Skip to main content

Advertisement

Log in

Diversification of functional morphology in herbivorous cichlids (Perciformes: Cichlidae) of the tribe Tropheini in Lake Tanganyika

  • Advances in Cichlid Research II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In Lake Tanganyika, several lineages of cichlids have diversified into 200 species. Tribe Tropheini contains the greatest richness of herbivorous species that are classified into four ecomorphs: grazers, browsers, suckers, and pickers. All of these ecomorphs coexist on littoral rocky shores. To reveal the differences among species within ecomorphs, we analysed fish shape and functional morphology related to feeding habits, using geometric morphometrics, and measured intestine length. Furthermore, we tested the relationship between genetic and morphological distances. As a result, diversities of functional morphology among ecomorphs, and among species within ecomorphs, were revealed. In grazers, morphological diversity was greatest in jaws and the opening direction of mouth, suggesting that these species have adapted to feed on various substrata. In browsers, intestine length varied among species, indicating that this ecomorph consists of species with various specializations in herbivory. Morphological divergence was found only in the mandible and occlusal facet in grazers. No clear relation was found between morphological and phylogenetic distances in browsers, which are a polyphyletic group, indicating that their traits were acquired by convergence in multiple lineages. Our data suggest that the observed morphological variation among species enable sympatric species to separate their feeding niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albertson, R. C. & T. D. Kocher, 2001. Assessing morphological differences in an adaptive trait: a landmark & hyphen; based morphometric approach. Journal of Experimental Zoology 289: 385–403.

    Article  CAS  PubMed  Google Scholar 

  • Albertson, R. C. & T. D. Kocher, 2006. Genetic and developmental basis of cichlid trophic diversity. Heredity 97: 211–221.

    Article  CAS  PubMed  Google Scholar 

  • Albertson, R. C., J. T. Streelman & T. D. Kocher, 2003. Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America 100: 5252–5257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albertson, R., J. Streelman, T. Kocher & P. Yelick, 2005. Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies. Proceedings of the National Academy of Science of the United States of America 102: 16287–16292.

    Article  CAS  Google Scholar 

  • Albertson, R. C., W. J. Cooper & K. A. Mann, 2012. More than meets the eye: functionally salient changes in internal bone architecture accompany divergence in cichlid feeding mode. International Journal of Evolutionary Biology 2012: 538146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barel, C. D. N., 1983a. Form-relations in the context of constructional morphology: the eye and suspensorium of lacustrine Cichlidae (Pisces, Teleostei). Netherlands Journal of Zoology 34: 439–502.

    Article  Google Scholar 

  • Barel, C. D. N., 1983b. Towards a constructional morphology of cichlid fishes (Teleostei, Perciformes). Netherlands Journal of Zoology 33: 357–424.

    Article  Google Scholar 

  • Chiba, S., 1999. Accelerated evolution of land snails Mandarina in the oceanic Bonin Islands: evidence from mitochondrial DNA sequences. Evolution 53: 460–471.

    Article  CAS  Google Scholar 

  • Chiba, S., 2002. Ecological diversity and speciation in land snails of the genus Mandarina from the Bonin Islands. Population Ecology 44: 0179–0187.

    Article  Google Scholar 

  • Chiba, S., 2004. Ecological and morphological patterns in communities of land snails of the genus Mandarina from the Bonin Islands. Journal of Evolutionary Biology 17: 131–143.

    Article  PubMed  Google Scholar 

  • Cohen, A. S., M. J. Soreghan & C. A. Scholz, 1993. Estimating the age of formation of lakes; an example from Lake Tanganyika, East African Rift system. Geology 21: 511–514.

    Article  CAS  Google Scholar 

  • Cohen, A. S., M. R. Talbot, S. M. Awramik, D. L. Dettman & P. Abell, 1997. Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Geological Society of America Bulletin 109: 444–460.

    Article  CAS  Google Scholar 

  • Davison, A. & S. Chiba, 2006. Labile ecotypes accompany rapid cladogenesis in an adaptive radiation of Mandarina (Bradybaenidae) land snails. Biological Journal of the Linnean Society 88: 269–282.

    Article  Google Scholar 

  • Dinno, A., 2009. Exploring the sensitivity of Horn’s parallel analysis to the distributional form of random data. Multivariate Behavioral Research 44: 362–388.

    Article  PubMed  PubMed Central  Google Scholar 

  • Franklin, S. B., D. J. Gibson, P. A. Robertson, J. T. Pohlmann & J. S. Fralish, 1995. Parallel analysis: a method for determining significant principal components. Journal of Vegetation Science 6: 99–106.

