator of P4 = M of the center of the Bargmann extension has to be added to the translation
generators P0, . . . ,P3, which in quantum mechanics is physically interpreted as mass operator.
39This extension G may be realized e.g. as a product G′ × R, where G′ is the inhomogeneous Galilean
group with the following multiplication rule: (θ, r) · (θ ′, r ′) = (θ + θ ′ + ξ(r, r ′), rr ′), where ξ is the standard
Bargmann exponent on the inhomogeneous Galilean group G′ equal to

ξ
(
r, r ′) = 1

2

[
u · Rv′ − v · Ru′ + η′v · Rv′],

(dot · stands for the ordinary scalar product and R denotes the rotation matrix) for the inhomogeneous
Galilean transformations r and r ′:

r : (x, t) �→ (Rx + tv + u, t + η) and r ′ : (x, t) �→ (
R′x + tv′ + u′, t + η′).

Note that Z = {(1, θ), θ ∈ R} is a central subgroup of the extension G, as ξ(1,1) = ξ(1, r) = ξ(r,1) = 0,
r ∈ G′, but {(r,0), r ∈ G′} is not a subgroup. However G/Z is group isomorphic to the inhomogeneous
Galilean group G′ . Commutation rules for the generators of the Bargmann extension G have the following
form:

[Ji , Jj ] = iεijkJk, [Ji ,Kj ] = iεijkKk, [Ji ,Pj ] = iεijkPk

[Ki,P0] = iPi [Ki,Pj ] = iδij M (= iδij P4)

[Ji ,P0] = [Ki,Kj ] = [Pi,Pj ] = [Pj ,P0] = [Ji ,M] = [Ki,M] = [Pi,M] = [P0,M] = 0.

(4)

where Ji ,Ki ,Pi are generators of rotations, proper Galilei transformations, space translations, and P0, M are
generators of time translations and of the central subgroup Z respectively.
40Although for general Dirac-type operator on M with a pseudo-riemannian metric, or even with a more
degenerate “metric” structure, there does not exist any natural Hilbert space acted on by D, such that D

is (essentially) selfadjoint, there nevertheless does exist natural Krein-type space with respect to which the
operator D is selfadjoint in the generalized Krein sense, compare e.g. [26].
41Corresponding to the Bargmann extension of the Galilean group.
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Galilean case the Krein-type space H corresponding to the more degenerate “metric” struc-
ture of M is slightly different from the ordinary Krein space and may be reduced to a
positive definite inner product space with non-trivial closed subspace of zero norm vectors,
which cannot be quotiened out, as the kernel subspace reflects the degenerate character of
the “metric” structure on M. This can be immediately seen from the results of [27], as all
the algebra elements A,Bi,C can be (algebraically) generated from the standard Clifford
algebra over a positive definite metric of rank 4. Indeed as follows from [27], we may put:
A = −i/2(β + βγ 4),C = mi(β − βγ 4),Bi = βγ i , where γ α , 1 ≤ α ≤ 4 are the standard
generators of the Clifford algebra over four dimensional vector space with Euclidean metric
form: γ αγ ρ + γ ργ α = 2δαρ , 1 ≤ α,ρ ≤ 4; and where β is an arbitrary non-singular 4 × 4
matrix, which therefore may be chosen to be equal say γ 4. The action of the Bargmann
extension G in the (degenerate) space H of square integrable non relativistic bispinors of
Lévy-Leblond as well as the invariance asserting that his Dirac operator commutes with this
action immediately follows from [27].42 Let us give more involved and non-trivial physically
interesting examples pertaining to quantum field theory.

Example 1 Consider an irreducible unitary representation Um,α of the Bargmann central
extension G of the inhomogeneous Galilean group, acting in an ordinary Hilbert space Hm,α ,
corresponding to the mass m and spin α. Then using Um,α let us construct in the standard
way a free non relativistic quantum field acting in the Fock space

HF,1 =
{

⊕∞
N=0(H⊕N

m,α)S for bosons

⊕∞
N=0(H⊕N

m,α)A for fermions

together with the unitary representation

U1 =
{

⊕∞
N=0(U

⊗N
m,α )S for bosons

⊕∞
N=0(U

⊗N
m,α )A for fermions

of G acting in HF,1. In the above formulas the N = 0 summand equals just C with the
natural inner product in C and represents states proportional to the vacuum, with the trivial
representation of G in C (every element of G is just represented as multiplication by 1).
Now to this free field we add a free “Galilean electromagnetic field”, which from the quan-
tum field theory point of view has the character of a pure “admixture”, which normally could
be completely ignored, but it is crucial in connection to the harmonic analysis on the whole
spacetime M. Namely we consider in addition a “free Galilean electromagnetic quantum
field”, which is composed of the zero mass irreducible representations of the Bargmann
extension G of the inhomogeneous Galilean group, just like the ordinary quantum field is
composed out of the massive irreducible representations of the Bargmann central extension
of the inhomogeneous Galilean group. Then we compose together a free system of Galilean
uncoupled fields, the former particle field together with the “Galilean electromagnetic field”.
Because in the standard reference articles, e.g. [27], treating Galilei invariant description of
quantum particles (irreducible representations of the inhomogeneous Galilean group) zero
mass helicity 1 four-vector particles are not analysed from the quantum mechanical point
of view and because in the known works on Galilean quantum field theory, e.g. [28], phys-
ical triviality/non triviality of Galilei invariant quantum electromagnetism is not critically

42We do not go into details here as we are not primary interested in Galilean spacetime.
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treated from the group representation point of view, we indicate here the basic idea. Namely
we analyse the unitary irreducible representations of the group43 G acting in H exactly as
Wigner did for the Poincaré group decomposing the space H with respect to (the spectrum
of) the commuting generators of translations and the generator P4 = M of the center Z.

