Skip to main content
Log in

Siscowet lake charr (Salvelinus namaycush siscowet) visual foraging habitat in relation to daily and seasonal light cycles

  • CHARR III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Using siscowet lake charr (Salvelinus namaycush siscowet) as an example organism, we modeled visual foraging habitat in relation to: (i) daily solar and lunar intensity, (ii) seasonal changes in maximum solar and lunar altitude, (iii) foraging for pelagic or benthic prey, and (iv) increased turbidity that may occur with climate change. Siscowet foraging success increased with light intensity and was higher for pelagic prey than benthic prey. Daily and seasonal siscowet foraging patterns were similar for benthic and pelagic prey types. Predicted day-time foraging depths were deepest in summer and shallowest in winter (range 172–233 m for pelagic prey and 210–283 m for benthic prey), and night-time foraging depths were deepest in winter and shallowest in summer (range 25–32 m for pelagic prey and 63–81 m for benthic prey). Within the Lake Superior basin, extreme precipitation events and associated sediment plumes can cause localized declines in light attenuation. Increases in turbidity associated with these sediment plumes can reduce predicted foraging depths by 65% and 80%, when compared to normal lake attenuation values. The model can be applied to predict how solar and lunar patterns influence foraging patterns in any aquatic organism that displays light-mediated behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, C. F., R. J. Foy, J. J. Kelley & K. O. Coyle, 2009. Seasonal changes in the diel vertical migration of walleye pollock (Theragra chalcogramma) in the northern Gulf of Alaska. Environmental Biology of Fishes 86: 297.

    Article  Google Scholar 

  • Ahrens, R. N., C. J. Walters & V. Christensen, 2012. Foraging arena theory. Fish and Fisheries 13: 41–59.

    Article  Google Scholar 

  • Ahrenstorff, T. D., T. R. Hrabik, J. D. Stockwell, D. L. Yule & G. G. Sass, 2011. Seasonally dynamic diel vertical migrations of Mysis diluviana, coregonine fishes, and siscowet lake trout in the pelagia of western Lake Superior. Transactions of the American Fisheries Society 140: 1504–1520.

    Article  Google Scholar 

  • Alexander, L. V., X. Zhang, T. C. Peterson, J. Caesar, B. Gleason, A. K. Tank & F. Tagipour, 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2005JD006290.

    Article  Google Scholar 

  • Anderson, E. D. & L. L. Smith Jr., 1971. Factors affecting abundance of lake herring (Coregonus artedii Lesueur) in western Lake Superior. Transactions of the American Fisheries Society 100: 691–707.

    Article  Google Scholar 

  • Anderson, E. R., 1954. Water loss investigations: Lake Hefner studies. U.S. Geological Survey Professional Paper 269: 71–119.

    Google Scholar 

  • Auer, M. T., N. A. Auer, N. R. Urban & T. Auer, 2013. Distribution of the amphipod Diporeia in Lake Superior: the ring of fire. Journal of Great Lakes Research 39: 33–46.

    Article  CAS  Google Scholar 

  • Austin, J. A. & J. Allen, 2011. Sensitivity of summer Lake Superior thermal structure to meteorological forcing. Limnology and Oceanography 56: 1141–1154.

    Article  Google Scholar 

  • Beauchamp, D. A., C. M. Baldwin, J. L. Vogel & C. P. Gubala, 1999. Estimating diel, depth-specific foraging opportunities with a visual encounter rate model for pelagic piscivores. Canadian Journal of Fisheries and Aquatic Sciences 56: 128–139.

    Article  Google Scholar 

  • Benoit, D., Y. Simard, J. Gagné, M. Geoffroy & L. Fortier, 2010. From polar night to midnight sun: photoperiod, seal predation, and the diel vertical migrations of polar cod (Boreogadus saida) under landfast ice in the Arctic Ocean. Polar Biology 33: 1505–1520.

    Article  Google Scholar 

  • Blaxter, J., 1975. Vision in fishes. Springer, US.

    Google Scholar 

  • Bohl, E., 1980. Diel pattern of pelagic distribution and feeding in planktivorous fish. Oecologia 44: 368–375.

    Article  Google Scholar 

  • Bolsenga, S. J., 1978. Photosynthetically active radiation transmittance through ice. US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Great Lakes Environmental Research Laboratory, Michigan.

