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Abstract Quantitative myocardial and blood T1 have recent-
ly achieved clinical utility in numerous pathologies, as they
provide non-invasive tissue characterization with the potential
to replace invasive biopsy. Native T1 time (no contrast agent),
changes with myocardial extracellular water (edema, focal or
diffuse fibrosis), fat, iron, and amyloid protein content. After
contrast, the extracellular volume fraction (ECV) estimates the
size of the extracellular space and identifies interstitial disease.
Spatially resolved quantification of these biomarkers (so-
called T1 mapping and ECV mapping) are steadily becoming
diagnostic and prognostically useful tests for several heart
muscle diseases, influencing clinical decision-making with a
pending second consensus statement due mid-2017. This re-
view outlines the physics involved in estimating T1 times and

summarizes the disease-specific clinical and research impacts
of T1 and ECV to date. We conclude by highlighting some of
the remaining challenges such as their community-wide deliv-
ery, quality control, and standardization for clinical practice.

Keywords T1mapping . Extracellular volume .Myocardial
disease

Introduction

In magnetic resonance imaging, the longitudinal (spin-lattice)
relaxation time (T1) is a fundamental tissue property, now
measurable in the myocardium using cardiac T1 mapping se-
quences. Cardiovascular magnetic resonance (CMR) research
data accrued in both animals and humans convincingly dem-
onstrate that native T1, in the absence of gadolinium-based
contrast agents (GBCA), lengthens with interstitial expansion
caused by edema, infarction, amyloid infiltration, and fibrosis
[1]. Conversely, native T1 shortens in the presence of fat and
iron accumulation. The left ventricular (LV)myocardial native
T1 signal, from a single region of interest on a T1 map, could
therefore serve as a simple, on-the-fly, non-invasive discrim-
inator of heart muscle health and disease.

T1-weighted signal also forms the basis of the late gadolin-
ium enhancement (LGE) imaging technique. This technique
was the most disruptive tissue characterization method. LGE
can quantify focal scar and fibrosis in both ischemic and non-
ischemic cardiomyopathies. It works by the principle that
scarred tissue passively accumulates more GBCA which
shortens its T1 compared to adjacent normal healthy myocar-
dium, and this is visible with a particular imaging sequence
(inversion recovery) [2]. T1 mapping adds to this. It has
evolved from T1-weighted imaging, to native T1 measurement
alone, to post-GBCAT1 measurement in isolation, or through
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the partition coefficient to measurement of the extracellular
volume (ECV) [3]. The latter is when T1 is measured before
and after GBCA using a correction for the hematocrit (mea-
sured separately or in-line automated) [4, 5]. Native T1 and
ECV permit earlier diagnosis and quantitative assessment of
focal as well as diffuse myocardial disease (Fig. 1). T1 map-
ping by CMR describes the pixel-wise quantification of the
spin-lattice relaxation time in order to provide a quantitative
tissue characterization that is commonly viewed as a color-
coded map of the heart. T1 maps are most commonly derived
from a series of T1-weighted images, sampling the T1 recov-
ery curve after one or more initial preparation pulses.

This review outlines the basic physics of T1 mapping and
discusses disease-specific clinical and research impacts of T1

and ECV to date. We conclude by highlighting the challenges
of community-wide delivery, quality control, and standardiza-
tion in clinical practice.

Essential physics and evolution of T1 mapping
sequences

Broadly, T1 mapping sequences have three parts: (1) the T1

magnetization preparation pulse, (2) a single image acquisi-
tion (readout) after a variable delay, and (3) variable repeti-
tions of (1) and (2) to sample the longitudinal magnetization
recovery curve after the magnetization preparation. Raw im-
ages are then reconstructed by post-processing into a single T1

map using a theoretical model of the expected signal intensity
[3] and with the help of various refinements such as respira-
tory motion compensation (Table 1 and Fig. 2).

A T1 map is a two-dimensional (usually brightly colored)
slice image where each image pixel displays the T1 relaxation
time (ms) using a color look-up table to facilitate visual as-
sessment [17]. Imaging at identical time points of the cardiac
cycle is needed to yield co-registered images for curve-fitting
and spatially resolved quantification of T1 [6]. Earlier T1 mea-
surement approaches did not do this and became obsolete
[18].When combining raw images, some errors may therefore
stem from RR-interval variability (arrhythmia, mistriggering),
through-plane cardiac motion that is a normal part of longitu-
dinal cardiac function, and diaphragmatic motion due to res-
piration. Automated non-rigid registration algorithms can cor-
rect for the position of source images to avoid some of this
[19, 20]. Acquisition recommendations are now made to min-
imize other potential sources of errors in sequences and scan
planning. For example, operators must aim tominimize partial
volume effects by optimal slice orientation relative to the tis-
sue, which is preferably orthogonal to the imaging plane to
minimize obliquity. Proper adjustment of the shim volume
and center frequency should be ensured to minimize off reso-
nance artifacts [21]. A typical scan protocol is provided in the
2013 SCMR consensus statement [18].