In should be stressed that here (and it lies at the very heart of the construction of one-
particle wave functions in QFT) some additional assumptions not entirely controlled are
implicitly used at this place. Namely we have to assume that we have a sufficiently well
behaved unitary representation of G in a Hilbert space H, treated as if it was a regular rep-
resentation acting on the spacetime manifold M, so that the vector-valued spectral measure
of the generators P0, . . . ,P3,P4 (composing a maximal commuting set of generators of the
group G in question) can be weakly differentiated and by this could give us a “Fourier-type”
construction of one-particle wave functions. On the other hand we have mathematically well
defined construction of free fields and the mentioned assumptions, not entirely clear, must be
reflected somehow by the mathematical structure of free fields. This is in fact our immediate
task in extracting them more accurately, as the extraction involves spectral reconstruction of
spacetime manifold out of free fields.

Let us proceed for a while after Wigner in analyzing the representation of G. As we
have said we decompose H with respect to P0, . . . ,P3.P4 (energy, momentum and mass
operators)

H =
∫

sp(P0,...,P3,P4)

Hpdν(p)

into a direct integral of generalized common proper subspaces of P0, . . . ,P3,P4. After re-
stricting the continuous integral decomposition to the paraboloid p2

1 + · · · + p2
3 = 2λp2

0 of
mass m = λ, i.e. to a sub manifold sub(λ) of sp(P0, . . . ,P3,P4), and using the Wigner’s
technique of “little Hilbert space” we obtain the irreducible subspace Hλ corresponding to
an irreducible sub representation in the following form

Hλ = h ⊗ H, where H = L2
(
sub(λ), dνλ(p)

)
,

with respect to the measure dνλ(p) on sub(λ) induced by the spectral measure dν(p); and h

is the “little Hilbert space”. Thus the elements of the irreducible subspace Hλ are h-valued
functions p �→ Ψ̂ (p) on sub(λ) of the momentum p. Then we proceed just like Łopuszański
did [31, 32] for the Poincaré group, in showing that the inverse Fourier transform “restricted”
to the sub manifold sub(λ = 0), i.e. in case of zero mass m = λ = 0:

Ψ (x) = (2π)−3/2
∫

sub(λ)

Ψ̂ (p)ei(px−p0t)dνλ(p)

= (2π)−3/2
∫

Ψ̂ (p0,0,0,0)e−ip0t dp0, where 2λp0 = p2 so p = 0, (5)

43Here we intend to analyse zero mass representations, so that the representation of the Bargmann extension
G degenerates to an irreducible representation of the ordinary inhomogeneous Galilean group G′ in the zero
mass irreducible subspace. The group extension 0 �→ Z �→ G �→ G′ �→ 1 becomes trivial there, as the repre-
sentation of induced on the central subgroup degenerates to just identity operator. For non zero mass case the
representation of Bargmann extension is faithful and the irreducible representation of G does not degenerates
to a unitary representation of G′. For the non-zero mass case the irreducible unitary representations of the
inhomogeneous Galilean group G′ are not interesting as the one-particle states composed of them lack any
reasonable locality properties—no reasonable position operator exists for them.
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is a four-vector field on spacetime M with helicity 1 if and only if the (irreducible) repre-
sentation space Hλ is a completely degenerate inner product space with the inner product
identically equal zero; or more precisely if and only if the “little space” h is not ordinary
Hilbert space, but a finite dimensional space with completely singular inner product, i.e.
with all vectors having the zero norm. In fact here for the group G the “little” group is equal
to the Euclidean group E3 and not E2 as for the (double cover of the) Poincaré group and
the situation is slightly more involved for analysis then for the Poincaré group. Let us call
this representation U0,1. This is no surprise as the Hilbert space structure has always to be
modified into a Krein-type (or more degenerate) space if one uses single particle wave func-
tions with redundant components, e.g. in describing spin 1 particle by a four-vector wave
functions. Our case is even more degenerate, as we expect no real free quantum particles in
the Galilei invariant quantum electromagnetic field.44 With the help of U0,1 and by tensoring
we construct “Fock space” HF,0 and the respective representation U0 = ⊕∞

N=0(U
⊗N
0,1 )S of the

group G acting in it.
Recall that in case of non-zero mass m = λ �= 0 we would have instead of (5)

Ψ (x) = (2π)−3/2
∫

sub(λ)

Ψ̂ (p)ei(px−p0t)dνλ(p)

= (2π)−3/2
∫

Ψ̂ (p)ei(px−εpt)d3p, where εp = p2

2λ
. (6)

with an irreducible representation of (the double cover) of SO(3) acting in the “little Hilbert
space” h (and of course with the representation of the Bargmann extension G not degener-
ating to an irreducible representation of the ordinary inhomogeneous Galilean group.)