    Google Scholar 

  • Boscarino, B. T., L. G. Rudstam, J. L. Eillenberger & R. O’Gorman, 2009. Importance of light, temperature, zooplankton and fish in predicting the nighttime vertical distribution of Mysis diluviana. Aquatic Biology 5: 263–279.

    Article  Google Scholar 

  • Boscarino, B. T., L. G. Rudstam, J. Tirabassi, J. Janssen & E. R. Loew, 2010. Light effects on alewife-mysid interactions in Lake Ontario: a combined sensory physiology, behavioral, and spatial approach. Limnology and Oceanography 55: 2061–2072.

    Article  Google Scholar 

  • Brawn, V. M., 1960. Seasonal and diurnal vertical distribution of herring (Clupea harengus L.) in Passamaquoddy, Bay, NB. Journal of the Fisheries Board of Canada 17: 699–711.

    Article  Google Scholar 

  • Brierley, A. S., 2014. Diel vertical migration. Current Biology 24: R1074–R1076.

    Article  CAS  PubMed  Google Scholar 

  • Clark, C. W. & D. A. Levy, 1988. Diel vertical migrations by juvenile sockeye salmon and the antipredation window. The American Naturalist 131: 271–290.

    Article  Google Scholar 

  • Clarke, G. L. & R. H. Backus, 1964. Interrelations between the vertical migration of deep scattering layers, bioluminescence, and changes in daylight in the sea. Bulletin de l’Institut Oceanographique, Monaco 64: 1–36.

    Google Scholar 

  • Cooney, E. M., P. McKinney, R. Sterner, G. E. Small & E. C. Minor, 2018. Tale of two storms: impacts of extreme rain events on the biogeochemistry of Lake Superior. Journal of Geophysical Research: Biogeosciences 123: 1719–1731.

    CAS  PubMed  Google Scholar 

  • Cramer, C. E., K. R. Lykke, J. T. Woodward & A. W. Smith, 2013. Precise measurement of lunar spectral irradiance at visible wavelengths. The Journal of Research of the National Institute of Standards and Technology 118: 396–402.

    Article  CAS  PubMed  Google Scholar 

  • Czuba, C. R., J. D. Fallon & E. W. Kessler, 2012. Floods of June 2012 in northeastern Minnesota. U. S. Geological Survey Scientific Investigations Report 42: 5283.

    Google Scholar 

  • Dera, J. & D. Stramski, 1986. Maximum effects of sunlight focusing under a wind-disturbed sea surface. Oceanologia 23: 15–42.

    Google Scholar 

  • De Robertis, A., 2002. Size-dependent visual predation risk and the timing of vertical migration: an optimization model. Limnology and Oceanography 47: 925–933.

    Article  Google Scholar 

  • De Robertis, A., C. H. Ryer, A. Veloza & R. D. Brodeur, 2003. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Canadian Journal of Fisheries and Aquatic Sciences 60: 1517–1526.

    Article  Google Scholar 

  • Diffenbaugh, N. S., J. S. Pal, R. J. Trapp & F. Giorgi, 2005. Fine-scale processes regulate the response of extreme events to global climate change. Proceedings of the National Academy of Sciences of the United States of America 102: 15774–15778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Orgeville, M., W. R. Peltier, A. R. Erler & J. Gula, 2014. Climate change impacts on Great Lakes Basin precipitation extremes. Journal of Geophysical Research: Atmospheres 119: 10–799.

    Google Scholar 

  • Eggers, D. M., 1977. The nature of prey selection by planktivorous fish. Ecology 58: 46–59.

    Article  Google Scholar 

  • Eggers, D. M., 1978. Limnetic feeding behavior of juvenile sockeye salmon in Lake Washington and predator avoidance. Limnology and Oceanography 23: 1114–1125.

    Article  Google Scholar 

  • Eiane, K., D. L. Aksnes, E. BagØien & S. Kaartvedt, 1999. Fish or jellies—a question of visibility? Limnology and Oceanography 44: 1352–1357.

    Article  Google Scholar 

  • Fraser, N. H. C. & N. B. Metcalfe, 1997. The costs of becoming nocturnal: feeding efficiency in relation to light intensity in juvenile Atlantic salmon. Functional Ecology 11: 385–391.

    Article  Google Scholar 

  • Gabriel, W. & B. Thomas, 1988. Vertical migration of zooplankton as an evolutionarily stable strategy. The American Naturalist 132: 199–216.

