Skip to main content
Log in

No effect of recent sympatry with invasive zebra mussel on the oviposition decisions and reproductive success of the bitterling fish, a brood parasite of unionid mussels

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The presence of non-native species can affect coevolved relationships. However, rapid reciprocal changes in coevolutionary associations provide the potential to quickly respond to a new situation. We studied a system where bitterling fish (Rhodeus amarus) parasitize unionid mussels by laying their eggs onto their gills. This association is affected by the infestation of unionid shells by the non-native zebra mussel (Dreissena polymorpha). In a series of experiments under experimental, semi-natural and natural conditions, we compared the behavioural response to zebra mussel infestation of unionid shells, its effect on oviposition decisions and their population consequences between bitterling populations naïve to zebra mussels and those recently sympatric with zebra mussels. We found no effect of recent sympatry on bitterling preoviposition behaviour and oviposition decisions and only a weak effect on their reproductive success. Bitterling from both populations inspected infested and non-infested mussels at the same rate but preferred to oviposit into non-infested unionid hosts. However, neither bitterling population completely avoided oviposition into infested unionids and three ovipositions into zebra mussels were observed. Overall, there was a clear negative relationship between the number of zebra mussels on unionid host shells and the number of juvenile bitterling emerging from the mussels. Our study demonstrated a lack of rapid evolutionary response to adaptively modulate oviposition choice after recent zebra mussel invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, B. & S. D. Johnson, 2007. The geographical mosaic of coevolution in a plant-pollinator mutualism. Evolution 62: 220–225.

    Article  PubMed  Google Scholar 

  • Baker, S. M. & D. J. Hornbach, 1997. Acute physiological effects of zebra mussel (Dreissena polymorpha) infestation on two unionid mussels, Actinonaias ligamentina and Amblema plicata. Canadian Journal of Fisheries and Aquatic Sciences 54: 512–519.

    Article  Google Scholar 

  • Baker, S. M. & J. S. Levinton, 2003. Selective feeding by three native North American freshwater mussels implies food competition with zebra mussels. Hydrobiologia 505: 97–105.

    Article  Google Scholar 

  • Balon, E. K., 1962. Note on the number of Danubian bitterlings developmental stages in mussels. Vestnik Ceskoslovenske Zoologicke Spolecnosti 26: 250–256.

    Google Scholar 

  • Bates, D., M. Maechler, B. Bolker, S. Walker, R. H. B. Christensen, H. Singmann, B. Dai & G. Grothendieck, 2014. Lme4: linear Mixed-Effects Models using Eigen and S4 (R package version 1.1-7). R Foundation for Statistical Computing, Vienna.

  • Bauer, G. & K. Wächtler, 2001. Ecology and Evolution of the Freshwater Mussels Unionoid. Springer, Berlin.

    Book  Google Scholar 

  • Bódis, E., B. Tóth & R. Sousa, 2014. Impact of Dreissena fouling on the physiological condition of native and invasive bivalves: interspecific and temporal variations. Biological Invasions 16: 1373–1386.

    Article  Google Scholar 

  • Bohlen, J., V. Šlechtová, N. Bogutskaya & J. Freyhof, 2006. Across Siberia and over Europe: phylogenetic relationships of the freshwater fish genus Rhodeus in Europe and the phylogenetic position of R. sericeus from the River Amur. Molecular Phylogenetics and Evolution 40: 856–865.

    Article  CAS  PubMed  Google Scholar 

  • Brodie Jr., E. D., B. J. Ridenhour & E. D. Brodie, 2002. The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56: 2067–2082.

    Article  PubMed  Google Scholar 

  • Bryja, J., C. Smith, A. Konečný & M. Reichard, 2010. Rangewide population genetic structure of the European bitterling (Rhodeus amarus) based on microsatellite and mitochondrial DNA analysis. Molecular Ecology 19: 4708–4722.

    Article  CAS  PubMed  Google Scholar 

  • Candolin, U. & J. D. Reynolds, 2001. Sexual signaling in the European bitterling: females learn the truth by direct inspection of the resource. Behavioral Ecology 12: 407–411.

    Article  Google Scholar 

  • Carroll, S. P., S. P. Klassen & H. Dingle, 1998. Rapidly evolving adaptations to host ecology and nutrition in the soapberry bug. Evolutionary Ecology 12: 955–968.