Thus the “Fock space” H of the composed free fields is equal to

H = HF,1 ⊗ HF,0,

with the representation

T = U1 ⊗ U0

of the Bargmann central extension G of the inhomogeneous Galilean group acting in it.
We consider now the decomposition of the representation T of G into irreducible sub

representations with respect to the spectrum sp(P0, . . . ,P3,P4), i.e. using decomposition of
H with respect to energy, momentum and mass operators P0, . . . ,P3,P4 as in the formu-
las (1), (3). It is now tempting to compare this decomposition of T into irreducible repre-
sentations with the decomposition (1) and (3) of the regular representation T on M and
treat it as an abstract “inverse Fourier transform” on a spectrally defined manifold (given
by spectral triple) diagonalizing P0, . . . ,P3,P4, whose inverse, i.e. direct transform, will
diagonalize the algebra A dual to that generated by P0, . . . ,P3,P4 (of course with a mul-
tiplicity on both sides a priori possible: in the spectrum of sp(P0, . . . ,P3,P4) and in sp A,
i.e. with generally reducible (A,D, H)).45 In other words we expect that the transforms (6)
and (5) are respective restrictions of the abstract “inverse Fourier transform” (over the full

44Recall that according to [29] there are two different non relativistic limits of classical Maxwell equations
which are Galilei covariant, namely the magnetic limit and the electric limit. Both of them are not of “radia-
tive” character which would allow a physically non-trivial quantum field version.
45Note that in sp(P0, . . . ,P3,P4) we will have the discretely separated sub manifold sub(m,α) correspond-
ing to the one-particle subspace Hm,α ⊂ H.
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sp(P0, . . . ,P3,P4)) to the sub manifolds p2 = 2λp0 and p = 0,m = λ = 0. Confirmation
of this would give us the undeformed spectral triple (A,D, H) corresponding to the non
relativistic free field in question, composed of the free particles of mass m and spin α, ac-
companied with the pure “admixture” component field with no physical quantum particles
but plying a crucial role in spectral reconstructing of spacetime from the free quantum field.

This task is reduced mainly to decomposition of tensor product representations Um,α ⊗
Um,α , Um,α ⊗ U0,1, U0,1 ⊗ U0,1 into irreducible sub representations. We will not go into
further details of this example as we are not primarily interesting in the Galilean spacetime.

Thus we suggest that (6)—which is not Fourier transform in the sense of harmonic
analysis—used in non-relativistic quantum field theory in reconstructing one-particle wave
functions,46 is a restriction of the true Fourier transform involving all irreducible sub repre-
sentations of the representation T acting in the composed Fock space of free fields.

Remark 3 It should be stressed that it is non relativistic quantum field theory which shows
the necessity of using the Bargmann central extension of the Galilean group instead of the
Galilean group itself. In the ordinary non relativistic quantum mechanics, in that cases,
which involve just one irreducible representation, it is not visible—in that case we have
the equivalence between unitary representations of the Bargmann extension and ray repre-
sentations of the Galilean group. Indeed although it is the Bargmann extension which acts
in the Fock space of a non relativistic field, the assumption that we have a ray (up-to-phase)
representation of the inhomogeneous Galilean group in the Fock space would be too strong;
although it is sometimes proposed as a tentative axiom for a consistently Galilean quantum
field theory, compare e.g. [28].47

Example 2 Let M be the Minkowski spacetime. Consider the free quantum Klein-Gordon
field of mass m. By tensoring we may construct the field from the irreducible representation
Um,0 of the double cover G of the Poincaré group, corresponding to the mass m and spin
zero, constructed after Wigner, as has already been indicated in the Example 1 above with
not entirely controlled assumptions about the representation mentioned to above. This time

46With well defined locality properties.
47It could be already seen in the most elementary case of the “second quantized” Schrödinger equation. If
such a ray representation existed in the Fock space, application of the Bargmann theory [30] would give
us the result that the mass operator has a fixed spectral value all over the Fock space, corresponding to the
value of the parameter (parametrising inequivalent exponents of ray representations of the Galilean group)
which corresponds to the assumed ray representation in the Fock space. On the other hand the two-particle
subspace is the (symmetrized/antisymmetrized) tensor product of one-particle states. In each of the one-
particle subspaces there does act a ray (up to a phase) representation of the inhomogeneous Galilean group.
Now action of the up-to-phase-representation on the tensor product immediately gives the exponent of the
representation in the tensor product equal to the sum of the exponents of the representations in one-particle
states. Thus the spectral value of the mass operator in the two-particle subspace is double the value on one-
particle subspace. Thus the spectral values of the mass operator cannot be constant all over the whole Fock
space. Only the assumption that we have a unitary representation of the Bargmann extension—explicitly
asserted in the cited paper of Lévy-Leblond [28]—seems to be the correct substitute for Galilean covariance,
supported experimentally by non relativistic quantum field theory models.

The quantum field Φ(t,x) transforms under the elements (r,0) ∈ G = G′ × R of Bargmann extension G

representing inhomogeneous Galilean group G′ with the phase factor at the front exactly the same as that in
the transformation law for one-particle wave function, with the value for the mass parameter just the same as
for one particle states. Here the mass operator and its spectral values behave like a generalized charge, but
field operators mix the super selection sectors given by this charge.
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Bargmann extension degenerates just to the double cover, so there is no extra operator48

P4 which would have to be added to the generators of translations P0, . . . ,P3—the energy,
momentum operators in order to compose a maximal commuting algebra of generators (or
their functions) of the group G. Thus we decompose a given representation of G in H with
respect to the joint spectrum of P0, . . . ,P3, i.e. we decompose H

H =
∫

sp(P0,...,P3)

Hpdν(p)

into a direct integral of generalized common proper subspaces of P0, . . . ,P3 (after Wigner,
just like in the preceding example). After restricting the continuous integral decomposi-
tion to the hyperboloid p2

0 − p2 = λ2 of mass m = λ, i.e. to a sub manifold sub(λ) of
sp(P0, . . . ,P3), and using the Wigner’s technique of “little Hilbert space” we obtain the ir-
reducible subspace Hλ,α corresponding to an irreducible sub representation in the following
form

Hλ,α = h ⊗ H, where H = L2
(
sub(λ), dνλ(p)

)
,

with respect to the measure dνλ(p) on sub(λ) induced by the spectral measure dν(p); and h

is the “little Hilbert space” with the “little group”49 SU(2) acting irreducibly in h if m �= 0.
Thus h depends on the irreducible representation of (the double cover of) the rotation group
(for m �= 0), and thus on the chosen spin α. Let us denote the irreducible subspace Hλ,α

by Hm,α and the irreducible representation of G acting in it by Um,α . In case of zero mass
representation the “little group” is equal to symmetry group E2 of the (two-dimensional)
Euclidean plane.