T1 mapping is complex as different approaches are taken
with different names. The original Look-Locker sequence de-
veloped in the 1970s [22] applied multiple inversion recovery
pulses with different times-to-inversion, generating 20 distinct
T1-weighted images. The inversion pulse inverted the net
magnetization by 180° and was followed by multiple readout
pulses interspersed with longitudinal magnetization recovery
periods. However, as the relaxation curve was repeatedly
perturbed by radiofrequency (RF) pulses of the imaging read-
out, an Bapparent^ T1 (T1*) was assessed and it required fur-
ther correction for relaxation time measurement [23, 24]. The
original Look-Locker was impractical for generating T1 maps,
as acquisition, lasting 20 min, spanned multiple phases of the
cardiac cycle [22]. Use of a new single-shot balanced steady-
state free precession (SSFP) readout during diastole [25] per-
mitted better signal-to-noise ratio and efficiency, intrinsic flow
compensation [3], and consequently the development of the
firstMOdified Look-Locker Inversion Recovery (MOLLI) [6]
approach in a single breath-hold of 17 heartbeats [26]. New
MOLLI variants manipulate the prepulses and pauses between
them. For example, the original MOLLIs used a 3(3b)3(3b)5
protocol, with numbers outside of parentheses indicating the
number of images acquired after each magnetization prepara-
tion pulse, and numbers in parentheses indicating the length of
the pause separating image acquisition and any subsequent
magnetization preparation pulse, defined either in terms of
number of recovery beats (b) or number of seconds (s).
MOLLI’s bSSFP readout also estimates an Bapparent^ T1

(T1*) which is influenced by imaging RF pulses, so a Look-
Locker correction is still needed to correct for it and deliver a
more accurate T1 estimate [25]. Later versions, like the 5(3 s)3
variant [11], which shifts the bulk of image acquisition to the
Bbeginning,^ allow more time for recovery of longitudinal
magnetization. Counting rest periods in seconds instead of
recovery beats makes sequences more heart rate independent.
Another approach, Shortened MOLLI [8] (ShMOLLI), uses a
5(1b)1(1b)1 scheme to acquire images over nine heartbeats
making it more suitable for breathless patients [25]. The resul-
tant dataset is however sparser and the one-beat pauses are
insufficient to maintain compatibility with the theoretical
model used in subsequent T1 estimation, for large T1 values
[3]. ShMOLLI, therefore, employs a conditional fitting algo-
rithm that includes the final two image acquisitions in the
curve fitting routine only when the T1 estimate tends toward
a smaller value [3]. The same Look-Locker correction as for
MOLLI is applied. SAturation Recovery Single SHot
Acquisition [11] (SASHA) uses a saturation recovery instead
of an inversion recovery preparation. Dephasing the whole
imaging volume leads to depletion of the entire magnetization,
alleviating the need for any rest periods. Because only one
image is acquired after each magnetization preparation, the
Look-Locker correction is not required and T1 can be estimat-
ed directly from pixel-wise curve fitting [3]. Unlike MOLLI,
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SASHA does not demonstrate heart rate dependence [26], but
it can be less precise on account of the reduced dynamic range
(90° vs. 180°). SASHA acquires 10 images in 10 heartbeats
with the initial image lacking a saturation preparation [11].
SAturation Pulse Prepared Heart-Rate Independent Inversion
REcovery Sequence (SAPPHIRE) uses a hybrid combination
of both inversion and saturation pulses that increases the dy-
namic range (a hybrid of MOLLI and SASHA, trying to get
the best of both). Additional comparator sequences are elabo-
rated in Table 1.

