Skip to main content
Log in

Summer stream temperature metrics for predicting brook trout (Salvelinus fontinalis) distribution in streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We developed a methodology to predict brook trout (Salvelinus fontinalis) distribution using summer temperature metrics as predictor variables. Our analysis used long-term fish and hourly water temperature data from the Dog River, Vermont (USA). Commonly used metrics (e.g., mean, maximum, maximum 7-day maximum) tend to smooth the data so information on temperature variation is lost. Therefore, we developed a new set of metrics (called event metrics) to capture temperature variation by describing the frequency, area, duration, and magnitude of events that exceeded a user-defined temperature threshold. We used 16, 18, 20, and 22°C. We built linear discriminant models and tested and compared the event metrics against the commonly used metrics. Correct classification of the observations was 66% with event metrics and 87% with commonly used metrics. However, combined event and commonly used metrics correctly classified 92%. Of the four individual temperature thresholds, it was difficult to assess which threshold had the “best” accuracy. The 16°C threshold had slightly fewer misclassifications; however, the 20°C threshold had the fewest extreme misclassifications. Our method leveraged the volumes of existing long-term data and provided a simple, systematic, and adaptable framework for monitoring changes in fish distribution, specifically in the case of irregular, extreme temperature events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baird, O. E. & C. C. Krueger, 2003. Behavioral thermoregulation of brook and rainbow trout: comparison of summer habitat use in an Adirondack river, New York. Transactions of the American Fisheries Society 132: 1194–1206.

    Article  Google Scholar 

  • Bevelhimer, M. & W. Bennett, 2000. Assessing cumulative thermal stress in fish during chronic intermittent exposure to high temperatures. Environmental Science & Policy 3: 211–216.

    Article  Google Scholar 

  • Butryn, R. S., 2010. Summer stream temperature as an indicator of coldwater fish distribution. Master’s thesis, University of Vermont, Burlington, VT.

  • Carle, F. L. & M. R. Strub, 1978. A new method for estimating population size from removal data. Biometrics 34: 621–630.

    Article  Google Scholar 

  • Eaton, J. G., J. H. McCormick, B. E. Goodno, D. G. O’Brien, H. G. Stefany, M. Hondzo & R. M. Scheller, 1995. A field information-based system for estimating fish temperature tolerances. Fisheries 20(4): 10–18.

    Article  Google Scholar 

  • Fausch, K. D., 1988. Tests of competition between native and introduced salmonids in streams – what have we learned. Canadian Journal of Fisheries and Aquatic Sciences 45: 2238–2246.

    Article  Google Scholar 

  • Feldhaus, J. W., S. A. Heppell, M. G. Mesa & H. Li, 2008. Hepatic heat shock protein 70 and plasma cortisol levels in rainbow trout after tagging with a passive integrated transponder. Transactions of the American Fisheries Society 137: 690–695.

    Article  CAS  Google Scholar 

  • Fry, F. E. J., J. S. Hart & K. F. Walker, 1946. Lethal temperature relations for a sample of young speckled trout, Salvelinus fontinalis. University of Toronto Studies, Biological Series 54(66): 9–35.

    Google Scholar 

  • Gamperl, A. K. & A. P. Farrell, 2004. Cardiac plasticity in fishes: environmental influences and intraspecific differences. Journal of Experimental Biology 207: 2539–2550.

    Article  PubMed  CAS  Google Scholar 

  • Hollander, M. & D. A. Wolfe, 1979. Nonparametric statistical methods. Wiley, New York.

    Google Scholar 

  • Iwama, G. K., P. Thomas, R. H. B. Forsyth & M. M. Vijayan, 1998. Heat shock protein expression in fish. Reviews in Fish Biology and Fisheries 8: 35–56.

    Article  Google Scholar 

  • Kaushal, S. S., G. E. Likens, N. A. Jaworski, M. L. Pace, A. M. Sides, D. Seekall, K. T. Belt, D. H. Secor & R. L. Wingate, 2010. Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment 8: 461–466.

    Article  Google Scholar 

  • Lund, S. G., D. Caissie, R. A. Cunjak, M. M. Vijayan & B. L. Tufts, 2002. The effects of environmental heat stress on heat-shock mRNA and protein expression in Miramichi Atlantic salmon (Salmo salar) parr. Canadian Journal of Fisheries and Aquatic Sciences 59: 1553–1562.

    Article  CAS  Google Scholar 

  • Lund, S. G., M. E. A. Lund & B. L. Tufts, 2003. Red blood cell Hsp 70 mRNA and protein as bioindicators of temperature stress in the brook trout (Salvelinus fontinalis). Canadian Journal of Fisheries and Aquatic Sciences 60: 460–470.

    Article  CAS  Google Scholar 

  • Lutterschmidt, W. I. & V. H. Hutchison, 1997. The critical thermal maximum: history and critique. Canadian Journal of Zoology 75: 1561–1574.

    Article  Google Scholar 

  • MacMartin, J. M., 1962. Statewide stream survey by watersheds. Vermont Department of Fish and Wildlife, Waterbury, VT.

    Google Scholar 

  • Magoulick, D. D. & M. A. Wilzbach, 1998. Effect of temperature and macrohabitat on interspecific aggression, foraging success, and growth of brook trout and rainbow trout pairs in laboratory streams. Transactions of the American Fisheries Society 127: 708–717.

    Article  Google Scholar 

  • Mather, M. E., D. L. Parrish, C. A. Campbell, J. R. McMenemy & J. M. Smith, 2008. Summer temperature variation and implications for juvenile Atlantic salmon. Hydrobiologia 603: 183–196.