Thus the elements of the irreducible subspace Hλ are h-valued functions p �→ Ψ̂ (p) on
sub(λ) of the momentum p.

In case of m �= 0 we construct in analogy to the non relativistic case a wave function, i.e.
kind of a restricted Fourier transform

Ψ (x) = (2π)−3/2
∫

sub(λ)

Ψ̂ (p)ei(px−p0t)dνλ(p)

= (2π)−3/2
∫

Ψ̂ (εp,p)ei(px−εpt) d
3p

2εp
, where εp = (

p2 + m2
)1/2

. (7)

In this case of the doubly covered Poincaré group G and the Minkowski spacetime M to the
restricted transform (7) there does not exist reasonable restriction in the spacetime variable,
i.e. the corresponding sub manifold sub(μ)50 of M such that (7) would give us a unitary
mapping between L2(sub(λ), dνλ(p)) and L2(sub(μ), dυμ(p)). In particular the positive
energy wave functions do not compose any complete system in restricting say to the hy-
perplane t = const of a Lorentz frame. However, as Newton-Wigner analysis reveals, in
case of non zero mass the wave function gives a rough localization within t = const hyper-
plane with the ambiguity caused by its Lorentz-non-invariance not exceeding the Compton

48I.e. generator of the center Z of the extension, as the central extension is trivial here, with Z = {1}, and
contracts locally to the initial group—the Poincaré group.
49I.e. double cover of SO(3).
50I.e. analogue of simultaneity hyperplane in Galilean spacetime.
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wave length. We thus not have any well defined position operator in the ordinary quantum
mechanical sense as in the non-relativistic case, but it is precisely what we expect, as we
view (7) as a restriction of a true Fourier transform on M, and on the other hand restrictions
of Fourier transform do not provide in general any well defined unitary transforms.

Note that in case of higher spin it is necessary to use a (Foldy-Wouthuysen) transformed
M(p)Ψ̂ (p) Wigner h-valued momentum function Ψ̂ (p) with the p-dependent matrix M(p)

in order to achieve a transparent locality analysis with local transformation law for wave
functions; which suggest that in this case either using a non-trivial functions of the op-
erators P0, . . . ,P3 is more desirable than the energy-momentum operators themselves or
slightly modified Wigner representations diagonalizing P0, . . . ,P3. We will chose the sec-
ond possibility in the Example 3 below.

Using Um,0 we construct by tensoring the free quantum Klein-Gordon field in the Fock
space HF,1 together with the respective unitary representation U1 in HF,1.

Altough for massless particles the concept of localization is not appropriate we add to
this non-zero mass particle field the free electromagnetic field in order to elucidate connec-
tion to the full harmonic analysis on M, as in the preceding example. And then we form
a composed non-interacting free fields. The non-trivial ingredient is the construction of the
free electromagnetic field from an appropriately chosen irreducible representation of G act-
ing in a Krein space H; and thus in making the correct guess in constructing both H and the
irreducible “unitary” representation U0,1 in H, suitable for the construction of the free field
by tensoring. This task however has been already solved by Łopuszański [31, 32]. Because
his works are in Polish and German, let us briefly sketch the idea of Łopuszański’s [31, 32]
construction. In fact we have already followed him in the preceding example. He proceeds
after Wigner as far as possible, i.e. assuming that we have abstractly given representation
of G in a space H as if it was a Hilbert space and the representation unitary. Moreover he
assumes the representation to be sufficiently regular, as if it was a “regular representation”
acting on the space-time manifold, in particular with a Lebesgue-type spectral measure in
the joint spectrum of translation generators. As we have already stressed above these not
entirely controlled assumptions are not specific for the Łopuszański construction but pertain
to the very heart of the construction of one-particle wave functions in QFT. He proceeds by
a perhaps boringly familiar by now procedure and decompose H with respect to P0, . . . ,P3

showing then, that the inverse Fourier transform “restricted” to the sub manifold sub(λ = 0)
(i.e. in case of zero mass m = λ = 0):

Ψ (x) = (2π)−3/2
∫

sub(λ)

Ψ̂ (p)ei(px−p0t)dνλ(p)

= (2π)−3/2
∫

Ψ̂ (εp,p)ei(px−εpt) d
3p

2εp
, where εp = |p|. (8)

is a four-vector on the spacetime M of helicity 1 with the irreducible representation space
Hλ=0,1 allowing to a non-trivial subspace of positive-norm vectors if and only if the (irre-
ducible) space

Hλ=0,1 = h ⊗ H, where H = L2
(
sub(λ), dνλ=0(p)

)
,

is a Krein space, or more precisely if the “little space” h is a four dimensional Krein space.
It should be stressed that by the nature of the construction Hλ=0,1 is indeed a Krein space
as H = L2(sub(λ)) is an ordinary Hilbert space. Similarly the proper subspaces of “unitary
representors” of translations in the Łopuszański representation U0,1 are by construction non-
degenerate in the sense of [14], with unimodular generalized proper values, similarly their
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generators P0, . . . ,P3 with Hλ=0,1 already decomposed into generalized proper vectors of
P0, . . . ,P3. This greatly simplifies decomposition of U0,1 ⊗ U0,1 into irreducible represen-
tations and the tensor product space Hλ=0,1 ⊗ Hλ=0,1 into irreducible subspaces. It should
be stressed that in general Krein space this is far not the case for an abstractly given “uni-
tary” representation. In particular decomposition theory is by no means automatic for such
a general “representation” in a Krein space (similar comments could be said concerning the
first example). We construct Fock space HF,0 of the free electromagnetic field by tensoring
the one-particle irreducible space Hλ=0,1 of Łopuszański representation U0,1, together with
the “unitary” representation U0 = ⊕∞

