Skip to main content
Log in

The Ideal and Real Gas Heat Capacity of Potassium Atoms at High Temperatures

  • 19th Symposium of Thermophysical Properties
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The ideal gas heat capacity, \(C_{p}\), of potassium atoms is calculated to high temperatures using statistical mechanics. Since there are a large number of electronic energy levels in the partition function (Boltzmann sum) below the first ionization potential, the partition function and \(C_{p}\) will become very large as the temperature increases unless the number of energy levels contributing to the partition function is constrained. Two primary categories of arguments are used to do this. First, at high temperatures, the increased size of the atoms constrains the sum (Bethe method). Second, an argument based on the existence of interacting charged species at higher temperatures is used to constrain the sum (ionization potential lowering method). When potassium atoms are assumed to constitute a real gas that obeys the virial equation of state, the lowest non-ideal contribution to \(C_{p}\) depends on the second derivative of the second virial coefficient, B(T), which depends on the interaction potential energy curves between two potassium atoms. When two ground-state (\(^{2}\hbox {S}\)) atoms interact, they can follow either of the two potential energy curves. When a \(^{2}\hbox {S}\) atom interacts with an atom in the first electronically excited (\(^{2}\hbox {P}\)) state, they can follow any of the eight potential energy curves. The values of B(T) for the ten states are determined, then averaged, and used to calculate the nonideal contribution to \(C_{p}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Weast (ed.), CRC Handbook of Physics and Chemistry, 51st edn. (The Chemical Rubber Co., Cleveland, 1971), pp. D-142, 171, 175

  2. A.E. Kramida, Y.A. Ralchenko, J. Reader and NIST ASD Team (2014), NIST Atomic Spectra Database (ver. 5.2) [Online]. http://physics.nist.gov/asd (2015, April 21), National Institute of Standards and Technology, Gaithersburg

  3. M.W. Chase Jr. (ed.), NIST-JANAF Thermochemical Tables, 4th edn. (NIST, Washington, DC, 1998). http://kinetics.nist.gov/janaf. Accessed April 21, 2015

  4. L. Biolsi, Int. J. Thermophys. 35, 1785 (2014)

    Article  ADS  Google Scholar 

  5. J.R. Downey Jr., AFOSR-TR-78-1960 (AD-A054854) (Dow Chemical Company, Midland, 1978)

  6. B.J. McBride, S. Heimel, J.G. Ehlers, S. Gordon, NASA Rep. No. SP-3001 (Washington, DC, 1963)

  7. B.J. McBride, S. Gordon, NASA TN D-4097 (Lewis Research Center, Cleveland, 1967)

  8. S. Gordon, B.J. McBride, NASA/TP-1999-208523 (Cleveland, 1999)

  9. H. Bethe, Office Sci. Res. Dev. Rept. 369, 1866–1882 (1942)

    Google Scholar 

  10. M. McChesney, Can. J. Phys. 42, 2473 (1964)

    Article  ADS  Google Scholar 

  11. E.A. McLean, C.E. Faneuff, A.C. Kolb, H.R. Griem, Phys. Fluids 3, 843 (1960)

    Article  ADS  Google Scholar 

  12. K. Fuchs, J.G. Kynch, R. Peierls, Los Alamos Rept. BM-83 (1942)

  13. J.W. Bond Jr., Phys. Rev. 105, 1683 (1957)

    Article  ADS  Google Scholar 

  14. H.N. Olsen, Phys. Fluids 2, 614 (1959)

    Article  ADS  Google Scholar 

  15. L.V. Gurich, I.V. Veyts, C.B. Alcock (eds.), Thermodynamic Properties of Individual Substances, vol. I, Part I (Hemisphere, New York, 1989), pp. 15–19

  16. H.R. Griem, Phys. Rev. 128, 997 (1962)

    Article  ADS  Google Scholar 

  17. M. McChesney, AIAA J. 1, 1666 (1963)

    Article  ADS  Google Scholar 

  18. H. Myers, J.H. Buss, S.W. Benson, Plant. Space Sci. 3, 257 (1961)

    Article  ADS  Google Scholar 

  19. L. Alexandre, C. Villani, Ann. Inst. H. Poincare Anal. Non Lineaire 21, 61 (2004)

    ADS  MathSciNet  Google Scholar 

  20. B.J. McBride, S. Gordon, M.A. Reno, NASA TP-3287 (1993)

  21. B.J. McBride, S. Gordon, M.A. Reno, NASA TM-4513 (1993)

  22. D.A. McQuarrie, J.D. Simon, Physical Chemistry: A Molecular Approach (University Science Books, Sausalito 1997), pp. 20, 658, 919