    Article  Google Scholar 

  • Frédérich, B., L. Sorenson, F. Santini, G. J. Slater & M. E. Alfaro, 2013. Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). The American Naturalist 181: 94–113.

    Article  PubMed  Google Scholar 

  • Garland, T., A. W. Dickerman, C. M. Janis & J. A. Jones, 1993. Phylogenetic analysis of covariance by computer simulation. Systematic Biology 42: 265–292.

    Article  Google Scholar 

  • Gonzalez-Voyer, A. & N. Kolm, 2011. Rates of phenotypic evolution of ecological characters and sexual traits during the Tanganyikan cichlid adaptive radiation. Journal of Evolutionary Biology 24: 2378–2388.

    Article  CAS  PubMed  Google Scholar 

  • Hardin, G., 1960. The competitive exclusion principle. Science 131: 1292–1297.

    Article  CAS  PubMed  Google Scholar 

  • Hata, H., A. S. Tanabe, S. Yamamoto, H. Toju, M. Kohda & M. Hori, 2014. Diet disparity among sympatric herbivorous cichlids in the same ecomorphs in Lake Tanganyika: amplicon pyrosequences on algal farms and stomach contents. BMC Biology 12: 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hata, H., J. Shibata, K. Omori, M. Kohda & M. Hori, 2015. Depth segregation and diet disparity revealed by stable isotope analyses in sympatric herbivorous cichlids in Lake Tanganyika. Zoological Letters 1: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hertz, P. E., Y. Arima, A. Harrison, R. B. Huey, J. B. Losos & R. E. Glor, 2013. Asynchronous evolution of physiology and morphology in Anolis lizards. Evolution 67: 2101–2113.

    Article  PubMed  Google Scholar 

  • Hori, M., 1987. Mutualism and commensalism in a fish community in Lake Tanganyika. In Kawano, S., J. Connell & T. Hidaka (eds), Evolution and Coadaptation in Biotic Communities. University of Tokyo Press, Tokyo: 219–239.

    Google Scholar 

  • Hu, Y. & R. C. Albertson, 2014. Hedgehog signaling mediates adaptive variation in a dynamic functional system in the cichlid feeding apparatus. Proceedings of the National Academy of Sciences 111: 8530–8534.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E., 1965. The Ecological Theater and the Evolutionary Play. Yale University Press, New Haven.

    Google Scholar 

  • Kassam, D., K. Yamaoka, B. Rusuwa & M. Hori, 2007. The robustness of geometric morphometrics in testing the morphological equivalence hypothesis among cichlid species from East African Great Lakes. Biological Journal of the Linnean Society 91: 1–9.

    Article  Google Scholar 

  • Kawanabe, H., 1981. Territorial behaviour of Tropheus moorei (Osteichthyes: Cichlidae) with a preliminary consideration on the territorial forms in animals. African Study Monographs 1: 101–108.

    Google Scholar 

  • Kerschbaumer, M., P. Mitteroecker & C. Sturmbauer, 2014. Evolution of body shape in sympatric versus non-sympatric Tropheus populations of Lake Tanganyika. Heredity 112: 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353–357.

    Article  PubMed  Google Scholar 

  • Koblmüller, S., K. M. Sefc & C. Sturmbauer, 2008. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia 615: 5–20.

    Article  Google Scholar 

  • Koblmüller, S., B. Egger, C. Sturmbauer & K. M. Sefc, 2010. Rapid radiation, ancient incomplete lineage sorting and ancient hybridization in the endemic Lake Tanganyika cichlid tribe Tropheini. Molecular Phylogenetics and Evolution 55: 318–334.

    Article  PubMed  Google Scholar 

  • Kohda, M., 1991. Intra- and interspecific social organization among three herbivorous cichlid fishes in Lake Tanganyika. Japanese Journal of Ichthyology 38: 147–163.

    Google Scholar 

  • Kohda, M., 1995. Territoriality of male cichlid fishes in Lake Tanganyika. Ecology of Freshwater Fish 4: 180–184.

    Article  Google Scholar 

  • Kohda, M., 1998. Coexistence of permanently territorial cichlids of the genus Petrochromis through male-mating attack. Environmental Biology of Fishes 52: 231–242.

    Article  Google Scholar 

  • Kohda, M. & Y. Takemon, 1996. Group foraging by the herbivorous cichlid fish, Petrochromis fasciolatus, in Lake Tanganyika. Ichthyological Research 43: 55–63.