N=0(U
⊗N
0,1 )S of the group G acting in it. And exactly as

before we have the representation

T = U1 ⊗ U0

of G in the composed Fock space

H = HF,1 ⊗ HF,0,

of the composed Klein-Gordon and electromagnetic free fields.
Now as before we decompose the representation T using the decomposition of the Fock

space with respect to P0, . . . ,P3 and compare the decomposition with (1) and (3). Note
that in sp(P0, . . . ,P3) we will have the discretely separated sub manifold sub(m,α = 0)

corresponding to the one-particle subspace Hm,α=0 ⊂ H. It is now tempting to compare (7)
to the inverse Fourier transform into irreducible sub representations of T restricted to the
sub manifold sub(λ = m,α = 0) = sub(m,α = 0) on a bona fide spacetime manifold.

Example 3 Consider now a QFT with a mass gap and non-empty discrete part of the spec-
trum of the mass operator M = (PμP μ)1/2, together with the Haag-Ruelle collision theory,
compare [5], Chap. II.3–II.4 and references therein. In the Hilbert space H1 of the theory
we have a unitary representation U1 of the double covering G of the Poincaré group. We
add to the fields of theory the free uncoupled electromagnetic field, which from the physical
point of view would be redundant, but again is necessary in connection to harmonic analysis
on M. We construct the free electromagnetic field with the help of the Łopuszański repre-
sentation in the Krein “Fock” space HF,0, and then construct the representation T = U1 ⊗U0

of G in the Krein space H = HF,0 ⊗ H1 of the composed system of fields. If the initial QFT
is asymptotically complete, then the Hilbert space H1 can be realized as the tensor product
Π⊗

i HF,i of Fock spaces composed of asymptotic particle states allowed by the theory, with
the representation

U1 = Π⊗
i UF,i ,

where

UF,i = Σ⊕
N

(
U⊗N

m.,αi

)
S,A

,

similarly as in a system of free uncoupled fields each corresponding to the particle species i.

Now in the reduction of T some irreducible representations should occur with a dis-
crete weight, namely those corresponding to the discrete part of the spectrum of the mass
operator (PμP μ)1/2, and thus some sub manifolds sub(λ): p2

0 − p2 = λ2 of mass m = λ

of the joint spectrum sp(P0, . . . ,P3), corresponding to the discrete proper values m of the
mass operator have discrete weight. Using the irreducible representation corresponding to
such a discrete sub manifold sub(λ) we construct by application of the “restricted” inverse
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Fourier transform (7) a single particle wave function of mass m and spin determined by the
representation.

Summing up: we construct explicitly the representation T of the double cover G of the
Poincaré group acting in the Krein space H of free QED fields. Because we construct the
free photon field using the Łopuszański representation as in the previous two examples,
then the representation U0 of G in the Fock space of photon field is already at hand. It re-
mains to construct explicitly the representation U1 of G acting in the Fock space of the free
Dirac field. To this end it is sufficient to give the explicit formula for the sub representa-
tion acting in one-particle electron space and in one-particle positron space. But those sub
representations have explicit form both being reducible direct sums of the conjugate Majo-
rana representations (of course we mean in the momentum space representation in which
P0, . . . ,P3 are diagonal). Having the representation T = U1 ⊗ U0 in H we treat it as a reg-
ular representation (up to a possible multiplicity) acting on a bona fide spacetime manifold.
Namely we decompose T into irreducible representations, diagonalizing51 P0, . . . ,P3 and
treat this decomposition as an “inverse Fourier transform” (up to multiplicity) on the bona
fide manifold, whose inverse, i.e. direct transform, should diagonalize the algebra A of its
coordinates.

This task however reduces to the problem of decomposing tensor product representations
of two representations coming from the following set of representations: the two Majorana
irreducible representations mentioned to above and the Łopuszański representation. Prob-
lems of this type are rather extensively examined, compare for example the series of works,
[33–35] and [36–38], where decomposition of tensor products of irreducible unitary repre-
sentations of the Lorentz group and of the Poincaré group has been examined. The circum-
stance however that we are interested in concrete Wigner-type representations diagonalizing
P0, . . . ,P3 and not just in decompositions which are unitarily equivalent to the concrete
tensor products of the given irreducible representations but rather in decompositions them-
selves into irreducible representations which diagonalize P0, . . . ,P3, we prefer to perform
computations separately in our case in order to solve our problem.