  23. O. Sinanoglu, M.S. Vardya, E.M. Mortensen, W.C. Johnson Jr., Phys. Fluids 5, 665 (1962)

    Article  ADS  Google Scholar 

  24. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954), pp. 30, 150, 407

  25. M.E. Boyd, S.Y. Larsen, J.E. Kilpatrick, J. Chem. Phys. 50, 4034 (1969)

    Article  ADS  Google Scholar 

  26. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules, 2nd edn. (Van Nostrand, New York, 1950), pp. 318–321

    Google Scholar 

  27. A. Valance, Q.N. Tuan, J. Phys. B 15, 17 (1982)

    Article  ADS  Google Scholar 

  28. A.A. Zavitsas, J. Chem. Phys. 124, 144318 (2006)

    Article  ADS  Google Scholar 

  29. C. Amiot, J. Verges, C.E. Fellows, J. Chem. Phys. 103, 3350 (1995)

    Article  ADS  Google Scholar 

  30. J. Heinze, U. Schuhle, F. Engelke, C.D. Caldwell, J. Chem. Phys. 87, 45 (1987)

    Article  ADS  Google Scholar 

  31. G. Zhao, W.T. Zemke, J.T. Kim, J. Bing, H. Wang, J.T. Bahns, W.C. Stwalley, J. Chem. Phys. 105, 7976 (1996)

    Article  ADS  Google Scholar 

  32. A.J. Ross, C. Effantin, J. d’Incan, R.F. Barrow, J. Verges, Indian J. Phys. 60B, 309 (1986)

    Google Scholar 

  33. G. Jong, L. Li, T.J. Whang, W.C. Stwalley, J.A. Coxon, M. Li, A.M. Lyyra, J. Mol. Spectrosc. 155, 115 (1992)

    Article  ADS  Google Scholar 

  34. H.M. Hulburt, J.O. Hirschfelder, J. Chem. Phys. 9, 61 (1941)

    Article  ADS  Google Scholar 

  35. H.M. Hulburt, J.O. Hirschfelder, J. Chem. Phys. 35, 1901 (1961)

    Article  ADS  Google Scholar 

  36. D. Klein, Z. Phys. 76, 226 (1932)

    Article  ADS  Google Scholar 

  37. R. Rydberg, Z. Phys. 80, 514 (1933)

    Article  ADS  Google Scholar 

  38. A.L.G. Rees, Proc. Phys. Soc. Lond. 59, 998 (1947)

    Article  ADS  Google Scholar 

  39. D. Steele, E.R. Lippincott, J.T. Vanderslice, Rev. Mod. Phys. 34, 239 (1962)

    Article  ADS  Google Scholar 

  40. P.H. Krupenie, J. Phys. Chem. Ref. Data 1, 423 (1972)

    Article  ADS  Google Scholar 

  41. A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977)

    Article  ADS  Google Scholar 

  42. J.T. Vanderslice, E.A. Mason, W.G. Maisch, E.R. Lippincott, J. Chem. Phys. 33, 614 (1960)

    Article  ADS  Google Scholar 

  43. L. Biolsi, P.M. Holland, in Progress in Astronautics and Aeronautics: Thermophysical Aspects of Re-entry Flows, vol. 103, ed. by J.N. Moss, C.D. Scott (AIAA, New York, 1986), pp. 261–278

    Google Scholar 

  44. A. Jraij, A.R. Allouche, S. Magnier, M. Aubert-Frecon, J. Chem. Phys. 130, 244307 (2009)

    Article  ADS  Google Scholar 

  45. O. Sinanoglu, K.S. Pitzer, J. Chem. Phys. 31, 960 (1959)

    Article  ADS  Google Scholar 

  46. G. Herzberg, Atomic Spectra and Atomic Structure (Dover, New York, 1944), pp. 13, 15

  47. P.H. Krupenie, E.A. Mason, J.T. Vanderslice, J. Chem. Phys. 39, 2399 (1963)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Biolsi.

Additional information

Selected Papers of the 19th Symposium on Thermophysical Properties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biolsi, L., Biolsi, M. The Ideal and Real Gas Heat Capacity of Potassium Atoms at High Temperatures. Int J Thermophys 37, 42 (2016). https://doi.org/10.1007/s10765-016-2047-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2047-z

Keywords

Navigation