Skip to main content
Log in

Protective and Therapeutic Effect of Apocynin on Bleomycin-Induced Lung Fibrosis in Rats

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

We aimed to investigate the preventive and therapeutic effect of apocynin (APO) on bleomycin (BLC)-induced lung injury in rats. Rats were assigned into groups as follows: control group; APO group, 20 mg/kg APO was given intraperitoneal for 29 days; BLC-1 and BLC-2 groups, a single intratracheal injection of BLC (2.5 mg/kg); APO+BLC-preventive group, 20 mg/kg APO was administered 12 h before the intratracheal BLC injection and continued for 14 days; BLC+APO-treatment group, 20 mg/kg APO was given on the 14th day after the intratracheal BLC injection and continued to sacrifice. The BLC-1 group was sacrificed on the 14th day of BLC administration to validate BLC-induced lung inflammation and fibrosis on the 14th of study initiation. All other groups were sacrificed on the 29th day after BLC administration. The semiquantitative histopathological assessment, tissue levels of malondialdehyde (MDA), superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), total antioxidant capacity, total oxidant status (TOS), and oxidative stress index (OSI) were measured. An addition to the serum myeloperoxidase (MPO), the cell count and cytokines (IL-1β, IL-6, and IL-8) of bronchoalveolar lavage (BAL) fluid were assayed. BLC-provoked histological changes were significantly detected compared to the control group. APO restored these histological damages in different quantity in the treatment and prevention groups. BLC caused a significant decrease in GSH, CAT, and GPX, which were accompanied with significantly the increased MDA, TOS levels, and OSI in the lung tissue concomitant with increased levels of the cellular account and proinflammatory cytokines in the BAL fluid. Otherwise, APO administration, both before and after BLC, reversed all biochemical markers and cytokine as well as histopathological changes induced by BLC. Interestingly, APO treatment reversed MPO activity in serum increased by BLC. In this study, both protective and therapeutic effects of APO against BLC-induced lung fibrosis were demonstrated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raghu, G., H.R. Collard, J.J. Egan, et al. 2011. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. American Journal of Respiratory and Critical Care Medicine 183: 788–824.

    Article  PubMed  Google Scholar 

  2. Gross, T.J., and G.W. Hunninghake. 2001. Idiopathic pulmonary fibrosis. The New England Journal of Medicine 345: 517–525.

    Article  CAS  PubMed  Google Scholar 

  3. Dedon, P.C., and I.H. Goldberg. 1992. Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin. Chemical Research in Toxicology 5: 311–332.

    Article  CAS  PubMed  Google Scholar 

  4. Cottin, V. 2013. The role of pirfenidone in the treatment of idiopathic pulmonary fibrosis. Respiratory Research 14: 5–9. doi:10.1186/1465-9921-14- S1-S5.

    Article  Google Scholar 

  5. Mata, M., A. Ruíz, M. Cerdá, M. Martinez-Losa, et al. 2003. Oral N-acetylcysteine reduces bleomycin-induced lung damage and mucin Muc5ac expression in rats. The European Respiratory Journal 22: 900–905.

    Article  CAS  PubMed  Google Scholar 

  6. Sogut, S., H. Ozyurt, F. Armutcu, et al. 2004. Erdosteine prevents bleomycin-induced pulmonary fibrosis in rats. European Journal of Pharmacology 494: 213–220.

    Article  CAS  PubMed  Google Scholar 

  7. Yildirim, Z., Y. Turkoz, M. Kotuk, et al. 2004. Effects of aminoguanidine and antioxidant erdosteine on bleomycin-induced lung fibrosis in rats. Nitric Oxide 11: 156–165.

    Article  CAS  PubMed  Google Scholar 

  8. Kilic, T., H. Parlakpinar, A. Polat, et al. 2014. Protective and therapeutic effect of molsidomine on bleomycin-induced lung fibrosis in rats. Inflammation 37: 1167–1178. doi:10.1007/s10753-014-9841-1.

    Article  CAS  PubMed  Google Scholar 

  9. Yildirim, Z., M. Kotuk, H. Erdogan, et al. 2006. Preventive effect of melatonin on bleomycin-induced lung fibrosis in rats. Journal of Pineal Research 40: 27–33.

    Article  CAS  PubMed  Google Scholar 

  10. Iraz, M., H. Erdogan, M. Kotuk, et al. 2006. Ginkgo biloba inhibits bleomycin-induced lung fibrosis in rats. Pharmacological Research 53: 310–316.

    Article  CAS  PubMed  Google Scholar 

  11. Akgedik, R., S. Akgedik, H. Karamanli, et al. 2012. Effect of resveratrol on treatment of bleomycin-induced pulmonary fibrosis in rats. Inflammation 35: 1732–1741.

