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Abstract The decay mechanism is considered in some nonlinear interaction models for
two-qubit system. Exact expression of the final states of two-qubit are given for different
model. We find that the maximal Wigner-Yanase skew information can be modulated and
stored via using decay mechanism and nonlinear interaction. Due to the maximal Wigner-
Yanase skew information being equivalent to the concurrence, the conditions of generating
the maximally entangled state (i.e., the Bell state) are obtained.
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1 Introduction

Wigner and Yanase have introduced the so-called Wigner-Yanase skew information [1–5] in
the study of measurement theory. It refers to be an amount of information on the values of
an observable A, and can be defined as [1]

I (ρ,A) = −1

2
tr[ρ1/2,A]2. (1)

in terms of the density matrix ρ and the operator A. It is obvious that I (ρ,A) may be
interpreted as a degree of non-commutativity between ρ and A [6]. I (ρ,A) can also be
rewritten as

I (ρ,A) = trρA2 − trρ1/2Aρ1/2A. (2)

For pure state, considering the property ρk = ρ, then I (ρ,A) has the following form

I (ρ,A) = 〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2. (3)
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Actually, it is the fluctuation of the operator A.
On the other hand, spin squeezing is closely connected the spin fluctuation of the plane

perpendicular to the mean spin direction [7–10]. To generate spin squeezing and spin
squeezed states, Kitagawa and Ueda firstly introduced the one-axis twisting and the two-
axis countertwisting model [7]. Subsequently, the one-axis twisting model was widely stud-
ied [9, 11–14]. Some works show that one-axis twisting model with an external transverse
field and two-axis countertwisting model with an external transverse field can improve spin
squeezing and entanglement [15, 16]. Interestingly, the spin squeezing can be effectively
stored by rapidly turning-off the external field at a time that the maximal spin squeezing ap-
pears [17, 18], but this mechanism is invalid for small particles. However, a quantum system
used in quantum information processing inevitably interacts with other quantum systems
or with the surrounding environment, which induces decoherence phenomena. Thus, the
environment is a important factor for quantum information processing. Recently, Yu and
Eberly discovered a finite-time disentanglement in the general framework of two qubits-
plus-environment, also known as entanglement sudden death (ESD) [19]. Motivated by the
ESD, the spin squeezing sudden death was studied under the different decoherence channel
[20]. In this paper, decay mechanism is considered in some classical nonlinear interaction
models of two-qubit system. We find the exact states of two-qubit within the Schrödinger
picture. We show that, with the nonlinear interaction and the decay mechanism, the maximal
Wigner-Yanase skew information (MSI) can be stored like the storage of spin squeezing.

Our work is organized as follows. In Sect. 2, we study the MSI for symmetric pure states
of two-qubit and demonstrate that the MSI is equivalent to the concurrence. In Sect. 3, we
extend the one-axis twisting and the two-axis countertwisting model of two-qubit system
and present the exact states dynamically generated from a superposition of the collective
ground state |11〉 and the second excited state |00〉 via these models. Then we observe the
storage time of the MSI of two-qubit system. Finally, a conclusion is given in Sect. 4.

2 Maximal Wigner-Yanase Skew Information of Two-Qubit Symmetric Pure State

We restrict states of pair qubits to the triplet sub-space. The collective angular momentum
operator belonging to it can be expressed as follows

Sμ =
2∑

i=1

Si,μ, μ ∈ {x, y, z}, (4)

where Si,μ are the spin operators for the ith qubit, and the cyclic commutation relations
satisfy

[Si,μ, Si,ν] = iεμνγ Si,γ , (5)

[Sμ,Sν] = iεμνγ Sγ , μ, ν, γ ∈ {x, y, z}. (6)

For the pure states, because the Wigner-Yanase skew information equals to the spin fluctu-
ation for the pure states, it means that the MSI is identical to the maximal spin fluctuation
denoted as Im.

Lemma 1 For the symmetric state

|ψ〉 = sinα|11〉 + cosα|00〉, (7)
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there exist the relation between the MSI and the concurrence

Im = 1

2
(1 + C), (8)

where |0〉 and |1〉 are the eigenstates of the spin operator Si,z with the eigenvalue 1/2 and
−1/2, respectively.