    Article  Google Scholar 

  • Casalini, M., M. Reichard, A. Phillips & C. Smith, 2013. Male choice of mates and mating resources in the rose bitterling (Rhodeus ocellatus). Behavioral Ecology 24: 1199–1204.

    Article  Google Scholar 

  • DAISIE, 2016. Delivering Alien Invasive Species Inventories for Europe. http://www.europe-aliens.org. Accessed 10 June 2016.

  • Douda, K., M. Vrtílek, O. Slavík & M. Reichard, 2012. The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe. Biological Invasions 14: 127–137.

    Article  Google Scholar 

  • Dunphy, S. A. M., K. M. Prior & M. E. Frederickson, 2016. An invasive slug exploits an ant-seed dispersal mutualism. Oecologia 181: 149–159.

    Article  Google Scholar 

  • Ercan, E., Ö. Gaygusuz, S. Tarkan, M. Reichard & C. Smith, 2013. The ecology of freshwater bivalves from Lake Sapanca Basin, Turkey. Turkish Journal of Zoology 37: 730–738.

    Article  Google Scholar 

  • Haag, W. R., D. J. Berg, D. W. Garton & J. L. Farris, 1993. Reduced survival and fitness in native bivalves in response to fouling by the introduced zebra mussel (Dreissena polymorpha) in Western Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 50: 13–19.

    Article  Google Scholar 

  • Higgins, S. N. & M. J. Vander Zanden, 2010. What a difference a species makes: a meta–analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs 80: 179–196.

    Article  Google Scholar 

  • Jahner, J. P., M. M. Bonilla, K. J. Badik, A. M. Shapiro & M. L. Forister, 2011. Use of exotic hosts by Lepidoptera: widespread species colonize more novel hosts. Evolution 65: 2719–2724.

    Article  PubMed  Google Scholar 

  • Janáč, M., Z. Valová, K. Roche & P. Jurajda, 2016. No effect of round goby Neogobius melanostomus colonisation on young-of-the-year fish density or microhabitat use. Biological Invasions. 18(8): 2333–2347.

    Article  Google Scholar 

  • Jurajda, P., 1999. Comparative nursery habitat use by 0+ fish in a modified lowland river. Regulated Rivers: Research & Management 15: 113–124.

    Article  Google Scholar 

  • Jurajda, P., M. Vassilev, M. Polačik & T. Trichkova, 2006. A first record of Perccottus glenii (Perciformes: Odontobutidae) in the Danube River in Bulgaria. Acta Zoologica Bulgarica 58: 279–282.

    Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 2015. Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746: 97–112.

    Article  CAS  Google Scholar 

  • Kiers, E. T., T. M. Palmer, A. R. Ives, J. F. Bruno & J. L. Bronstein, 2010. Mutualisms in a changing world: an evolutionary perspective. Ecology Letters 13: 1459–1474.

    Article  Google Scholar 

  • Kitamura, J., 2006. Adaptive spatial utilization of host mussels by the Japanese rosy bitterling Rhodeus ocellatus kurumeus. Journal of Fish Biology 69: 263–271.

    Article  Google Scholar 

  • Konečná, M. & M. Reichard, 2011. Seasonal dynamics in population characteristics of European bitterling Rhodeus amarus in a small lowland river. Journal of Fish Biology 78: 227–239.

    Article  PubMed  Google Scholar 

  • Kotrschal, A., B. Rogell, A. Bundsen, B. Svensson, S. Zajitschek, I. Brännström, S. Immler, A. A. Maklakov & N. Kolm, 2013. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Current Biology 23: 168–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lajtner, J. & P. Crnčan, 2011. Distribution of the invasive bivalve Sinanodonta woodiana (Lea, 1834) in Croatia. Aquatic Invasions 6: 119–124.

    Article  Google Scholar 

  • Lewandowski, K., 1976. Unionidae as a substratum for Dreissena polymorpha Pallas. Polskie Archiwum Hydrobiologii 23: 409–420.

    Google Scholar 

  • Lockwood, J. L., M. L. Hoopes & M. P. Marchetti, 2013. Invasion Ecology, 2nd ed. Wiley-Blackwell, New York.