    Article  CAS  PubMed  Google Scholar 

  12. Ermis, H., H. Parlakpinar, G. Gulbas, et al. 2013. Protective effect of dexpanthenol on bleomycin-induced pulmonary fibrosis in rats. Naunyn-Schmiedeberg's Archives of Pharmacology 386: 1103–1110. doi:10.1007/s 00210-013-0908.

    Article  CAS  PubMed  Google Scholar 

  13. Kilic, T., O. Osman Ciftc, A. Cetin, et al. 2014. Protective effect of chrysin on bleomycin-induced lung fibrosis in rats. Inflammation. doi:10.1007/s10753-014-9946-6.

    Google Scholar 

  14. Stefanska, J, and R. Pawliczak. 2008. Apocynin: molecular aptitudes. Mediators of Inflammation 106507

  15. Impellizzeri, D., E. Esposito, E. Mazzon, et al. 2011. Effect of apocynin, a NADPH oxidase inhibitor, on acute lung inflammation. Biochemical Pharmacology 81: 636–648.

    Article  CAS  PubMed  Google Scholar 

  16. De Caterina, R., and M. Massaro. 2005. Omega-3 fatty acids and the regulation of expression of endothelial proatherogenic and pro-inflammatory genes. The Journal of Membrane Biology 206: 103–116.

    Article  PubMed  Google Scholar 

  17. Taylor, N.E., P. Glocka, M. Liang, et al. 2006. NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats. Hypertension 47: 692–698.

    Article  CAS  PubMed  Google Scholar 

  18. Jin, L., R.A. Beswick, T. Yamamoto, et al. 2006. Increased reactive oxygen species contributes to kidney injury in mineralocorticoid hypertensive rats. Journal of Physiology and Pharmacology 57: 343–357.

    CAS  PubMed  Google Scholar 

  19. Colak, C., and H. Parlakpınar. 2012. Hayvan Deneyleri: in vivo Denemelerin Bildirimi: ARRIVE Kılavuzu-Derleme. Journal Turgut Ozal Medical Center 19(2): 128–131.

    Article  Google Scholar 

  20. Connell, B.J., M.C. Saleh, B.V. Khan, et al. 2011. Apocynin may limit total cell death following cerebral ischemia and reperfusion by enhancing apoptosis. Food and Chemical Toxicology 49: 3063–3069.

    Article  CAS  PubMed  Google Scholar 

  21. Uchiyama, M., and M. Mihara. 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry 34: 271–278.

    Article  Google Scholar 

  22. Sun, Y., L. Oberley, and Y. Li. 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry 34: 497–500.

    CAS  PubMed  Google Scholar 

  23. Aebi, H. 1974. Catalase. In Methods of enzymatic analysis, ed. H.U. Bergmeyer, 673–677. New York: Academic.

    Chapter  Google Scholar 

  24. Paglia, D.E., and W.N. Valentine. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine 70: 158–170.

    CAS  PubMed  Google Scholar 

  25. Ellman, G.L. 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82: 70–77.

    Article  CAS  PubMed  Google Scholar 

  26. Bai, A., P. Hu, J. Chen, et al. 2007. Blockade of STAT3 by antisense oligonucleotide in TNBS-induced murine colitis. International Journal of Colorectal Disease 22: 625–635.

    Article  PubMed  Google Scholar 

  27. Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 37: 277–285.

    Article  CAS  PubMed  Google Scholar 

  28. Erel, O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 38: 1103–1111.

    Article  CAS  PubMed  Google Scholar 

  29. Coward, W.R., G. Saini, and G. Jenkins. 2010. The pathogenesis of idiopathic pulmonary fibrosis. Therapeutic Advances in Respiratory Disease 4: 367–388.

    Article  CAS  PubMed  Google Scholar 

  30. Harari, S., and A. Caminati. 2010. IPF: new insight on pathogenesis and treatment. Allergy 65: 537–553.

    Article  CAS  PubMed  Google Scholar 

  31. Chaudhary, N.I., A. Schnapp, and J.E. Park. 2006. Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. American Journal of Respiratory and Critical Care Medicine 173: 769–776.

    Article  CAS  PubMed  Google Scholar 

  32. Mungunsukh, O., A.J. Griffin, Y.H. Lee, et al. 2010. Bleomycin induces the extrinsic apoptotic pathway in pulmonary endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology 298: 696–703.

    Article  Google Scholar 

  33. Mouratis, M.A., and V. Aidinis. 2011. Modeling pulmonary fibrosis with bleomycin. Current Opinion in Pulmonary Medicine 17: 355–361.

