Skip to main content

Advertisement

Log in

Effect of Previous Milling of Precursors on Magnetoelectric Effect in Multiferroic \({\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}}\) Ceramic

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

\(\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}\) magnetoelectric (ME) ceramics have been synthesized and investigated. The ME effect can be described as an induced electric polarization under an external magnetic field or an induced magnetization under an external electric field. The materials in the ME effect are called ME materials, and they are considered to be a kind of new promising materials for sensors, processors, actuators, and memory systems. Multiferroics, the materials in which both ferromagnetism and ferroelectricity can coexist, are the prospective candidates which can potentially host the gigantic ME effect. \(\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}\), an Aurivillius compound, was synthesized by sintering a mixture of \(\mathrm{Bi}_{2}\mathrm{O}_{3}, \mathrm{Fe}_{2}\mathrm{O}_{3}\), and \(\mathrm{TiO}_{2}\) oxides. The precursor materials were prepared in a high-energy attritorial mill for (1, 5, and 10) h. The orthorhombic \(\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}\) ceramics were obtained by a solid-state reaction process at 1313 K. The ME voltage coefficient (\(\alpha _\mathrm{ME}\)) was measured using the dynamic lock-in method. The highest ME voltage coefficient (\(\alpha _\mathrm{ME} = 8.28\,\text{ mV }{\cdot }\text{ cm }^{-1}{\cdot }\text{ Oe }^{-1})\) is obtained for the sample milled for 1 h at \(H_\mathrm{DC }= 4\) Oe (1 Oe = 79.58 \(\text{ A }{\cdot }\text{ m }^{-1})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.W. Nan, Phys. Rev. B 50, 6082 (1994)

    Article  ADS  Google Scholar 

  2. N. Cai, J. Zhai, L. Liu, Y. Lin, C. Nan, Mater. Sci. Eng. B 99, 21 (2003)

    Article  Google Scholar 

  3. P. Curie, J. Phys. 3, 393 (1894)

    MATH  Google Scholar 

  4. D.N. Astrov, Sov. Phys. JETP 11, 708 (1960)

    Google Scholar 

  5. D.N. Astrov, Sov. Phys. JETP 13, 729 (1961)

    Google Scholar 

  6. G.T. Rado, V.J. Folen, Phys. Rev. Lett. 7, 310 (1961)

    Article  ADS  Google Scholar 

  7. V.J. Folen, G.T. Rado, E.W. Stalder, Phys. Rev. Lett. 6, 607 (1961)

    Article  ADS  Google Scholar 

  8. X.Y. Zhang, J.Y. Dai, C.W. Lai, Prog. Solid State Chem. 33, 147 (2005)

    Article  Google Scholar 

  9. K. Noda, M. Akaki, F. Nakamura, D. Akahoshi, H. Kuwahara, J. Magn. Magn. Mater. 310, 1162 (2007)

    Article  ADS  Google Scholar 

  10. A.K. Zvezdin, A.M. Kadomtseva, S.S. Krotov, A.P. Pyatakov, YuF Popov, G.P. Vorob’ev, J. Magn. Magn. Mater. 300, 224 (2006)

    Article  ADS  Google Scholar 

  11. R. Grössinger, G.V. Duong, R. Sato-Turtelli, J. Magn. Magn. Mater. 320, 1972 (2008)

    Article  Google Scholar 

  12. M. Fiebig, J. Phys. D Appl. Phys. 38, 123 (2005)

    Article  ADS  Google Scholar 

  13. G. Dercz, J. Dercz, K. Prusik, A. Hanc, L. Pająk, J. Ilczuk, Arch. Metall. Mater. 54, 741 (2009)

    Google Scholar 

  14. J.A. Bartkowska, J. Ilczuk, Int. J. Thermophys. 31, 1 (2010)

    Article  ADS  Google Scholar 

  15. J. Dercz, A. Starczewska, G. Dercz, Int. J. Thermophys. 32, 746 (2011)

    Google Scholar 

  16. R.J. Hill, C.J. Howard, J. Appl. Cryst. 20, 467 (1987)

    Google Scholar 

  17. J. Dercz, G. Dercz, K. Prusik, B. Solecka, A. Starczewska, J. Ilczuk, Int. J. Thermophys. 31, 42 (2010)

    Google Scholar 

  18. G. Dercz, J. Rymarczyk, A. Hanc, K. Prusik, R. Babilas, L. Pająk, J. Ilczuk, Acta Phys. Pol. A 114, 1623 (2008)

    ADS  Google Scholar 

  19. L. Fuentes, M. Garcia, J. Matutes-Aquino, D. Rios-Jara, J. Alloys Compd. 369, 1 (2004)

    Article  Google Scholar 

  20. G.A. Gehring, Ferroelectrics 161, 275 (1994)

    Article  Google Scholar 

  21. S.A. Kizaev, G.D. Sultanov, F.A. Mirshili, Sov. Phys. Solid State 15, 214 (1973)

    Google Scholar 

  22. A. Srinivas, S.V. Suryanarayana, G.S. Kumar, Kumar M. Mahesh, J. Phys. Condens. Matter 11, 3335 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dercz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dercz, J., Bartkowska, J., Dercz, G. et al. Effect of Previous Milling of Precursors on Magnetoelectric Effect in Multiferroic \({\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}}\) Ceramic. Int J Thermophys 34, 567–574 (2013). https://doi.org/10.1007/s10765-013-1424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1424-0

Keywords

Navigation