    Article  Google Scholar 

  • Gamble, A. E., T. R. Hrabik, J. D. Stockwell & D. L. Yule, 2011. Trophic connections in Lake Superior Part I: the offshore fish community. Journal of Great Lakes Research 37: 541–549.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1986. A lunar cycle in zooplankton. Ecology 67: 883–897.

    Article  Google Scholar 

  • Gorman, O. T., D. L. Yule & J. D. Stockwell, 2012a. Habitat use by fishes of Lake Superior. I. Diel patterns of habitat use in nearshore and offshore waters of the Apostle Islands region. Aquatic Ecosystem Health & Management 15: 333–354.

    Article  Google Scholar 

  • Gorman, O. T., D. L. Yule & J. D. Stockwell, 2012b. Habitat use by fishes of Lake Superior. II. Consequences of diel habitat use for habitat linkages and habitat coupling in nearshore and offshore waters. Aquatic Ecosystem Health & Management 15: 355–368.

    Article  Google Scholar 

  • Guthrie, D. M., W. R. A. Muntz & T. J. Pitcher, 1993. Role of vision in fish behaviour. In Pitcher, T. J. (ed.), Behaviour of Teleost Fishes. Chapman and Hall, London.

    Google Scholar 

  • Habermann, R., S. Moen, & E. Stykel, 2012. Superior Facts. Minnesota Sea Grant (pub. S25), Duluth, Minnesota.

  • Hansen, A. G., D. A. Beauchamp & E. R. Schoen, 2013. Visual prey detection responses of piscivorous trout and salmon: effects of light, turbidity, and prey size. Transactions of the American Fisheries Society 142: 854–867.

    Article  Google Scholar 

  • Harrington, K. A., T. R. Hrabik & A. F. Mensinger, 2015. Visual sensitivity of deepwater fishes in Lake Superior. PloS ONE 10: e0116173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harvey, C. J., S. T. Schram & J. F. Kitchell, 2003. Trophic relationships among lean and siscowet lake trout in Lake Superior. Transactions of the American Fisheries Society 132: 219–228.

    Article  Google Scholar 

  • Helfman, G. S., 1981. The advantage to fishes of hovering in shade. Copeia 1981: 392–400.

    Article  Google Scholar 

  • Henson, B. L., D. T. Kraus, M. J. McMurtry & D. N. Ewert, 2010. Islands of Life: A Biodiversity and Conservation Atlas of the Great Lakes Islands. Nature Conservancy of Canada, Toronto.

    Book  Google Scholar 

  • Horns, W. H., C. R. Bronte, T. R. Busiahn, M. P. Ebener, R. L. Eshenroder, T. Gorenflo, N. Kmiecik, W. Mattes, J. W. Peck, M. Petzold & D. R. Schreiner, 2003. Fish-Community Objectives for Lake Superior. Great Lakes Fishery Commission, Ann Arbor.

    Google Scholar 

  • Hrabik, T. R., O. P. Jensen, S. J. D. Martell, C. J. Walters & J. F. Kitchell, 2006. Diel vertical migration in the Lake Superior pelagic community. I. Changes in vertical migration of coregonids in response to varying predation risk. Canadian Journal of Fisheries and Aquatic Sciences 63: 2286–2295.

    Article  Google Scholar 

  • Hrabik, T. R., B. M. Roth & T. Ahrenstorff, 2014. Predation risk and prey fish vertical migration in Lake Superior: insights from an individual based model of siscowet (Salvelinus namaycush). Journal of Great Lakes Research 40: 730–738.

    Article  Google Scholar 

  • Huse, I. & J. C. Holm, 1993. Vertical distribution of Atlantic salmon (Salmo salar) as a function of illumination. Journal of Fish Biology 43: 147–156.

    Article  Google Scholar 

  • Isaac, E. J., T. R. Hrabik, J. D. Stockwell & A. E. Gamble, 2012. Prey selection by the Lake Superior fish community. Journal of Great Lakes Research 38: 326–335.

    Article  Google Scholar 

  • Jensen, O. P., T. R. Hrabik, S. J. Martell, C. J. Walters & J. F. Kitchell, 2006. Diel vertical migration in the Lake Superior pelagic community. II. Modeling trade-offs at an intermediate trophic level. Canadian Journal of Fisheries and Aquatic Sciences 63: 2296–2307.

    Article  Google Scholar 

  • Jerome, J. H., R. P. Bukata & J. E. Bruton, 1983. Spectral Attenuation and Irradiance in the Laurentian Great Lakes. Journal of Great Lakes Research 9: 60–68.