Proof For the entangled state

|ψ〉 = sinα|11〉 + cosα|00〉, (9)

with the concurrence C = | sin 2α| [10, 21, 22], the mean spin direction �n1 defined as
(〈Sx〉 + 〈Sy〉 + 〈Sz〉)/

√〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2 is along the z-axis and its collective angular
momentum operators satisfy the condition

〈[Sz, Sx]+〉 = 〈[Sz, Sy]+〉 = 0, (10)

then the maximal spin fluctuation has the following form [14]

max(�S�n)2 = max(�S2
z ,max�S2(x, y)), (11)

where the operator S�n is defined as S�n = sin	 cos
Sx + sin	 sin
Sy + cos	Sz and
max�S2(x, y) indicates the maximum fluctuation in the plane (x, y) [14]. It is easy to
calculate the fluctuations �S2

z and �S2(x, y). Exactly, we can obtain the fluctuation in the
z direction

�S2
z = sin2(2α). (12)

Furthermore, we can use the method in Refs. [9, 14, 23, 24] to get

max�S2(x, y) = 1

2
[〈S2

x + S2
y 〉 + |〈S2

+〉|] = 1 + | sin 2α|
2

. (13)

From the two equations above, it readily indicates that max�S2(x, y) was just the maximal
spin fluctuation over the whole coordinate space. Finally, the MSI can be reduced to a simple
form, namely,

Im = 1

2
(1 + | sin 2α|) = 1

2
(1 + C). (14)

This is just our expected result.
It is shown that when (4) is the maximal entangled state, i.e. Bell state, Im = 1 for C

reaches the maximum 1. From the above equation, it is noted that Im entirely determined by
the concurrence value in the two-qubit case. �

Lemma 2 For an arbitrary symmetric state of two-qubit

|ψ̃〉 = sinα|1̃1̃〉 + cosα|0̃0̃〉, (15)

the relation given by (8) is still valid, where states |0̃〉 and |1̃〉 are eigenstates of the operator
�σi · n with an arbitrary direction n = (sin θ cosφ, sin θ sinφ, cos θ)

|0̃〉 = e
−iφ

2 cos
θ

2
|0〉 + e

iφ
2 sin

θ

2
|1〉, (16)
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|1̃〉 = e
−iφ

2 sin
θ

2
|0〉 − e

iφ
2 cos

θ

2
|1〉 (17)

with eigenvalue 1 and −1, respectively.

Proof We begin with the eigenstates |0〉 and |1〉 of σi,z. Firstly, we perform a rotation of
states around the y axis. In terms of the local operations, this rotation can be achieved by
unitary transformation U(Si,y) = e−iθSi,y . Then, the two eigenstates become

|0′〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉, (18)

|1′〉 = sin
θ

2
|0〉 − cos

θ

2
|1〉. (19)

Next, according to a similar procedure, if we perform a rotation of states |0′〉 and |1′〉 around
the z axis, i.e., unitary transformation U(Si,z) = e−iφSi,z , then the states |0′〉 and |1′〉 will be
transformed to the states |0̃〉 and |1̃〉 given by (16) and (17). It should be noted that operators
Si,μ act only on the states belonging to its own Hilbert space. Therefore, after performing
the collective unitary transformation

U = e−iφSze−iθSy (20)

on the state in (9), we can transform the state |ψ〉 to the state

|ψ̃〉 = cosα|0̃0̃〉 + sinα|1̃1̃〉. (21)

Now we perform the rotations of the local and collective operators. Under the rotations, we
easily obtain the new local and global operators

S̃μ =
2∑

i=1

S̃i,μ, μ ∈ {x, y, z} (22)

with

S̃i,μ = UiSi,μU+
i , μ ∈ {x, y, z}, (23)

where U+
i = eiθSi,y eiφSi,z . It is evident that the cyclic commutation relations satisfy

[S̃i,μ, S̃i,ν] = iεμνγ S̃i,γ , (24)

[S̃μ, S̃ν] = iεμνγ S̃γ , μ, ν, γ ∈ {x, y, z}. (25)

For the all equations referred to the expectation values in Lemma 1, after a simply replacing
S by S̃, they are still valid. Therefore, Lemma 1 is invariant under the above rotation. In other
words, we need only to perform a corresponding transformation on the collective operators
when the state |ψ〉 is transformed to the state |ψ̃〉. �

Proposition For an arbitrary symmetric state of pair qubits

|�〉 = a1|00〉 + a2/
√

2(|01〉 + |10〉) + a3|11〉, (26)
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where coefficients a1, a2 and a3 are arbitrary constants, and satisfy the normalizing condi-
tion, one can find that Im > 1/2 implies the entanglement and vice versa. There exists the
relation between the MSI and the concurrence

Im = 1

2
(1 + C), (27)

Proof In view of exact expression of states |0̃〉 and |1̃〉, the symmetric state |ψ̃〉 can be
reduced to a simple form, namely,

|ψ̃〉 = A1|00〉 + A2/
√

2(|01〉 + |10〉) + A3|11〉 (28)

with coefficients

A1 = e−iφ

(
cosα cos2 θ

2
+ sinα sin2 θ

2

)
,

A2 = √
2 cos

θ

2
sin

θ

2
(cosα − sinα), (29)

A3 = eiφ

(
cosα sin2 θ

2
+ sinα cos2 θ

2

)
.

By appropriate choice of α, θ and φ, one can achieve that A1, A2 and A3 are equal to a1, a2

and a3, respectively. From Lemma 2, we immediately have Proposition. �

3 Nonlinear Interaction Models of Two-Qubit System

The collective angular momentum operator of N qubits can be expressed as follows

Sμ =
N∑

i=1

Si,μ, μ ∈ {x, y, z}, (30)

where Si,μ are the spin operators for the ith qubit. In order to generate the spin squeezing in
an ensemble of N spin-1/2 particles, the one-axis twisting model with Hamiltonian H = χS2

x

and initial collective state ψ(0) = ∏N

i |1〉i was proposed as a building block, where χ is the
correlation strength between the individual elementary spins. As a natural extension of one-
axis twisting model, Authors introduced two axis countertwisting model with Hamiltonian
H = χ

2i
(S2+ − S2−) [7]. In the following, based on the generalized version of the two models,

we study the storage of the MSI.

3.1 One Axis Twisting Model with Decay of Two-Qubit System

For the one axis twisting model with two qubits, considering the decay mechanism, the
corresponding Hamiltonian is

H = 2χs2S2
x , (31)

where s2 = exp[−γ t] and γ is the decay rate. Since the total spin of the two-qubit sys-
tem is 1, such a system can be represented as a spin-1 particle. Then in the standard basis
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{|1,1〉, |1,0〉, |1,−1〉}, the Hamiltonian above can be expressed as

H = χs2

(1 0 1
0 2 0
1 0 1

)
. (32)

We suppose initial state of two-qubit is the superposition state

ψ(0) = a1|11〉 + a3|00〉, (33)

where the probability amplitude be written as

a1 = 1 + k√
2(1 + k2)

, (34)

a3 = 1 − k√
2(1 + k2)

, k ∈ [−1,1]. (35)

Via straight solving the time-dependent Schrodinger equation, we get the state vector at any
time t

ψ(t) = a1(t)|11〉 + a3(t)|00〉, (36)

where the probability amplitudes have the following exact form (set � = 1)

a1(t) = (1 + k)q(t)√
2(1 + k2)

+ (1 − k)p(t)√
2(1 + k2)

, (37)

a3(t) = (1 − k)q(t)√
2(1 + k2)

− (1 + k)p(t)√
2(1 + k2)

, (38)

p(t) = e
− i2χ

γ e
i2χ
γ exp[−rt] − 1

2
, (39)

q(t) = e
− i2χ

γ e
i2χ
γ exp[−rt] + 1

2
. (40)

Now we consider the nonlinear dynamic of a general symmetric state of two-qubit
with the dissipation process. We find that the state that possess arbitrary degree of the
entanglement, can be obtained via adjusting the interaction strength. For example, if χ =
(2n+1)πγ /4 (n is integer), the evolved state must be a maximally entangled state no matter
what initial state. In Fig. 1(a), the curves show the time evolution of the MSI for different χ .
To further illustrate the observation, the time evolutions of the MSI with various k by setting
χ = 3πγ//4 was plotted as shown in Fig. 1(b). If χ = nπγ//2, we find that the MSI of the fi-
nal state will return to its initial value. Physically, when the nonlinear interaction vanishes as
time increase due to the effect of decay mechanism, the evolved state will no longer change.
So that the values of physical quantities will be invariable.

