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O. Massiczek1 ·Y. Matsuda4 ·D. J. Murtagh1 ·Y. Nagata8 ·A. Nanda1 ·D. Phan1 ·
C. Sauerzopf1 ·M. C. Simon1 ·M. Tajima2 ·H. Spitzer1 ·M. Strube1 · S. Ulmer2 ·
L. Venturelli3 ·M.Wiesinger1 ·Y. Yamazaki2 · J. Zmeskal1

© The Author(s) 2018

Abstract
The ASACUSA collaboration at the Antiproton Decelerator of CERN aims at a precise
measurement of the antihydrogen ground-state hyperfine structure as a test of the funda-
mental CPT symmetry. A beam of antihydrogen atoms is formed in a CUSP trap, undergoes
Rabi-type spectroscopy and is detected downstream in a dedicated antihydrogen detector.
In parallel measurements using a polarized hydrogen beam are being performed to commis-
sion the spectroscopy apparatus and to perform measurements of parameters of the Standard
Model Extension (SME). The current status of antihydrogen spectroscopy is reviewed and
progress of ASACUSA is presented.
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Fig. 1 Comparison of several tests of CPT symmetry on an energy scale. Bar’s right hand side: measured
quantity, length of bar: relative precision of CPT test, left hand side: sensitivity on an absolute energy scale.
Blue: existing test. Orange: predicted sensitivity if existing precision for hydrogen is achieved. In the case
of HFS: orange: first goal for in-beam measurement, paler orange: line width for fountain, yellow: hydro-
gen maser result. In case of Lamb shift: orange: estimated achievable accuracy, paler orange: accuracy for
hydrogen. Values are from PDG [1] except for H results for HFS [2], 1 S–2 S [3], and Lamb shift [4]. p
charge-to-mass ratio [5], note that in this case only the position is of the left hand side is well defined, while
the right hand side is less precise since the cyclotron frequency is proportional to the magnetic field in which
the measurement is taken

1 Antihydrogen and CPT symmetry

CPT symmetry is a cornerstone of the Standard Model (SM) of particle physics due the
existence of the CPT theorem which states that any Lorentz-invariant, unitary, local field
theory of point-like particles is invariant under the combined operation of charge conjuga-
tion C, parity P and time reversal T. The observed matter - antimatter asymmetry in the
Universe as well as theories beyond the SM like string theory, where some of the prerequi-
sites of the mathematical proof of the CPT theorem do not hold any more, have encouraged
experimental tests of CPT symmetry.

One of the consequences of the CPT theorem is that particles and antiparticles have
exactly the same (mass, total lifetime) or exactly the opposite (charge, magnetic moment)
properties. An overview of existing measurements is available at the Particle Data Group
[1], some of the standard measurements of masses of elementary particles and antiparticles
are shown in Fig. 1 (a more elaborate comparison including e.g. g-factor measurements as
performed by the BASE collaboration to ppb precision [6] is possible within the Standard
Model Extension (SME) framework [7–9]).

From Fig. 1 it becomes evident that atomic physics measurements like the cyclotron
frequency of protons and antiprotons in a trap yielding the charge-to-mass ratio q/m and
determinations of the internal structure of antihydrogen offer the most sensitive tests of CPT
symmetry on an absolute scale. The potential of antihydrogen, the simplest anti-atom whose
matter equivalent hydrogen is one of the best studied systems in physics, for precision CPT
tests has been realized early [10], the most difficult challenge being the formation of cold
antihydrogen atoms suitable for spectroscopy. At the Antiproton Decelerator of CERN now
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Fig. 2 Left: schematic antihydrogen formation and hyperfine measurement beam line. Antihydrogen is cre-
ated by mixing antiprotons and positrons in the CUSP trap that polarizes the outgoing beam by focusing
low-field seekers (red) and defocussing high-field seekers (green). The beam then passes a microwave cavity
where spin-flips are induced under the presence of an external static magnetic field Bext, a superconduct-
ing sextupole which again selects low-field seekers, and an antihydrogen detector. Right: Breit-Rabi diagram
showing the magnetic field dependence of the four hyperfine states of antihydrogen

several experiments are routinely producing antihydrogen [11], with the ALPHA collab-
oration having been able to perform first spectroscopy measurements recently [2, 3, 12].

ASACUSA is aiming at a measurement of the antihydrogen ground-state hyperfine struc-
ture GS-HFS [13, 14], transporting the H atoms to a region far away from the stray magnetic
fields at the formation region, like it was done for hydrogen by Rabi [15] and others. This
will ultimately allow for precision exceeding the one of in-trap hyperfine spectroscopy as
done in [3].

2 Antihydrogen beam formation and hyperfine spectroscopy

In ASACUSA antihydrogen atoms are formed from their ingredients [16]. Antiprotons from
the CERNAntiproton Decelerator are trapped and cooled in a Penning trap MUSASHI [17],
Positrons are produced by a 22Na source in combination with a solid Ne ice moderator,
they are accumulated in a Surko type buffer gas trap. Both species are brought together and
mixed in a magnetic CUSP configuration [18] using a nested Penning trap configuration
[19] which is widely used at the AD.

Figure 2 (left) shows a schematic view of the Rabi-type beam spectroscopy experi-
ment. Figure 2 (right) depicts the behavior of the four hyperfine states characterized by the
quantum number F connected to the total spin F = S1 + S2 and its projection M to
the quantization axis. States with increasing (decreasing) energy in an external magnetic
field are called low-field seekers (high-field seekers). Two possible transitions induced by
microwaves (σ1, π1) that are accessible in this experiment are denoted by arrows.