    Article  Google Scholar 

  • Jurvelius, J. & T. J. Marjomaki, 2008. Night, day, sunrise, sunset: do fish under snow and ice recognize the difference? Freshwater Biology 53: 2287–2294.

    Article  Google Scholar 

  • Kaartvedt, S., 1996. Habitat preference during overwintering and timing of seasonal vertical migration of Calanus finmarchicus. Ophelia 44: 145–156.

    Article  Google Scholar 

  • Kahilainen, K. K., T. Malinen & H. Lehtonen, 2009. Polar light regime and piscivory govern diel vertical migrations of planktivorous fish and zooplankton in a subarctic lake. Ecology of Freshwater Fish 18: 481–490.

    Article  Google Scholar 

  • Keyler, T. D., T. R. Hrabik, C. L. Austin, O. T. Gorman & A. F. Mensinger, 2015. Foraging mechanisms of siscowet lake trout (Salvelinus namaycush siscowet) on pelagic prey. Journal of Great Lakes Research 41: 1162–1171.

    Article  Google Scholar 

  • Keyler, T. D., T. R. Hrabik, A. F. Mensinger, L. S. Rogers & O. T. Gorman, 2018. Effect of light intensity and substrate type on siscowet lake trout (Salvelinus namaycush siscowet) predation on deepwater sculpin (Myoxocephalus thompsonii). Manuscript submitted for publication.

  • Kharin, V. V., F. W. Zwiers, X. Zhang & G. C. Hegerl, 2007. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. Journal of Climate 20: 1419–1444.

    Article  Google Scholar 

  • Lampert, W., 1989. The adaptive significance of diel vertical migration of zooplankton. Functional Ecology 3: 21–27.

    Article  Google Scholar 

  • Levy, D. A., 1990a. Reciprocal diel vertical migration behavior in planktivores and zooplankton in British Columbia lakes. Canadian Journal of Fisheries and Aquatic Sciences 47: 1755–1764.

    Article  Google Scholar 

  • Levy, D. A., 1990b. Sensory mechanism and selective advantage for diel vertical migration in juvenile sockeye salmon, Oncorhynchus nerka. Canadian Journal of Fisheries and Aquatic Sciences 47: 1796–1802.

    Article  Google Scholar 

  • Loew, E. R. & W. N. McFarland, 1990. The underwater visual environment. In Douglas, R. & M. Djamgoz (eds), The Visual System of Fish. Springer, Dordrecht: 1–43.

    Google Scholar 

  • Magnuson, J. J., L. B. Crowder & P. A. Medvick, 1979. Temperature as an ecological resource. American Zoologist 19: 331–343.

    Article  Google Scholar 

  • Mason, D. M. & E. V. Patrick, 1993. A model for the space–time dependence of feeding for pelagic fish populations. Transactions of the American Fisheries Society 122: 884–901.

    Article  Google Scholar 

  • Mazur, M. M. & D. A. Beauchamp, 2003. A comparison of visual prey detection among species of piscivorous salmonids: effects of light and low turbidities. Environmental Biology of Fishes 67: 397–405.

    Article  Google Scholar 

  • McFarland, W. N., 1986. Light in the sea—correlations with behaviors of fishes and invertebrates. American Zoologist 26: 389–401.

    Article  Google Scholar 

  • Mehner, T., 2012. Diel vertical migration of freshwater fishes–proximate triggers, ultimate causes and research perspectives. Freshwater Biology 57: 1342–1359.

    Article  Google Scholar 

  • Mehner, T., P. Kasprzak & F. Hölker, 2007. Exploring ultimate hypotheses to predict diel vertical migrations in coregonid fish. Canadian Journal of Fisheries and Aquatic Sciences 64: 874–886.

    Article  Google Scholar 

  • Mekis, É. & L. A. Vincent, 2011. An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean 49: 163–177.

    Article  Google Scholar 

  • Melillo, J. M., T. T. Richmond, & G. Yohe, 2014. Climate change impacts in the United States. Third National Climate Assessment 52.

  • Melnikov, V.N., K. P. Grudov, & A. Bituma, 1981. Analysis of diurnal vertical migrations of fish. Canadian Translation of Fisheries and Aquatic Sciences. Canada Institute for Seientific and Technical Information, National Research Council of Canada, Ottawa, Ontario.