    Article  Google Scholar 

  • Kohda, M. & K. Tanida, 1996. Overlapping territory of the benthophagous cichlid fish, Lobochilotes labiatus, in Lake Tanganyika. Environmental Biology of Fishes 45: 13–20.

    Article  Google Scholar 

  • Kohda, M., Y. Yanagisawa, T. Sato, K. Nakaya, Y. Niimura, K. Matsumoto & H. Ochi, 1996. Geographical colour variation in cichlid fishes at the southern end of Lake Tanganyika. Environmental Biology of Fishes 45: 237–248.

    Article  Google Scholar 

  • Kotrschal, A., G. Heckel, D. Bonfils & B. Taborsky, 2012. Life-stage specific environments in a cichlid fish: implications for inducible maternal effects. Evolutionary Ecology 26: 123–137.

    Article  Google Scholar 

  • Kramer, D. L. & M. J. Bryant, 1995. Intestine length in the fishes of a tropical stream: 1. Ontogenetic allometry. Environmental Biology of Fishes 42: 115–127.

    Article  Google Scholar 

  • Kuwamura, T., 1992. Overlapping territories of Psedosimochromis curvifrons males and other herbivorous cichlid fishes in Lake Tanganyika. Ecological Research 7: 43–53.

    Article  Google Scholar 

  • Losos, J. B., 2009. Lizard in an Evolutionary Tree: Ecology and Adaptive Radiation of Anolis. University of California Press, California.

    Google Scholar 

  • Losos, J. B., T. R. Jackman, A. Larson, K. de Queiroz & L. Rodríguez-Schettino, 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279: 2115–2118.

    Article  CAS  PubMed  Google Scholar 

  • Mbomba, N. B., 1983. Comparative morphology of the feeding apparatus in cichlidian algal feeders of Lake Tanganyika. African Study Monographs 3: 1–23.

    Google Scholar 

  • Muschick, M., A. Indermaur & W. Salzburger, 2012. Convergent evolution within an adaptive radiation of cichlid fishes. Current Biology 22: 2362–2368.

    Article  CAS  PubMed  Google Scholar 

  • Muschick, M., P. Nosil, M. Roesti, M. T. Dittmann, L. Harmon & W. Salzburger, 2014. Testing the stages model in the adaptive radiation of cichlid fishes in East African Lake Tanganyika. Proceedings of the Royal Society B: Biological Sciences 281: 20140605.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochi, H., 1993a. Maintenance of separate territories for mating and feeding by males of a maternal mouthbrooding cichlid, Gnathochromis pfefferi in Lake Tanganyika. Japanese Journal of Ichthyology 40: 173–182.

    Google Scholar 

  • Ochi, H., 1993b. Mate monopolization by a dominant male in a multi-male social group of a mouthbrooding cichlid, Ctenochromis horei. Japanese Journal of Ichthyology 40: 209–218.

    Google Scholar 

  • Ochi, H., T. Takeyama & Y. Yanagisawa, 2009. Increased energy investment in testes following territory acquisition in a maternal mouthbrooding cichlid. Ichthyological Research 56: 227–231.

    Article  Google Scholar 

  • Otten, E. 1983a. Vision and jaw mechanism during growth of the cichlid fish Haplochromis elegans: changes and functional implications. Ph.D. Thesis, University of Leiden.

  • Otten, E., 1983b. The jaw mechanism during growth of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae). Netherlands Journal of Zoology 33: 55–98.

    Article  Google Scholar 

  • Parsons, K., Y. Son & R. C. Albertson, 2011. Hybridization promotes evolvability in African cichlids: connections between transgressive segregation and phenotypic integration. Evolutionary Biology 38: 306–315.

    Article  Google Scholar 

  • Poll, M., 1986. Classification des Cichlidae du lac Tanganika. Tribus genres et espèces. Academic Royale de Belgigue-Memoires de la Classe des Sciences 45: 1–163.

    Google Scholar 

  • Postl, L., J. Herler, C. Bauer, M. Maderbacher, L. Makasa & C. Sturmbauer, 2008. Geometric morphometrics applied to viscerocranial bones in three populations of the Lake Tanganyika cichlid fish Tropheus moorii. Journal of Zoological Systematics and Evolutionary Research 46: 240–248.

    Article  Google Scholar 

  • R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

  • Rohlf, F. J. 2009. tpsUtil, version 1.60. Geometric Morphometric Softwere for the PC. http://life.bio.sunysb.edu/morph/soft-utility.html.

  • Rohlf, F. J. 2010. tpsDIG2, version 2.17. Geometric Morphometric Software for the PC. http://life.bio.sunysb.edu/morph/soft-dataacq.html.