After the initial success of H formation [20], a beam of cold antihydrogen atoms was
observed 2.7 m downstream of the formation region [21]. In 2017 for the first time the
principle quantum number distribution could be measured using the antihydrogen detector
[22] and a field ionization stage, which – as expected from three-body formation – contains
mainly Rydberg atoms [23]. H with n < 14 were detected with 4.5 σ significance, which
could within their life time of ∼ 100μs decay to the ground state before reaching the
cavity. The overall observed rate of such events of ∼ 0.001 s−1 is however far too small for
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Fig. 3 Preliminary results of the first simultaneously taken extrapolations of νπ (a) and νσ (c) as a function
of the external static magnetic field for hydrogen. (b) and (d) show the deviations from the fit as standard
scores. The dashed red line in panel (a) shows νσ to illustrate the much smaller B-field dependence compared
to νπ . Note the different y-scales of (a) and (c)

spectroscopy measurements. The primary task is to increase the production rate of ground-
state antihydrogen by 1–2 orders of magnitude.

3 Hydrogen hyperfine spectroscopy results

Due to the scarce availability of antihydrogen, ASACUSA decided to develop a hydrogen
beam with the initial goal to commission the hyperfine spectroscopy apparatus. A source
of cold polarized hydrogen with a temperature of ∼ 50 K as expected for the H formed in
the CUSP was connected to the microwave cavity and superconducting sextupole magnet
to be used for antihydrogen spectroscopy. For hydrogen detection a commercial Q-mass
spectrometer was used. With this setup the σ1 transition in hydrogen could be determined to
a few Hertz precision at ν ∼ 1.42 GHz, resulting in a 2.7 ppb measurement of the hydrogen
GS-HFS [24]. This constitutes the most precise determination of this quantity in a beam so
far, the highest precision of 2 mHz having been obtained in a hydrogen maser [25, 26]),
which cannot be used for antimatter. The result using the σ1 transition also allows us to
estimate that with this method about 8000 H atoms in the ground state are needed to obtain
a precision of ∼ 1 ppm, which is the initial goal of ASACUSA.

While many coefficients of the minimal SME have been constrained by hydrogen maser
measurements, in the newly developed non-minimal SME a set of coefficients is present
that has not yet been investigated experimentally [27], especially those depending on the
orientation of the static magnetic field with respect to the Earth rotation axis [23]. Within
the SME, the π1 transition is sensitive to CPT violations while the σ1 transition is not.
Since the π1 transition is more sensitive to magnetic field inhomogeneities, we constructed
new McKeehan-like coils [28] and a three-layer cylindrical shielding [29]. Additionally we
changed the beam optics so to produce the same rate of hydrogen atoms in the different
quantum states at the detector [30], using permanent sextupole magnets and ring apertures.
With this setup, first measurements were done determining alternatingly the transition fre-
quencies νσ and νπ at each setting of the external constant magnetic field Bext, which is
controlled by the McKeehan-like coils. Figure 3 shows preliminary measurements of νσ and
νπ at several Bext. The B-field dependence of the two transitions follows from the Breit-
Rabi formula [31], yielding a hyperbolic dependence of νσ (Bext) and a dominantly linear
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Table 1 Hydrogen ground-state hyperfine splitting results using the ASACUSA hydrogen beam
(preliminary)

ν0 [Hz] Relative error ν0 − νlit [Hz]

σ1 extrapolation 1 420 405 767(15) 1.04 × 10−8 15

π1 extrapolation 1 420 405 760(34) 2.38 × 10−8 8

Mean value of the two extrapolations 1 420 405 766(14) 9.96 × 10−9 14

νσ and νπ determined at same static
magnetic field

1 420 405 753(8) 5.60 × 10−9 1

The results agree within 1 standard deviation to the literature value νlit obtained by a hydrogen maser [25].
From [29]

one for νπ (Bext). Table 1 gives the values of the hyperfine transition frequency ν0 obtained
by extrapolating each type of transition to zero external field, yielding typical precisions of
a 10–30 ppb in a first test run lasting five days.

Instead of extrapolations, the measurement of νσ and νπ at the same Bext can be used
to directly determine the zero-field GS-HFS frequency ν0 [32]. This method, using the
same data sets, leads to a factor 2 smaller errors than the individual extrapolations and is
of interest to antihydrogen, as it includes the more interesting π1 transition and requires
the acquisition of only two resonances to predict the zero-field value (thereby reducing the
amount of required H events to 4000 for a ∼ 1 ppm result). Further tests of this method are
ongoing and systematic measurements of both νσ and νπ are planned in the near future.

4 Summary and outlook

The ground-state hyperfine splitting of antihydrogen offers one of the most sensitive tests
of CPT symmetry. ASACUSA is preparing an antihydrogen beam for an in-flight mea-
surement of this quantity using a Rabi-type spectroscopy method which has the advantage
of being performed in a field-free environment. The rate of antihydrogen formation in the
CUSP needs further improvement of 1–2 orders of magnitude to allow for spectroscopy
measurements.

In parallel in-beam hyperfine spectroscopy of ordinary hydrogen is pursued. A first mea-
surement using the same cavity and sextupole as will be employed for antihydrogen resulted
in a 2.7 ppb precision showing that the spectroscopy method is fully functional. Using the
hydrogen beam, measurements are under way to determine coefficients of the non-minimal
Standard Model Extension that have so far not been experimentally constrained.
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