Remark 4 From the point of view presented here the algebra of operators A gives the space-
time points as its spectrum (its irreducible sub representations) with possible multiplicity,
as classical non superposing parameters. Elements of A cannot be treated as quantum me-
chanical operators. It is only an accident coming from the specific group structure and the
spacetime manifold M that one can restrict the inverse Fourier transform on sp(P0, . . . ,P3)

to a sub manifold corresponding to an irreducible representation of one-particle states ob-
taining a unitary operator on functions restricted to simultaneity hyperplanes with a well
defined position operators for each time separately. Thus the existence of the ordinary non
relativistic quantum mechanics is an immediate consequence of this accidental structure of
the Galilean group and the Galilean spacetime which allows such a restriction of the full
spacetime Fourier transform. Quantum field theory is more fundamental even in non rel-
ativistic case, and even in non relativistic quantum field theory the spacetime coordinates
are classical (non-superposing) parameters. Therefore the ordinary non-relativistic quantum
theory is emergent in relation to (non-relativistic) quantum field theory and is completely
needles for the purposes of quantum field theory. In particular there is no need for the posi-
tion operator if one uses spectral construction of spacetime manifold provided one uses in
addition the geometric Haag interpretation. In particular that there is no well defined posi-
tion operator in relativistic theory is what we should expect from this point of view. Indeed

51I.e. in which the operators P0, . . . ,P3 are “diagonal”, and have the form of multiplication operators.
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using the spectral construction of spacetime and the geometric interpretation of Haag the
Newton-Wigner analysis accompanying massive particles and the theory with mass gap,
which serves us a substitute for the (now absent) position operator is completely unneces-
sary. Therefore the spectral construction of spacetime allows us to generalize the theory so
as to embrace theories with zero mass particles (no mass gap) such as QED.

4.1 Multiplicity of the Algebra Generated by P0, . . . ,P3 or Respectively by P0, . . . ,P3,P4

in the Fock Space HF,1

Here we examine only qualitatively non-cyclicity (spectral multiplicity) of the algebra gen-
erated by the operators P0, . . . ,P3 (eventually P0, . . . ,P3,P4) in restriction to the Fock
space52 HF,1 composed of non-zero mass particles of Examples 1 and 2 and eventually
for the free theory underlying QED.

Let us suppose for simplicity that the spin α = 0. For the two-particle subspace
(Hm,α=0 ⊗ Hm,α=0)S the states are symmetrized tensor products of Wigner’s states, i.e. (sym-
metrized) complex valued functions (p1,p2) �→ Ψ̂ (p1,p2) on sub(λ = m) × sub(λ = m),
where sub(λ) is the submanifold in sp(P0, . . . ,P3) (resp. in sp(P0, . . . ,P3,P4)) correspond-
ing to the irreducible subspace Hm,α=0 of the subrepresentation Um,α=0. The scalar product
is

(Φ̂, Ψ̂ ) =
∫

dνλ=m(p1) dνλ=m(p2)Φ̂(p1,p2)Ψ̂ (p1,p2)

together with the transformation law (Um,0 ⊗ Um,0)S . From what we know of two particle
systems combined of one-particle constituents it follows that the masses m′ of the two-
particle states vary from m + m to infinity (resp. m′ = m + m in Galilean case), as the rela-
tive momentum of the particles varies in magnitude from zero to infinity. Better: it follows
from the fact that Pi |Hm,0⊗Hm,0(Φ1 ⊗ Φ2) = PiΦ1 ⊗ Φ2 + Φ1 ⊗ PiΦ2 and from the rela-
tion between p and p0 on sub(λ = m) corresponding to the irreducible subspace Hm,0. The
amplitude for p1 + p2 = 0 still depends on the relative momentum, so that under rotations
all orbital angular momenta l will in general participate. That means that in decomposition
of the two-particle subspace Hm,0 ⊗ Hm,0 into irreducible subspaces there will participate
all irrreducible subspaces Hm′,α with m′ ≥ m + m (resp. just m′ = m + m in Galilean case)
and with all integer spins α corresponding to the irreducible representations Um′,α . And
from what we know about two-particle systems the two quantum numbers: m′ and α = l

uniquely define the action of generators of the symmetry group in question (double cov-
ering of Poincaré group or respectively the central Bargmann extension of inhomogeneous
Galilean group); in other words m′, α and amplitude for three-momenta uniquely define a
two-particle state. Thus in decomposition of (Um,0 ⊗ Um,0)S into irreducible Wigner-type
subrepresentations Um′,α every Um′,α enters with multiplicity one.53 Thus the multiplicity
of the spectrum of P0, . . . ,P3 (resp. P0, . . . ,P3,P4) after restriction to the subspace HF,1 is
purely discrete. Of course this is only qualitative argument, which should be read of from
the decomposition of Um,α ⊗ Um,α into irreducible representations Um,α diagonalizing the
generators Pi—a task we postpone to another occasion.

Because of this purely discreet character of multiplicity of P0, . . . ,P3 (resp. P0, . . . ,

P3,P4) we see in case of the Galilean case of Example 1 that for the ordinary riemannian

52It may be considered as an actual subspace of H = HF,1 ⊗ HF,0 corresponding to (photon vac-
uum) ⊗HF,1.
53Compare [39], where the argument is used on p. 25.
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spectral triple (Aqu,Dqu, H/H0), obtained from (A,D, H) by quotening out the closed sub-
space H0 of zero norm vectors, the quotient algebra Aqu should have discrete multiplicity
in the ordinary Hilbert space H/H0; irrespectively of the character of multiplicity of the al-
gebra A in H, coming from the “admixture” photon component. Similarly in the relativistic
case of the free theory underlying QED we expect the possibly highly non-trivial multiplic-
ity of A to cease in passing to the ordinary riemannian spectral triple (AJ,DJ, HJ).

Of course in case of highly nontrivial multiplicity of AJ application of Fedosov method
would be difficult because it would be difficult to treat the operators in HJ as operators on
bona fide (spectrally defined) manifold (AJ,DJ, HJ), with well defined abstract symbol
calculus. Note also that after deformation, when the interaction is switched on the purely
discrete multiplicity character should be essentially preserved, compare the multiplicity As-
sumption 3 of [39] on p. 29, and the arguments supporting it given there.