  • Rohlf, F. J. & L. F. Marcus, 1993. A revolution morphometrics. Trends in Ecology & Evolution 8: 129–132.

    Article  Google Scholar 

  • Rohlf, F. J. & D. Slice, 1990. Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Biology 39: 40–59.

    Google Scholar 

  • Rossiter, A., 1995. The cichlid fish assemblages of Lake Tanganyika: ecology, behaviour and evolution of its species flocks. Advances in Ecological Research 26: 187–252.

    Article  Google Scholar 

  • Salzburger, W., 2009. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Molecular Ecology 18: 169–185.

    Article  PubMed  Google Scholar 

  • Salzburger, W., A. Meyer, S. Baric, E. Verheyen & C. Sturmbauer, 2002. Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the Central and East African haplochromine cichlid fish faunas. Systematic Biology 51: 113–135.

    Article  PubMed  Google Scholar 

  • Sanderson, M. J. & M. J. Donoghue, 1994. Shifts in diversification rate with the origin of angiosperms. Science 264: 1590–1593.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2006. Self-organized similarity, the evolutionary emergence of groups of similar species. Proceedings of the National Academy of Sciences 103: 6230–6235.

    Article  CAS  Google Scholar 

  • Simpson, G., 1953. The Major Features of Evolution. Columbia University Press, New York.

    Google Scholar 

  • Snoeks, J., 2000. How well known is the ichthyodiversity of the large East African lakes? Advances in Ecological Research 31: 17–38.

    Article  Google Scholar 

  • Steenberge, M., M. M. Vanhove, F. Breman & J. Snoeks, 2013. Complex geographical variation patterns in Tropheus duboisi Marlier, 1959 (Perciformes, Cichlidae) from Lake Tanganyika. Hydrobiologia 748: 39–60.

    Article  Google Scholar 

  • Streelman, J. T. & P. D. Danley, 2003. The stages of vertebrate evolutionary radiation. Trends in Ecology & Evolution 18: 126–131.

    Article  Google Scholar 

  • Takahashi, T., 2003. Systematics of Tanganyikan cichlid fishes (Teleostei: Perciformes). Ichthyological Research 50: 367–382.

    Article  Google Scholar 

  • Takahashi, T. & S. Koblmüller, 2014. A new species of Petrochromis (Perciformes: Cichlidae) from Lake Tanganyika. Ichthyological Research 61: 252–264.

    Article  Google Scholar 

  • Takamura, K., 1984. Interspecific relationships of aufwuchs-eating fishes in Lake Tanganyika. Environmental Biology of Fishes 10: 225–241.

    Article  Google Scholar 

  • Takeuchi, Y., H. Ochi, M. Kohda, D. Sinyinza & M. Hori, 2010. A 20-year census of a rocky littoral fish community in Lake Tanganyika. Ecology of Freshwater Fish 19: 239–248.

    Article  Google Scholar 

  • Tiercelin, J. & A. Mondeguer, 1991. The geology of the Tanganyika trough. In Coulter, G. (ed.), Lake Tanganyika and Its Life. Oxford University Press, Oxford: 7–48.

    Google Scholar 

  • Wagner, C. E., P. B. McIntyre, K. S. Buels, D. M. Gilbert & E. Michel, 2009. Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Functional Ecology 23: 1122–1131.

    Article  Google Scholar 

  • Waltzek, T. B. & P. C. Wainwright, 2003. Functional morphology of extreme jaw protrusion in Neotropical cichlids. Journal of Morphology 257: 96–106.

    Article  PubMed  Google Scholar 

  • Wanek, K. A. & C. Sturmbauer, 2015. Form, function and phylogeny: comparative morphometrics of Lake Tanganyika’s cichlid tribe Tropheini. Zoologica Scripta 44: 362–373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Webster, M. & H. D. Sheets, 2010. A practical introduction to landmark-based geometric morphometrics. The Paleontological Society Papers 16: 163–188.

    Google Scholar 

  • Williams, E. E., 1972. The origin of faunas. evolution of lizard congeners in a complex island fauna: a trial analysis. Evolutionary Biology 4: 47–89.

    Article  CAS  Google Scholar 

  • Yamaoka, K., 1982. Morphology and feeding behaviour of five species of genus Petrochromis (Teleostei, Cichlidae). Physiology and Ecology Japan 19: 57–75.

    Google Scholar 

  • Yamaoka, K., 1983a. Feeding behaviour and dental morphology of algae scraping cichlids (Pisces: Teleostei) in Lake Tanganyika. African Study Monographs 4: 77–89.