  • Miner, J. G. & R. A. Stein, 1996. Detection of predators and habitat choice by small bluegills: effects of turbidity and alternative prey. Transactions of the American Fisheries Society 125: 97–103.

    Article  Google Scholar 

  • Minor, E. C., J. A. Austin, L. Sun, L. Gauer, R. C. Zimmerman & K. Mopper, 2016. Mixing effects on light exposure in a large-lake epilimnion; a preliminary dual-dye study. Limnology and Oceanography: Methods 14: 542–554.

    Google Scholar 

  • Minnesota Sea Grant, 2014. Lake Superior’s Natural Processes, htttp://www.seagrant.umn.edu./superior/.

  • MODIS Today, n.d. MODIS Today— CIMSS/SSEC. http://ge.ssec.wisc.edu/modis-today/.

  • Muir, A. M., M. J. Hansen, C. R. Bronte & C. C. Krueger, 2016. If Arctic charr Salvelinus alpinus is ‘the most diverse vertebrate’, what is the lake charr Salvelinus namaycush? Fish and Fisheries 17: 1194–1207.

    Article  Google Scholar 

  • Muntz, W. R., 1990. Stimulus, Environment and Vision in Fishes. The Visual System of Fish. Springer, Dordrecht.

    Google Scholar 

  • Munz, F. W. & W. N. McFarland, 1977. Evolutionary adaptations of fishes to the photic environment. In Crescitelli, F. (ed.), The Visual System in Vertebrates. Springer, Berlin.

    Google Scholar 

  • Narver, D. W., 1970. Diel vertical movements and feeding of underyearling sockeye salmon and the limnetic zooplankton in Babine Lake, British Columbia. Journal of the Fisheries Board of Canada 27: 281–316.

    Article  Google Scholar 

  • Oceanic, National & Atmospheric Administration, 2012. Great Lakes Environmental Research Laboratory. About Our Great Lakes, Lake by Lake Profiles.

    Google Scholar 

  • National Weather Service, 2018. Major June Flooding in the Northland. NOAA’s National Weather Service, https://www.weather.gov/dlh/June15-17_2018flooding.

  • Nevers, M. B. & R. L. Whitman, 2005. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan. Water Research 39: 5250–5260.

    Article  CAS  PubMed  Google Scholar 

  • Nowinszky, L., S. Szabó, G. Tóth, I. Ekk & M. Kiss, 1979. The effect of the moon phases and of the intensity of polarized moonlight on the light-trap catches. Journal of Applied Entomology 88: 337–353.

    Google Scholar 

  • O’Brien, W. J., 1987. Planktivory by freshwater fish: thrust and parry in the pelagia. Predation: direct and indirect impacts on aquatic communities. University Press of New England, Lebanon.

    Google Scholar 

  • Oliver, S. K., D. K. Branstrator, T. R. Hrabik, S. J. Guildford & R. E. Hecky, 2014. Nutrient excretion by crustacean zooplankton in the deep chlorophyll layer of Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences 72: 390–399.

    Article  CAS  Google Scholar 

  • Pachauri, R. K., M. R. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ, & N. K. Dubash, 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC.

  • Petersen, J. H. & D. M. Gadomski, 1994. Light-mediated predation by northern squawfish on juvenile chinook salmon. Journal of Fish Biology 45: 227–242.

    Article  Google Scholar 

  • R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.

  • Ringelberg, J., 1995. Changes in light intensity and diel vertical migration: a comparison of marine and freshwater environments. Journal of the Marine Biological Association of the United Kingdom 75: 15–25.

    Article  Google Scholar 

  • Roulet, N. T. & W. P. Adams, 1986. Spectral distribution of light under a subarctic winter lake cover. Hydrobiologia 134: 89–95.

    Article  Google Scholar 

  • Schenck, H., 1957. On the focusing of sunlight by ocean waves. Journal of the Optical Society of America 47: 653–657.

    Article  Google Scholar 

  • Scheuerell, M. D. & D. E. Schindler, 2003. Diel vertical migration by juvenile sockeye salmon: empirical evidence for the antipredation window. Ecology 84: 1713–1720.

    Article  Google Scholar 

  • Schindler, D. W., 2001. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 58: 18–29.

    Article  Google Scholar 

  • Scott, W. B. & E. J. Crossman, 1973. Freshwater fishes of Canada. Journal of the Fisheries Research Board of Canada 184: 966.