    Article  Google Scholar 

  • McCormick, J. H., K. E. Hokanson & B. R. Jones, 1972. Effects of temperature on growth and survival of young brook trout, Salvelinus fontinalis. Journal of the Fisheries Research Board of Canada 29: 1107–1112.

    Article  Google Scholar 

  • McCullough, D. A., J. M. Bartholow, H. I. Jager, R. L. Beschta, E. F. Cheslak, M. L. Deas, J. L. Ebersole, J. S. Foott, S. L. Johnson, K. R. Marine, M. G. Mesa, J. H. Petersen, Y. Souchon, K. F. Tiffan & W. A. Wurtsbaugh, 2009. Research in thermal biology: burning questions for coldwater stream fishes. Reviews in Fisheries Science 17: 90–115.

    Article  Google Scholar 

  • McKenna, J. E., R. S. Butryn & R. P. McDonald, 2010. Summer stream water temperature models for Great Lakes streams: New York. Transactions of the American Fisheries Society 139: 1399–1414.

    Article  Google Scholar 

  • McMenemy, J. R., 1995. Survival of Atlantic salmon fry stocked at low density in the West River, Vermont. North American Journal of Fisheries Management 15: 366–374.

    Article  Google Scholar 

  • Milner, N. J., J. M. Elliott, J. D. Armstrong, R. Gardiner, J. S. Welton & M. Ladle, 2003. The natural control of salmon and trout populations in streams. Fisheries Research 62: 111–125.

    Article  Google Scholar 

  • Nelitz, M. A., E. A. MacIsaac & R. M. Peterman, 2007. A science-based approach for identifying temperature-sensitive streams for rainbow trout. North American Journal of Fisheries Management 27: 405–424.

    Article  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry: the principles and practice of statistics in biological research, 3rd ed. W. H. Freeman and Co., New York.

    Google Scholar 

  • Stager, C. & M. Thill, 2010. Climate change in the Champlain Basin: what natural resource managers can expect and do. The Nature Conservancy, Adirondack Chapter, Keene Valley, NY.

    Google Scholar 

  • Strange, R. J. & J. W. Habera, 1998. No net loss of brook trout distribution in areas of sympatry with rainbow trout in Tennessee streams. Transactions of the American Fisheries Society 127: 434–440.

    Article  Google Scholar 

  • Stranko, S. A., R. H. Hilderbrand, R. P. Morgan, M. W. Staley, A. J. Becker, A. Roseberry-Lincoln, E. S. Perry & P. T. Jacobson, 2008. Brook trout declines with land cover and temperature changes in Maryland. North American Journal of Fisheries Management 28: 1223–1232.

    Article  Google Scholar 

  • Taniguchi, Y., F. J. Rahel, D. C. Novinger & K. G. Gerow, 1998. Temperature mediation of competitive interactions among three fish species that replace each other along longitudinal stream gradients. Canadian Journal of Fisheries and Aquatic Sciences 55: 1894–1901.

    Article  Google Scholar 

  • Wenger, S. J., D. J. Isaak, C. H. Luce, H. M. Neville, K. D. Fausch, J. B. Dunham, D. C. Dauwalter, M. K. Young, M. M. Elsner, B. E. Rieman, A. F. Hamlet & J. E. Williams, 2011. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences 108: 14175–14180.

    Article  CAS  Google Scholar 

  • Wehrly, K. E., L. Wang & M. Mitro, 2007. Field-Based estimates of thermal tolerance limits for trout: incorporating exposure time and temperature fluctuation. Transactions of the American Fisheries Society 136: 365–374.

    Article  Google Scholar 

  • Wehrly, K. E., M. J. Wiley & P. W. Seelbach, 2003. Classifying regional variation in thermal regime based on stream fish community patterns. Transactions of the American Fisheries Society 132: 18–38.

    Article  Google Scholar 

  • Weigel, D. E. & P. W. Sorensen, 2001. The influence of habitat characteristics on the longitudinal distribution of brook, brown, and rainbow trout in a small midwestern stream. Journal of Freshwater Ecology 16: 599–613.

    Article  Google Scholar 

  • Xu, C., B. H. Letcher & K. H. Nislow, 2010. Context-specific influence of water temperature on brook trout growth rates in the field. Freshwater Biology 55: 2253–2264.

    Google Scholar 

Download references

Acknowledgements

We thank Rod Wentworth for his work on developing and supporting this project and all the VTFW biologists who contributed fish and temperature data, especially Rich Kirn. Ted Ortiz y Pino, Karen Sentoff, Jo Krupa, and Richard Balouskus provided valuable assistance in the field and with data preparation. Al Zale and Martha Mather provided reviews of an earlier version and we appreciate the anonymous reviews that greatly improved this manuscript. Use of brand names does not constitute endorsement by the U.S. federal government. This study was funded by Vermont Fish and Wildlife from the State Wildlife Grants (SWG) program. The Vermont Cooperative Fish and Wildlife Research Unit is jointly supported by the U.S. Geological Survey, Vermont Department of Fish and Wildlife, University of Vermont, and the Wildlife Management Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Parrish.

Additional information

Handling editor: M. Power

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butryn, R.S., Parrish, D.L. & Rizzo, D.M. Summer stream temperature metrics for predicting brook trout (Salvelinus fontinalis) distribution in streams. Hydrobiologia 703, 47–57 (2013). https://doi.org/10.1007/s10750-012-1336-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1336-1

Keywords

Navigation