    Google Scholar 

  • Yamaoka, K., 1983b. A revision of the cichlid fish genus Petrochromis from Lake Tanganyika, with description of a new species. Japanese Journal of Ichthyology 30: 129–141.

    Google Scholar 

  • Yamaoka, K., 1985. Intestinal coiling pattern in the epilithic algal-feeding cichlids (Pisces, Teleostei) of Lake Tanganyika, and its phylogenetic significance. Zoological Journal of the Linnean Society 84: 235–261.

    Article  Google Scholar 

  • Yamaoka, K., 1987. Comparative osteology of the jaw of algal-feeding cichlids (Pisces, Teleostei) from Lake Tanganyika. Reports of the USA Marine Biological Institute, Kochi University 9: 87–137.

    Google Scholar 

  • Yamaoka, K., M. Hori & T. Kuwamura, 1998. Interochromis, a new genus of the Tanganyikan cichlid fish. South African Journal of Science 94: 381–386.

    Google Scholar 

  • Yuma, M., 1994. Food habits and foraging behaviour of benthivorous cichlid fishes in Lake Tanganyika. Environmental Biology of Fishes 39: 173–182.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Maneno Team (Tanganyika Research Project Team) and staffs of Lake Tanganyika Research Unit, Mpulungu, Zambia, for their support. We also thank the organizers of the special issue, two anonymous referees for valuable comments.

Funding

This study was supported by JSPS KAKENHI Grant Numbers (Nos. 25840159, 15H05230, 15H02420 for HH, No. 25304017 for MH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Hata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Guest editors: S. Koblmüller, R. C. Albertson, M. J. Genner, K. M. Sefc & T. Takahashi / Advances in Cichlid Research II: Behavior, Ecology and Evolutionary Biology

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2016_2761_MOESM1_ESM.tif

Fig. S1 The best Maximum Likelihood tree of Tropheini cichlids on the complete ND2 gene and the mitochondrial control region. Values on the branch are ML bootstrap percentages (only >60 shown). Codes in parentheses after fish name indicate accession numbers in GenBank (ND2, control region) (TIFF 1316 kb)

10750_2016_2761_MOESM2_ESM.eps

Fig. S2 Scatter plot of PC1 and PC2 from principle component analysis of body shape with semi-landmarks of 15 Tropheini species (A). Variations in shape that correspond to PC1 and PC2 are shown in (B) as deformation grids and vectors. The blue lines in (B) show shape changes following the plot shift in (A) with 0.1 unit in the positive PC direction. Red, black, blue, and green indicate grazers, browsers, suckers, and pickers, respectively. Species abbreviations are shown in Table 1 (EPS 1266 kb)

10750_2016_2761_MOESM3_ESM.eps

Fig. S3 Scatter plot of PC1 and PC2 from principle component analysis of the premaxilla of 15 Tropheini species (A). Variations in shape that correspond to PC1 and PC2 are shown in (B) as deformation grids and vectors. The blue lines in (B) show shape changes following the plot shift in (A) with 0.1 unit in the positive PC direction. Red, black, blue, and green indicate grazers, browsers, suckers, and pickers, respectively. Species abbreviations are shown in Table 1 (EPS 1158 kb)

10750_2016_2761_MOESM4_ESM.eps

Fig. S4 Scatter plot of PC1 and PC2 from principle component analysis of the lateral side of the mandible of 15 Tropheini species (A). Variations in shape that correspond to PC1 and PC2 are shown in (B) as deformation grids and vectors. The blue lines in (B) show shape changes following plot shift in (A) with 0.1 unit in the positive PC direction. Red, black, blue, and green indicate grazers, browsers, suckers, and pickers, respectively. Species abbreviations are shown in Table 1 (EPS 1147 kb)

10750_2016_2761_MOESM5_ESM.eps

Fig. S5 Scatter plot of PC1 and PC2 from principle component analysis of the occlusal facet of 15 Tropheini species (A). Variations in shape that correspond to PC1 and PC2 are shown in (B) as deformation grids and vectors. The blue lines in (B) show shape changes following plot shift in (A) with 0.1 unit in the positive PC direction. Red, black, blue, and green indicate grazers, browsers, suckers, and pickers, respectively. Species abbreviations are shown in Table 1 (EPS 1142 kb)

Supplementary tables (DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tada, S., Hori, M., Yamaoka, K. et al. Diversification of functional morphology in herbivorous cichlids (Perciformes: Cichlidae) of the tribe Tropheini in Lake Tanganyika. Hydrobiologia 791, 83–101 (2017). https://doi.org/10.1007/s10750-016-2761-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2761-3

Keywords

Navigation