In a case of k = 0, the initial state not only is a eigenstate of the Hamiltonian with
eigenvalue 1 but also is a maximally entangled. It is easy to check that the final state is
different from the initial state, and the final state still is maximally entangled. It implies
that the MSI of the maximally entangled state above can not be modulated by nonlinear
interaction.
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Fig. 1 Im versus t . Parameter
γ = 0.5. In (a), Parameter k = 1.
χ = πγ/4, 3πγ/4 and 5πγ/4
correspond the solid line, the
dotted line and the dashed dotted
line, respectively. In (b),
χ = 3πγ/4. k = 0.25, 0.5 and 1
correspond the dotted line, the
dashed dotted line, and the solid
line, respectively

Fig. 2 Im versus t for different
k and χ. Parameters γ = 0.5.
Parameter χ = 0.5πγ/4, πγ/4,
1.5πγ/4, 2πγ/4 correspond the
dashed line and the solid line, the
dashed dotted line and the dotted
line, respectively. In (a), k = 0. In
(b), k = 1

3.2 Two Axis Countertwisting Model with Decay of Two-Qubit System

Considering the decay mechanism, the Hamiltonian of two-qubit system read

H = χs2

2i
(S2

+ − S2
−) = χs2

(0 0 −i

0 0 0
i 0 0

)
. (41)

For the arbitrary initial state given by (33), we find that the state vector at any time t has the
form ψ(t) = a1(t)|11〉 + a3(t)|00〉, where

a1(t) = (1 + k)q(t)√
2(1 + k2)

+ (1 − k)p(t)√
2(1 + k2)

, (42)

a3(t) = (1 − k)q(t)√
2(1 + k2)

− (1 + k)p(t)√
2(1 + k2)

, (43)

p(t) = i[ei
χ
γ (1−e−γ t ) − e

−i
χ
γ (1−e−γ t )]/2, (44)

q(t) = [ei
χ
γ (1−e−γ t ) + e

−i
χ
γ (1−e−γ t )]/2. (45)

Making an analysis, we find that the MSI with value 1 can be stored only if the equation
tan 2χ

γ
= −2k

(1−k2)
be established. However, the initial state is maximally entangled for k = 0,

but it is not the eigenstate of the Hamiltonian, and the MSI of the final state can be controlled
through nonlinear interaction. This is different from the case of the one-twisting model.
The corresponding condition of the maximal entanglement is χ = nπγ/2, as shown by the
dotted line in Fig. 2(a). k = ±1, i.e., the state initially is in ground state |11〉 or exited state
|00〉, the condition become χ = (2n + 1)πγ /4. For comparison, setting k = 1, we examine
the evolution of the MSI, the condition χ = πγ/4 is confirmed, as shown by the solid line
in Fig. 2(b). These analysis shows that using the decay mechanism, the storage of the MSI
always can be realized.
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If two-qubit state initially is in the following entangled state

ψ(0) = a1|11〉 + a3|00〉, (46)

a1 = i
1 + k√

2(1 + k2)
, (47)

a3 = 1 − k√
2(1 + k2)

, k ∈ [−1,1], (48)

then, the corresponding probability amplitudes a1(t) and a3(t) can be solved

a1(t) = i(1 + k)q(t)√
2(1 + k2)

+ (1 − k)p(t)√
2(1 + k2)

, (49)

a3(t) = (1 − k)q(t)√
2(1 + k2)

− i(1 + k)p(t)√
2(1 + k2)

. (50)

We find that the discussion of the MSI of the one-twisting model are completely valid
here. Setting χ = (2n + 1)πγ /4, the final state will become the maximally entangled state
for arbitrary a1 and a3. For the case with k = 0, the initial state is the eigenstate of the
Hamiltonian. From (49) and (50), one can demonstrate that final state is the initial state
itself, except for a global phase q(t) − ip(t).