    Google Scholar 

  • Lopes-Lima, M., R. Sousa, J. Geist, D. C. Aldridge, R. Araujo, J. Bergengren, Y. Bespalaya, E. Bódis, L. Burlakova, D. Van Damme, K. Douda, E. Froufe, D. Georgiev, C. Gumpinger, A. Karatayev, Ü. Kebapçi, I. Killeen, J. Lajtner, B. M. Larsen, R. Lauceri, A. Legakis, S. Lois, S. Lundberg, E. Moorkens, G. Motte, K.-O. Nagel, P. Ondina, A. Outeiro, M. Paunovic, V. Prié, T. von Proschwitz, N. Riccardi, M. Rudzīte, M. Rudzītis, C. Scheder, M. Seddon, H. Şereflişan, V. Simić, S. Sokolova, K. Stoeckl, J. Taskinen, A. Teixeira, F. Thielen, T. Trichkova, S. Varandas, H. Vicentini, K. Zajac, T. Zajac & S. Zogaris, 2016. Conservation status of freshwater mussels in Europe: state of the art and future challenges. Biological Reviews. doi:10.1111/brv.12244.

    PubMed  Google Scholar 

  • Lucy, F., L. E. Burlakova, A. Karatayev, S. Mastitsky & D. T. Zanatta, 2014. Zebra mussel impacts on unionids: a synthesis of trends in North America and Europe. In Nalepa, T. F. & D. W. Schloesser (eds), Quagga and Zebra Mussels: Biology, Impact, and Control, 2nd ed. CRC Press, Boca Raton: 623–646.

    Google Scholar 

  • MacIsaac, H. J., 1996. Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. American Zoologist 36: 287–299.

    Article  Google Scholar 

  • Mackie, G. L., 1991. Biology of the exotic zebra mussel, Dreissena polymorpha, in relation to native bivalves and its potential impact in Lake St. Clair. Hydrobiologia 219: 251–268.

    Article  Google Scholar 

  • Mills, S. C. & J. D. Reynolds, 2002. Host species preferences by bitterling, Rhodeus sericeus, spawning in freshwater mussels and consequences for offspring survival. Animal Behaviour 63: 1029–1036.

    Article  Google Scholar 

  • Mills, S. C., M. I. Taylor & J. D. Reynolds, 2005. Benefits and costs to mussels from ejecting bitterling embryos: a test of the evolutionary equilibrium hypothesis. Animal Behaviour 70: 31–37.

    Article  Google Scholar 

  • Pilotto, F., R. Sousa & D. C. Aldridge, 2016. Is the body condition of the invasive zebra mussel (Dreissena polymorpha) enhanced through attachment to native freshwater mussels (Bivalvia, Unionidae)? Science of the Total Environment 553: 243–249.

    Article  CAS  PubMed  Google Scholar 

  • Prior, K. M., J. M. Robinson, S. A. M. Dunphy & M. E. Frederickson, 2015. Mutualism between co-introduced species facilitates invasion and alters plant community structure. Proceedings of Royal Society B 282: 20142846.

    Article  Google Scholar 

  • Przybylski, M., 1996. The diet feeding pattern of bitterling, Rhodeus sericeus amarus (Bloch) in the Wieprza-Krzna canal, Poland. Polskie Archiwum Hydrobiologii 43: 203–212.

    Google Scholar 

  • R Development Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Reichard, M. & P. Jurajda, 1999. Patterns of ontogenetic changes in relative growth in the precocial cyprinid, bitterling (Rhodeus sericeus). Netherlands Journal of Zoology 49: 111–124.

    Google Scholar 

  • Reichard, M., P. Jurajda & C. Smith, 2004a. Male-male interference competition decreases spawning rate in the European bitterling (Rhodeus sericeus). Behavioral Ecology and Sociobiology 56: 34–41.

    Article  Google Scholar 

  • Reichard, M., P. Jurajda & R. Václavík, 2001. Drift of larval and juvenile fishes: a comparison between small and large lowland rivers. Archiv für Hydrobiologie, Supplement 135: 373–389.

    Google Scholar 

  • Reichard, M., H. Liu & C. Smith, 2007a. The coevolutionary relationship between bitterling fishes and freshwater mussels: insights from interspecific comparisons. Evolutionary Ecology Research 9: 239–259.

    Google Scholar 

  • Reichard, M., M. Ondračková, A. Bryjová, J. Bryja & C. Smith, 2009. Breeding resource distribution affects selection gradients on male phenotypic traits via sexual selection: experimental study on lifetime reproductive success in the bitterling fish (Rhodeus amarus). Evolution 63: 377–390.