Biological basis of ECV

The myocardium can be considered as two main compart-
ments: the Bintracellular cellular volume^ (ICV, 1 − ECV),
dominated by myocytes but also including all other cells (fi-
broblasts, circulating red blood cells, etc.); and the
Bextracellular volume,^ dominated water associated with the
extracellular matrix but also including the intracapillary plas-
ma volume [18]. The normal myocardial ECV value is around
25.3 ± 3.5% in health [27]. This is much higher than, for

Fig. 1 Summary of myocardial
biological changes inferred by T1
mapping technologies.
↑ = significant increase;
↓ = significant decrease; − = no
significant change; X = no data
available. ECV extracellular
volume, AL Amyloid amyloid
light chain, TTR amyloidosis
transthyretin amyloidosis
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example, skeletal muscle, where the ECV may be 10%—
myocardium has a lot more collagen (Tables 2 and 3).
Various pathophysiological processes alter the ECV and
ICV. We now know that athletic adaptation inducing left
ventricular hypertrophy reduces the myocardial ECV,
meaning that cellular hypertrophy is outweighing fibrosis
increases [40]. The ECV may increase with fibrosis, ede-
ma, or other protein deposition (amyloid) [46]—or a
combination [47]. However, increased capillary density

or vasodilatation would also increase ECV, although to
a smaller extent [48]. Therefore, ECV changes in isola-
tion require interpretation.

Mathematical derivation of the ECV (Eq. 1) relies on (1) a
number of assumptions (including the fast-exchange limit as
reviewed elsewhere) [3], (2) measurement of the partition co-
efficient (the bold right half of Eq. 1, also known asλ), and (3)
the patient’s hematocrit (Hct) representing the cellular fraction
of blood [2].

ECV ¼ 1−Hctð Þ �
1

T1 myocardium post−GBCA
−

1

T1 myocardium native
1

T1 blood post−GBCA
−

1

T1 blood native

0
BB@

1
CCA

9>>=
>>;

λ ð1Þ

T1 mapping and ECV in selected high signal diseases

Lipid storage disease

Fabry disease (FD) is an intracellular lysosomal storage disease
caused by the accumulation of globotriaosylceramide in tissues
due to a deficiency in the enzyme α-galactosidase A [49].
Cardiac involvement causes concentric LVH, arrhythmias, and
heart failure, and it is the major cause of mortality [50]. This lipid
(in classic lamellar bodies) probably causes the nativemyocardial
T1 to be low, and the result is that T1 mapping can reliably
differentiate between FD, other forms of LVH, and healthy con-
trols [51]. T1 lowering is seen in 50–60% of subjects before LVH
(Fig. 3c), so it is a biomarker of early cardiac involvement [51],
correlating with reduced global longitudinal strain by echocardi-
ography [33]. Because ECV primarily reflects extracellular inter-
stitial disease, it misses the intracellular lysosomal storage, but
there may be future roles for late phenotype development as
diffuse fibrosis starts [41]. In the infero-lateral wall, where FD
has LGE, segmental T1 and T2 elevation may occur (where the
pseudo-normalized or elevated T1 is likely due to the effects of
replacement fibrosis dominating the fatty-related T1 decrease)
and these correlate with blood troponin suggesting that chronic
inflammation may be contributing [52]. Enzyme replacement
therapy (ERT) for FDmay bemost beneficial if started sufficient-
ly early, before the establishment of permanent changes [53], but
ERT is expensive and early initiation carries societal implica-
tions. T1 mapping, capable of detecting early cardiac involve-
ment in FD, could therefore have a major role in guiding timing
of commencement of ERT and drug monitoring [33].

Myocarditis

Myocardial inflammation is a key step in the development of
multiple cardiac diseases. CMR tissue characterization has

major potential in its diagnosis. The 2009 BLake Louise^
myocarditis criteria, drafted before mapping was widespread,
require the presence of two out of the following three findings:
increased myocardial edema by T2-weighted imaging, non-
ischemic mid-wall LGE, and hyperemia/capillary leak on ear-
ly gadolinium enhancement imaging [54]. These are known to
be insensitive [55]. Mapping helps. Combining ECV (ECV
cut-off ≥27%) with LGE data significantly improves the diag-
nostic accuracy (90% compared with 79% [54]), and normal
ECV has been shown to rule out myocardial damage with a
high degree of certainty [56]. Native T1 detects both intracel-
lular and diffuse myocardial change (Fig. 3b), so it has a role
in grading the severity and stage of myocardial inflammation
[35, 57]. The MyoRacer trial suggests that the most useful
imaging tools for confirming or refuting a diagnosis of acute
myocarditis are native T1 mapping, followed by T2 mapping,
ECV, and Lake Louise criteria in this descending order. By
contrast, only T2 mapping showed diagnostic utility in chronic
myocarditis [58]. A multiparametric CMR approach toward
myocarditis is envisaged: one which exploits T1 mapping and
ECVas well as T2 mapping, T2-weighted imaging, early gad-
olinium enhancement, LGE, and Lake Louise criteria to quan-
tifying the extent of inflammation and distinguish between
acute and chronic myocardial injury [59].