5 Time’s Arrow for Non-superposing Quantities

Vector fields (e.g. the vector field corresponding to time evolution) on an ordinary manifold
correspond canonically to one-parameter groups of automorphisms of the algebra of smooth
functions on the manifold (e.g. the one parameter group of time automorphisms). The non-
commutative multiplication in the algebra of space-time coordinates has the mathematical
consequence that the “non-commutative transformations” corresponding to a vector field are
not automorphisms of the algebra (a phenomenon connected to Morita equivalence) and do
not form any group in the ordinary sense in general. There are several competitive structures
which have to replace the ordinary group (the so called quantum group is one of the main
candidates54) but it is beyond doubt that in general the group property ensuring the existence
of the inverse transformation among the “non-commutative transformations” for any “non-
commutative transformation” (e.g. ensuring the existence of the backward time evolution
“−t” for every time evolution “+t”) is not fulfilled in general. This is the case for example
for quantum groups. However the possibility that some classical parameters correspond-
ing to spectra of some commutative sub-algebras of spacetime coordinates are acted on by
the quantum group (determining say the time evolution) as by an ordinary one-parameter
group in not a priori excluded; in other words: besides the classical parameters evolving
non-deterministically, there could in principle exist parameters evolving deterministically.
To explain this let us consider a model. Because the full theory involves extremely com-
plicated computational machinery, and moreover one of its most fundamental ingredients
is not explicitly constructed, i.e. the operator D, we are forced to consider a very simpli-
fied (even oversimplified) model. Namely we consider quantum fields in two-dimensional
spacetime, which are completely integrable, constructed by Faddeev and his school, such
e.g. as the quantized nonlinear Schrödinger or sine-Gordon equation. They are constructed
from the classical inverse scattering transform, just by replacement of the “classical” fields
in the monodromy matrix with point-like operator valued distributions, thus obtaining the
quantum monodromy matrix ᵀ(λ), compare the monograph of Korepin, Bogoliubov and
Izergin [46], and utilizing the normal ordering (Wick theorem). Let us remind that in such
models (two dimensional spacetime) renormalization is finite [47] (no Haag’s theorem) so
that the interacting fields may be represented in the Fock space along with free fields, and

54Until recently it was widely believed that quantum groups do not fit into the spectral triple format. Quite
recent works show that the two formalisms may be reconciled. Let us cite the breakthrough papers only
[40–43].
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there is no necessity in smearing them out over open sets of full dimension. The distri-
butions in the monodromy matrix ᵀ(λ) so obtained, which in general are only sesquilinear
forms on a dense subset H0 of the Hilbert space (here the Fock space), can moreover be mul-
tiplied (Wick theorem applicable) on the dense subset in this simplified situation. Here the
dense subset H0 is obtained when acting on the Fock vacuum state by all the polynomials in
elements of the second column of the monodromy matrix. Thus we obtain a linear represen-
tation (quite singular from the analytic point of view) of the set of linear operators, i.e. the
monodromy matrix elements, on the linear subspace H0. As shown in [46] the construction
of the monodromy matrix ᵀ(λ) is equivalent with determination of the time evolution (e.g.
in the case of “second-quantized” nonlinear Schrödinger equation, it is equivalent to the
Bethe Ansatz). Let us stop for a moment at the pure linear-algebraic level of the mentioned
representation in the linear space H0 without any care for analytic subtleties in assuring a
strict mathematically well defined relationship to the Fock space, keeping in mind only the
formal analogy to the Fock space inscribed in the construction of the representation. This
is what mathematicians actually did when inventing quantum group. Namely the algebra
generated by the elements of the monodromy matrix is from the pure algebraic point of
view an algebraic quantum group in the sense of Manin55 [48]. Thus in the analysis of the
algebra (quantum group) we follow mathematicians for a while in order to make clear our
motivation for the last task of the proposal. From the commutation relations of the alge-
bra56 (quantum group) it follows that it coacts on the algebra generated by the first column
of the monodromy matrix.57 The later corresponds formally to the algebra of annihilators
with adjoined unit, and thus correspond to our spacetime algebra, via the correspondence
between fields and local algebras, which is assured in this completely integrable case. In
general the quantum group so constructed is a Yangian, whose structure is still quite com-
plicated. This is the case for the nonlinear Schrödinger and sine-Gordon models at least. In
particular the Yang-Baxter matrix with parameter R(q1, q2) corresponding to it has a pole
at q1 = q2. Therefore we go further in our mathematical simplifications and assume that we
have such a model (if there exits such and is still reasonable) whose Yang-Baxter matrix is
not singular at q1 = q2, so that we can assume that R is a function of one parameter q only.
Then we may use the root of unity phenomenon, investigated and generally described mostly
by Lusztig [51, 52]. Namely, if q is a primitive root of unity of odd degree, then quantum
groups corresponding to Yang-Baxter matrices with one parameter q contain a “big” com-
mutative sub-algebras and the structures of the quantum groups generate natural ordinary
group structures on these sub-algebras and the actions of the quantum groups on their uni-
form spaces induce ordinary group actions on the spectra of the commutative sub-algebras.
Perhaps the Manin group GLq(2) co-acting on the algebra of the Manin plane is the simplest
illustration of the phenomenon, compare e.g. [49], pp. 151–153. In this case the mentioned
sub-algebras lie in the center (of the corresponding algebras). Because on the other hand the