    Article  PubMed  Google Scholar 

  • Reichard, M., M. Ondračková, M. Przybylski, H. Liu & C. Smith, 2006. The costs and benefits in an unusual symbiosis: experimental evidence that bitterling fish (Rhodeus sericeus) are parasites of unionid mussels in Europe. Journal of Evolutionary Biology 19: 788–796.

    Article  CAS  PubMed  Google Scholar 

  • Reichard, M., M. Polačik, A. S. Tarkan, R. Spence, Ö. Gaygusuz, E. Ercan, M. Ondračková & C. Smith, 2010. The bitterling-mussel coevolutionary relationship in areas of recent and ancient sympatry. Evolution 64: 3047–3056.

    PubMed  Google Scholar 

  • Reichard, M., M. Przybylski, P. Kaniewska, H. Liu & C. Smith, 2007b. A possible evolutionary lag in the relationship between freshwater mussels and European bitterling. Journal of Fish Biology 70: 709–725.

    Article  Google Scholar 

  • Reichard, M., C. Smith & W. C. Jordan, 2004b. Genetic evidence reveals density-dependent mediated success of alternative mating behaviours in the European bitterling (Rhodeus sericeus). Molecular Ecology 13: 1569–1578.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, J. D., V. J. Debuse & D. C. Aldridge, 1997. Host specialisation in an unusual symbiosis: European bitterlings spawning in freshwater mussels. Oikos 78: 539–545.

    Article  Google Scholar 

  • Ricciardi, A., F. G. Whoriskey & J. B. Rasmussen, 1996. Impact of the Dreissena invasion on native unionid bivalves in the upper St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences 53: 1434–1444.

    Article  Google Scholar 

  • Ricciardi, A., M. F. Hoopes, M. P. Marchetti & J. L. Lockwood, 2013. Progress toward understanding the ecological impacts of nonnative species. Ecological Monographs 83: 263–282.

    Article  Google Scholar 

  • Ripley, B., B. Venables, D. M. Bates, K. Hornik, A. Gebhardt & D. Firth, 2016. MASS: Support Functions and Datasets for Venables and Ripley’s MASS (R package version 7.3-45). R Foundation for Statistical Computing, Vienna.

  • Schloesser, D. W., T. F. Nalepa & G. L. Mackie, 1996. Zebra mussel infestation of unionid bivalves (Unionidae) in North America. American Zoologist 36: 300–310.

    Article  Google Scholar 

  • Shine, R., 2012. Invasive species as drivers of evolutionary change: cane toads in tropical Australia. Evolutionary Applications 5: 107–116.

    Article  PubMed  Google Scholar 

  • Simberloff, D. & L. Gibbons, 2004. Now you see them, now you don’t – population crashes of established introduced species. Biological Invasions 6: 161–172.

    Article  Google Scholar 

  • Simberloff, D., J.-L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Courchamp, B. Galil, E. García-Berthou, M. Pascal, P. Pyšek, R. Sousa, E. Tabacchi & M. Vilà, 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution 28: 58–66.

    Article  Google Scholar 

  • Singer, M. C., C. D. Thomas & C. Parmesan, 1993. Rapid human-induced evolution of insect-host associations. Nature 366: 681–683.

    Article  Google Scholar 

  • Smith, C., 2017. Bayesian inference supports the host selection hypothesis in explaining adaptive host specificity by European bitterling. Oecologia. doi:10.1007/s00442-016-3780-5.

    Google Scholar 

  • Smith, C. & M. Reichard, 2005. Females solicit sneakers to improve fertilization success in the bitterling fish (Rhodeus sericeus). Proceedings of the Royal Society London, Series B 272: 1683–1688.

    Article  Google Scholar 

  • Smith, C., M. Reichard, P. Jurajda & M. Przybylski, 2004. The reproductive ecology of the European bitterling (Rhodeus sericeus). Journal of Zoology 262: 107–124.

    Article  Google Scholar 

  • Smith, C., J. D. Reynolds & W. J. Sutherland, 2000a. Population consequences of reproductive decisions. Proceedings of the Royal Society London, Series B 267: 1327–1334.

    Article  CAS  Google Scholar 

  • Smith, C., J. D. Reynolds, W. J. Sutherland & P. Jurajda, 2000b. Adaptive host choice and avoidance of superparasitism in the spawning decisions of bitterling (Rhodeus sericeus). Behavioral Ecology and Sociobiology 48: 29–35.

    Article  Google Scholar 

  • Smith, C., K. Rippon, A. Douglas & P. Jurajda, 2001. A proximate cue for oviposition site choice in the bitterling (Rhodeus sericeus). Freshwater Biology 46: 903–911.