    Google Scholar 

  • Sitar, S. P., H. M. Morales, M. T. Mata, B. B. Bastar, D. M. Dupras, G. D. Kleaver & K. D. Rathbun, 2008. Survey of siscowet lake trout at their maximum depth in Lake Superior. Journal of Great Lakes Research 34: 276–286.

    Article  Google Scholar 

  • Staby, A. & D. L. Aksnes, 2011. Follow the light—diurnal and seasonal variations in vertical distribution of the mesopelagic fish Maurolicus muelleri. Marine Ecology Progress Series 422: 265–273.

    Article  Google Scholar 

  • Stockwell, J. D., D. L. Yule, O. T. Gorman, E. J. Isaac & S. A. Moore, 2006. Evaluation of bottom trawls as compared to acoustics to assess adult lake herring (Coregonus artedi) abundance in Lake Superior. Journal of Great Lakes Research 32: 280–292.

    Article  Google Scholar 

  • Stockwell, J. D., T. R. Hrabik, O. P. Jensen, D. L. Yule & M. Balge, 2010. Empirical evaluation of predator-driven diel vertical migration in Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences 67: 473–485.

    Article  Google Scholar 

  • Stramski, D., 1986a. Fluctuations of solar irradiance induced by surface waves in the Baltic. Bulletin of the Polish Academy of Sciences. Earth Sciences 34: 333–344.

    Google Scholar 

  • Stramski, D., 1986b. The effect of daylight diffuseness on the focusing of sunlight by sea surface waves. Oceanologia 24: 11–27.

    Google Scholar 

  • Tebaldi, C., K. Hayhoe, J. M. Arblaster & G. A. Meehl, 2006. Going to the extremes. Climatic change 79: 185–211.

    Article  Google Scholar 

  • Vogel, J. L. & D. A. Beauchamp, 1999. Effects of light, prey size, and turbidity on reaction distances of lake trout (Salvelinus namaycush) to salmonid prey. Canadian Journal of Fisheries and Aquatic Sciences 56: 1293–1297.

    Article  Google Scholar 

  • Wang, J., J. Kessler, X. Bai, A. Clites, B. Lofgren, A. Assuncao & G. Leshkevich, 2018. Decadal variability of Great Lakes ice cover in response to AMO and PDO, 1963-2017. Journal of Climate 31: 7249–7268.

    Article  Google Scholar 

  • Walsh, J., D. Wuebbles, K. Hayhoe, J. Kossin, K. Kunkel, G. Stephens, P. Throne, R. Vose, M. Wehner, J. Willis, D. Anderson, S. Doney, R. Feely, P. Hennon, V. Kharin, T. Knutson, F. Landerer, T. Lenton, J. Kennedy, & R. Somerville, 2014. Ch. 2: Our Changing Climate. In J. M. Meillo, T. C. Richmond, & G. W. Yohe (eds), Climate Change Impacts in the United States: the Third National Climate Assessment. U.S. Global Change Research Program 19–67.

  • Widder, E. A. & T. M. Frank, 2001. The speed of an isolume: a shrimp’s eye view. Marine Biology 138: 669–677.

    Article  Google Scholar 

  • Wright, J., 2006. The New York Times Almanac 2002. Routledge, London.

    Book  Google Scholar 

  • Zaimes, G. & R. Emanuel, 2006. Stream Processes for Watershed Stewards. Arizona Watershed Stewardship Guide. College of Agricultural and Life Sciences, University of Arizona, Tucson.

    Google Scholar 

  • Zaneveld, J. R. V., E. Boss & A. Barnard, 2001. Influence of surface waves on measured and modeled irradiance profiles. Applied Optics 40: 1442–1449.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Aron Habte at the Renewable Resource Data Center for his help with locating and interpreting solar data from the National Solar Radiation Database. Additionally, we would like to thank Quinnlan Smith at the University of Minnesota Duluth for his dedication to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor D. Keyler.

Additional information

Guest editors: C. E. Adams, C. R. Bronte, M. J. Hansen, R. Knudsen & M. Power / Charr Biology, Ecology & Management

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keyler, T.D., Matthias, B.G. & Hrabik, T.R. Siscowet lake charr (Salvelinus namaycush siscowet) visual foraging habitat in relation to daily and seasonal light cycles. Hydrobiologia 840, 63–76 (2019). https://doi.org/10.1007/s10750-019-3888-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3888-9

Keywords

Navigation