    Article  CAS  PubMed  Google Scholar 

  34. Carre, P., and P. Leophonte. 1993. Cytokines and pulmonary fibroses. Revue des Maladies Respiratoires 10: 193–207.

    CAS  PubMed  Google Scholar 

  35. Underwood, D.C., R.R. Osborn, S. Bochnowicz, et al. 2000. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. American Journal of Physiology - Lung Cellular and Molecular Physiology 279: L895–L902.

    CAS  PubMed  Google Scholar 

  36. Gon, Y., S. Hashimoto, T. Nakayama, et al. 2000. N-Acetyl-l-cysteine inhibits bleomycin-induced interleukin-8 secretion by bronchial epithelial cells. Respirology 5: 309–313.

    CAS  PubMed  Google Scholar 

  37. Sener, G., N. Topaloglu, A.O. Sehirli, et al. 2007. Resveratrol alleviates bleomycin-induced lung injury in rats. Pulmonary Pharmacology & Therapeutics 20: 642–649.

    Article  CAS  Google Scholar 

  38. Chiang, C.H., C.H. Chuang, S.L. Liu, et al. 2011. Apocynin attenuates ventilator-induced lung injury in an isolated and perfused rat lung model. Intensive Care Medicine 37: 1360–1367.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Perg, D.W., T.M. Chang, J.Y. Wang, et al. 2013. Inflammatory role of AMP-activated protein kinase signaling in an experimental model of toxic smoke inhalation injury. Critical Care Medicine 41: 120–132.

    Article  Google Scholar 

  40. Altintas, R., A. Polat, N. Nigar Vardi, et al. 2013. The protective effects of apocynin on kidney damage caused by renal ischemia/reperfusion. Journal of Endourology 27: 617–624.

    Article  PubMed  Google Scholar 

  41. Peters, E.A., J.T.N. Hiltermann, and J. Stolk. 2001. Effect of apocynin on ozone-induced airway hyperresponsiveness to methacholine in asthmatics. Free Radical Biology and Medicine 31: 1442–1447.

    Article  CAS  PubMed  Google Scholar 

  42. Ximenes, V.F., M.P. Kanegae, S.R. Rissato, et al. 2007. The oxidation of apocynin catalyzed by myeloperoxidase: proposal for NADPH oxidase inhibition. Archives of Biochemistry and Biophysics 457: 134–141.

    Article  CAS  PubMed  Google Scholar 

  43. Smit, H.F., B.H. Kroes, A.J.J. van den Berg, et al. 2000. Immunomodulatory and anti-inflammatory activity of Picrorhiza scrophulariiflora. Journal of Ethnopharmacology 73: 101–109.

    Article  CAS  PubMed  Google Scholar 

  44. Barbieri, S.S., V. Cavalca, S. Eligini, et al. 2004. Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox dependent mechanisms. Free Radical Biology and Medicine 37: 156–165.

    Article  CAS  PubMed  Google Scholar 

  45. Stefanska, J., A. Sarniak, A. Wlodarczyk, et al. 2012. Apocynin reduces reactive oxygen species concentrations in exhaled breath condensate in asthmatics. Experimental Lung Research 38: 90–99.

    Article  CAS  PubMed  Google Scholar 

  46. Hougee, S., A. Hartog, A. Sanders, et al. 2006. Oral administration of the NADPH-oxidase inhibitor apocynin partially restores diminished cartilage proteoglycan synthesis and reduces inflammation in mice. European Journal of Pharmacology 531: 264–269.

    Article  CAS  PubMed  Google Scholar 

  47. Tang, L.L., K. Ye, X.F. Yang, et al. 2007. Apocynin attenuates cerebral infarction after transient focal ischaemia in rats. Journal of International Medical Research 35: 517–522.

    Article  CAS  PubMed  Google Scholar 

  48. Xu, L., Y. Li, S. Wan, Y. Wang, and P. Yu. 2014. Protective effects of apocynin nitrone on acute lung injury induced by lipopolysaccharide in rats. International Immunopharmacology 20: 377–382.

    Article  CAS  PubMed  Google Scholar 

  49. Antao-Menes, A., E.A. Turpin, P.C. Post, et al. 2008. STAT-1 signaling in human lung fibroblast in induced vanadium pentoxide through an IFN-beta autocrine loop. Journal of Immunology 180: 4200–4207.

    Article  Google Scholar 

Download references

Conflict of Interest

The authors have no conflict of interest to declare. This work has been supported by the scientific research unit of Inonu University (Project number:2013/112 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talat Kilic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, T., Parlakpinar, H., Taslidere, E. et al. Protective and Therapeutic Effect of Apocynin on Bleomycin-Induced Lung Fibrosis in Rats. Inflammation 38, 1166–1180 (2015). https://doi.org/10.1007/s10753-014-0081-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0081-1

KEY WORDS

Navigation