55In fact quantum groups were invited by Drinfeld [50], who placed the algebra into the category of specific
bi-algebras with adequately defined structure embracing the algebras of smooth functions on Lie groups with
the fully fledged adequately rigid topological structures, generalizing the properties of algebras of smooth
functions on Lie groups, asserting non-triviality of the theory of representations of the object. Prof. S.L.
Woronowicz introduced the topological structure along the C∗-algebra format and extended the Peter-Weyl
theory on the quantum compact groups. Further analytic structures, as e.g. differential structure along the
spectral triple format was invited in the papers cited in footnote 31. However the topological and analytical
structures invited thereafter have no clear connection to the whole analytic structure of the initial physical
situation (Faddeev models).
56I.e. commutation relations of the monodromy matrix elements.
57Compare [46], p. 47.
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algebras “of functions” of these quantum groups and of their uniform spaces are not in gen-
eral Morita equivalent to commutative algebras, even for q equal to a primitive root of unity,
then their actions on the spectra of commutative sub-algebras is not in general equivalent
to ordinary group actions. In particular neither the algebra “of functions” of GLq(2) nor the
algebra of the Manin plane are Morita equivalent to commutative algebras, even if q is equal
to a primitive root of unity [53].

Thus we arrive at the fourth task of our proposal: to investigate more deeply the ana-
lytic properties of the linear representation of the quantum monodromy matrix ᵀ(λ)

on the dense subset H0 of the Fock space, given in [46]. Then incorporating the rela-
tionship between point-like fields and local algebras (as developed in the following
papers [18, 54, 55]) try to carry the quantum group structure and their action on the
corresponding spacetime algebra of bounded operators. The goal is to convert the
formal argument demonstrated above into an actual.

6 Our Hypothesis and the Onsager Principle

In our proposal the tentative hypothesis of Sect. 2 plays a crucial role. It says that the essen-
tial point of DHR analysis of generalized charges may be extended so as to embrace all clas-
sical (in the sense: non-superposing) quantities. That is, we assume that all non-superposing
(“classical” so to say) quantities should be decomposition parameters of a distinguished sub
algebra of the algebra of field operators corresponding to the classical quantities(s) in ques-
tion. We have applied it to the algebra of spacetime coordinates A in our proposal. Thus
it is interesting for us if indeed DHR analysis may be so extended, and try to find some
physically verifiable consequences of such extension. Here we examine qualitatively such
extension outside the realm of high energy physics.

Namely suppose we have a complicated system, i.e. with quite a huge number of degrees
of freedom treated as non-superposing parameters, just such as we encounter in classical
statistical mechanics. Now let us assume (assumption which of course may a priori be false)
that DHR analysis is applicable to these non-superposing (huge in number) parameters.
Let us try go as far as possible with this assumption in deriving some qualitative at least
physical consequences. Now depending on the specific character of the non-superposing
parameters, the corresponding algebra may be (Morita equivalent to) a commutative alge-
bra or not. As we are forced to remain at this general qualitative level we may only infer a
very general conclusion, namely, that if the algebra is essentially non-commutative,58 then
the one-parameter group of time transformations would have to be modified into a quantum
group action with the time reversal law broken. On the other hand we have a very deep
(perhaps completely forgotten by now) recognition of Sir Isaac Newton, that the multiplica-
tion structure of physical quantities with physical dimension should be introduced by tensor
quantities which actually do exist in reality, i.e. quantities which multilinearly depend on
them, compare [56] where we explain in details the ingenious recognition of Newton.59

58Which by no means stands in contradiction to the classical superposition-less character of the parameters
numbering the selection sectors in the representation space of the corresponding algebra, as has already been
mentioned above in Sect. 2.
59It is in XXth century mathematics where the ingenious idea of Newton was rediscovered in constructing
algebras as quotients of the tensor product algebra over a fixed vector space (compare e.g. algebraic theory of
quantum groups); it seems that the deep recognition of Newton has escaped adequate attention of physicists.
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From this we can conclude that if the algebra is non commutative and thus time arrow is
unavoidable, we should observe essentially non symmetric tensor quantities corresponding
to the essentially non-commutative algebra describing the classical parameters. Of course
there are some ambiguities on both sides: two Morita equivalent algebras have isomorphic
representation spaces, and we have some ambiguities in defining tensor quantities, for ex-
ample that recognized by Casimir in transport processes, as well as some other much less
easy to control in practice in extracting the relevant physical content. Nonetheless we can
infer a general rule, that the time arrow should be accompanied by existence of (essentially)
non-symmetric material tensors. This conclusion is quite reasonable for at least two reasons.

Let us give the first reason. We have namely the Onsager principle in the transport pro-
cesses. Namely Onsager [57, 58] was able to prove, using tricky methods of Einstein and the
Gibbs method, that tensors describing transport phenomena (such as the heat conductivity
tensor) should be symmetric whenever we assume “microscopic irreversibility” to hold.

The second reason comes from the results of Kac [59]. Namely he devoted almost all
his life in examining equivalence between the stochastic method of Smoluchowski and the
method of Gibbs. Conclusion he arrived at is presumably negative [59]: some additional
random mechanism in the time evolution law in the Gibbs method is needed in order to
recover all the results obtained with the help of master equation.

This is not the end of the history. We can go somewhat further with our hypothesis at
hand. Namely because the Planck constant is very small in comparison to action involved
in macroscopic processes, we expect that the algebra in question is “practically” commu-
tative with material tensors almost (essentially) symmetric, obtaining the conclusion that
the Onsager principle can be fulfilled only approximately. Because the Planck constant is
non zero we should observe small deviations from that principle. Over one hundred years
ago Soret [60, 61] and Voigt [62] had experimentally verified existence of non-symmetric
deviations from the Onsager principle obtaining negative results. Possibly a repetition of
such experiments with the modest highly sensitive calorimetric tools would not be devoid
of reasons.
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