    Article  Google Scholar 

  • Son, M. O., 2007. Native range of the zebra mussel and quagga mussel and new data on their invasions within the Ponto-Caspian region. Aquatic Invasions 2: 174–184.

    Article  Google Scholar 

  • Sousa, R., J. L. Gutiérrez & D. C. Aldridge, 2009. Non-indigenous invasive bivalves as ecosystem engineers. Biological Invasions 11: 2367–2385.

    Article  Google Scholar 

  • Sousa, R., A. Novais, R. Costa & D. L. Strayer, 2014. Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735: 233–251.

    Article  Google Scholar 

  • Sousa, R., F. Pilotto & D. C. Aldridge, 2011. Fouling of European freshwater bivalves (Unionidae) by the invasive zebra mussel (Dreissena polymorpha). Freshwater Biology 56: 867–876.

    Article  Google Scholar 

  • Spence, R., M. Reichard & C. Smith, 2013. Strategic sperm allocation and a Coolidge effect in an externally fertilizing species. Behavioral Ecology 24: 82–88.

    Article  Google Scholar 

  • Spence, R. & C. Smith, 2013. Rose bitterling (Rhodeus ocellatus) embryos parasitize freshwater mussels by competing for nutrients and oxygen. Acta Zoologica 94: 113–118.

    Article  Google Scholar 

  • Stadnichenko, A. P. & Y. A. Stadnichenko, 1980. On the effect of bitterling larvae on the lamellibranchid mollusc Unio rostratus gentilis Haas. Gidrobiologicheski Zhurnal 1980: 57–61.

    Google Scholar 

  • Strayer, D. L., 2009. Twenty years of zebra mussels: lessons from the mollusk that made headlines. Frontiers in Ecology and the Environment 7: 135–141.

    Article  Google Scholar 

  • Strayer, D. L., J. A. Downing, W. R. Haag, T. L. King, J. B. Layzer, T. J. Newton & J. S. Nichols, 2004. Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience 54: 429–439.

    Article  Google Scholar 

  • Tanaka, S., T. Nishida & N. Ohsaki, 2007. Sequential rapid adaptation of indigenous parasitoid wasps to the invasive butterfly Pieris brassicae. Evolution 61: 1791–1802.

    Article  PubMed  Google Scholar 

  • Taraschewski, H., 2006. Hosts and parasites as aliens. Journal of Helminthology 80: 99–128.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J. N., 2005. The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago.

    Google Scholar 

  • Van Damme, D., N. Bogutskaya, R. C. Hoffmann & C. Smith, 2007. The introduction of the European bitterling (Rhodeus amarus) to west and central Europe. Fish and Fisheries 8: 79–106.

    Article  Google Scholar 

  • Vrtílek, M. & M. Reichard, 2012. An indirect effect of biological invasions: the effect of zebra mussel fouling on parasitisation of unionid mussels by bitterling fish. Hydrobiologia 696: 205–214.

    Article  Google Scholar 

  • Watters, G. T., 1997. A synthesis and review of the expanding range of the Asian freshwater mussel Anodonta woodiana (Lea, 1834) (Bivalvia:Unionidae). Veliger 40: 152–156.

    Google Scholar 

  • Wijethunga, U., M. Greenlees & R. Shine, 2016. Far from home: responses of an American predator species to an American prey species in a jointly invaded area of Australia. Biological Invasions 18: 1645–1652.

    Article  Google Scholar 

  • Zu Ermgassen, P. S. E. & D. C. Aldridge, 2010. The zebra mussel (Dreissena polymorpha) impacts European bitterling (Rhodeus amarus) load in a host freshwater mussel (Unio pictorum). Hydrobiologia 654: 83–92.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Czech Science Foundation (13-05872S). MR conceived the study; VB performed the experimental work; MR analysed data; VB and MR wrote the paper. The authors thank Matej Polačik for comments on the manuscript and Rowena Spence for comments and English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Reichard.

Additional information

Handling editor: Katya E. Kovalenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartáková, V., Reichard, M. No effect of recent sympatry with invasive zebra mussel on the oviposition decisions and reproductive success of the bitterling fish, a brood parasite of unionid mussels. Hydrobiologia 794, 153–166 (2017). https://doi.org/10.1007/s10750-017-3089-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3089-3

Keywords

Navigation