3.3 Mixed Model of the One-Axis Twisting and Two-Axis Countertwisting with Decay of
Two-Qubit

As a natural supplement, we further consider a general model and call it as mixed model of
one-axis twisting and two-axis countertwisting interaction. The corresponding Hamiltonian
can be described by

H = 2χ1s
2S2

x + χ2s
2

2
(S2

+ − S2
−). (51)

By straightforward calculation, we can obtain the exact solution. Considering (33) as initial
state, the evolving state is determined by

a1(t) = (1 + k)q(t)√
2(1 + k2)

+ (1 − k)p(t)√
2(1 + k2)

, (52)

a3(t) = (1 − k)q(t)√
2(1 + k2)

− (1 + k)p(t)√
2(1 + k2)

, (53)

p(t) = −(χ1 − iχ2)

2
√

χ2
1 + χ2

2

[
e

i{ χ1+
√

χ2
1 +χ2

2
γ }(1−e−γ t ) − e

i{ χ1−
√

χ2
1 +χ2

2
γ }(1−e−γ t )

]
, (54)

q(t) = 1

2

[
e

i{ χ1+
√

χ2
1 +χ2

2
γ }(1−e−γ t ) + e

i{ χ1−
√

χ2
1 +χ2

2
γ }(1−e−γ t )

]
. (55)

From (52)–(55), we also find that when tan
2
√

χ2
1 +χ2

2
γ

= −2k
√

χ2
1 +χ2

2
(1−k2)χ2

be established, then
the final state is the maximally entangled state. Evidently, this condition can be reduced to
that of one twisting model (or two-countertwisting model) for χ2 = 0 (or χ1 = 0).
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3.4 One Axis Twisting Model with a Transverse Field

In order to improve and control the spin squeezing, the one-axis twisting model with a
transverse field was proposed [15]. In general, for the two-, three- and four-particle cases,
the exact solutions of this model have been solved, but for many particles case, it is hard
to be dealt analytically. Here, we make the nonlinear term and linear term along the same
direction. Under the decay mechanism, the Hamiltonian of two-qubit system can be written
as

H = 2χs2S2
x + �

′
sSx. (56)

It can also be rewritten in the standard basis {|1,1〉, |1,0〉, |1,−1〉} as

H = χs2

(1 0 1
0 2 0
1 0 1

)
+ �s

(0 1 0
1 0 1
0 1 0

)
, (57)

where � = �
′
/
√

2, for convenience of calculation. Considering an arbitrary initial state

ψ(0) = a1|11〉 + a3|00〉, (58)

the final state can be obtained

ψ(t) = a1(t)|11〉 + a2(t)[|10〉 + |01〉]/√2 + a3(t)|00〉

with three coefficients

a1(t) = p(t) + q(t)

2
√

2(1 + k2)
+ 2k√

2(1 + k2)
, (59)

a2(t) = 1

2
√

(1 + k2)
[p(t) − q(t)], (60)

a3(t) = p(t) + q(t)

2
√

2(1 + k2)
− 2k√

2(1 + k2)
. (61)

The exact expressions of p(t) and q(t) are

p(t) = exp

[
i2{χ(e−γ t − 1) − √

2�(e−γ t/2 − 1)}
γ

]
, (62)

q(t) = exp

[
i2{χ(e−γ t − 1) + √

2�(e−γ t/2 − 1)}
γ

]
. (63)

We only consider the � �= 0 case here, for (59), and (61) can be reduced to (37) and
(38) when � = 0. We observe that although the probabilities |a1(t)|2, |a1(t)|2 and |a1(t)|2
do not vanish, the time evolution of the MSI is independent of �, as shown in Fig. 3(a).
Meanwhile, the condition to generate the maximally entangled state is identical with the
one-twisting model. To further confirm above observation, by setting t = 2, we plot the
evolution of the MSI as a function of �, as shown in Fig. 3(b).



3384 Int J Theor Phys (2011) 50:3375–3384

Fig. 3 Im versus t and �.
Parameters γ = 0.5 and
χ = πγ/4, k = 1. In (a),
� = 0.5, 1.5 correspond the solid
line and dashed line, respectively.
In (b), t = 1 and 10 correspond
the solid line and the dotted line,
respectively

4 Conclusion

In conclusion, we have studied the relation between the MSI and the concurrence in two-
qubit symmetric pure states. Furthermore, for a two-qubit system, we introduced one-
axis twisting model with decay mechanism and two countertwisting model with decay
mechanism. Especially, the exact expression of state vectors for two-qubit system within
Schrödinger picture and the time evolution of MSI were given. We found that due to the
decay mechanism and the nonlinear interaction, the MSI can be modulated and stored.
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