Myocardial infarction

Acute and chronic infarct imaging is done by standard LGE
techniques, but T1 mapping and ECV provide complementary
information, both diagnostically and prognostically. In acute
myocardial infarction (MI), myocardial edema elevates the
native T1 signal and the ECV. Native T1 in the infarct core
can predict 6-month post-ST-elevation myocardial infarction
(STEMI) mortality even after adjustment for LVejection frac-
tion [60], and in the remote myocardium, native T1 is
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Table 2 Typical ranges of native myocardial T1 in myocardial disease

Condition Native T1
a

[T; sequence; n]
Z valueb Reference

Aortic stenosis 1191 ± 34
[3 T; MOLLI; 20]

+0.4 Chin et al. 2014 [28]

Essential hypertension 955 ± 30
[1.5 T; ShMOLLI; 40]

–0.3 Treibel et al. 2015 [29]

Hypertrophic cardiomyopathy 1026 ± 64
[1.5 T; ShMOLLI; 46]

+1.7 Fontana et al. 2014 [30]

Dilated cardiomyopathy 1056 ± 62
[1.5 T; MOLLI; 29]

+0.9 aus dem Siepen et al. 2015 [31]

Acute myocardial infarction 1245 ± 75
[1.5 T; MOLLI; 40]

+9.8 ♦ Bulluck et al. 2016 [32]

Fabry disease 853 ± 50
[1.5 T; ShMOLLI; 38]

–3.6 ♦ Pica et al. 2014 [33]

Iron overload 863 ± 138
[1.5 T; ShMOLLI; 53]

–4.1 ♦ Sado et al. 2015 [34]

Light chain amyloidosis 1130 ± 68
[1.5 T; ShMOLLI; 79]

+4.8 ♦ Fontana et al. 2014 [30]

Transthyretin amyloidosis 1097 ± 43
[1.5 T; ShMOLLI; 85]

+3.8 ♦ Fontana et al. 2014 [30]

Acute myocarditis 1064 ± 37
[1.5 T; MOLLI, 61]

+6.2 ♦ Hinojar et al. 2015 [35]

Convalescent myocarditis 995 ± 19
[1.5 T; MOLLI; 67]

+2.8 ♦ Hinojar et al. 2015 [35]

T1 values per disease were derived from at least one representative work in the published literature (other relevant works exist that have not been
referenced here). Reported ranges are only applicable to the sequence, imaging protocol, field strength, and scanner configuration used by the group and
are not necessarily immediately generalizable across centers [18]. The native T1 signal in some diseases (annotated by B♦^) shows a large deviation
(multiple SDs) from normality, so T1 mapping is bound to be more robust here as the pathology-related T1 change trumps any Bnormal^ biases that
confound T1 estimates. In other heart muscle diseases, however (e.g., hypertensive heart disease, aortic stenosis), where T1 changes are less dramatic,
biases in T1 estimates may become major signal pollutants, so pathology-related T1 differences may not be realistically resolvable except through large,
standardized studies

SD standard deviation, T Tesla. Other abbreviations as in Table 1
a Reported in milliseconds as mean ± SD. Defines field-strength (T), sequence used, and sample size (n) of the diseased cohort
b Number of SDs by which a particular disease’s mean T1 value lies above or below the healthy control mean T1 reported by the group in the same study

Fig. 2 Illustrated overview of T1 mapping acquisition strategies. The
techniques are divided into four major groups: MOLLI, saturation
recovery, free-breathing methods, and multi-parameter imaging. The
graphs diagrammatically represent the inversion pulse and acquisition
times across heartbeats. Diaphragmatic movement during image
acquisition is shown for the free-breathing methods STONE and
ANGIE. Technical details of described T1 mapping acquisition
strategies are described in Table 1. ANGIE Accelerated and Navigator-
Gated Look-Locker Imaging for Cardiac T1 Estimation, BH breath-hold,

bSSFP balanced steady-state free precession, 3D-QALAS three-
dimensional-QuAntification using an interleaved Look-Locker
Acquisition Sequence with T2 preparation pulse, INV inversion, FB
free-breathing, MOLLI Modified Look-Locker Inversion, Prep
preparation, SAPPHIRE Saturation Pulse Prepared Heart-Rate
Independent Inversion REcovery Sequence, SASHA saturation recovery
single shot acquisition, SAT saturation, Seg segmented, ShMOLLI
shortened MOLLI, SS single shot, STONE slice-interleaved T1 mapping
sequence
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independently associated with LV systolic dysfunction [61]. In
reperfused acute MI, acute infarct ECV, unlike standard LGE, is
independently associated with ejection fraction and convales-
cent infarct global strain, suggesting it is a better predictor of
LV functional recovery [36, 62]. Native T1 may also identify the
area at risk and salvaged myocardium [63] better than T2-
weighted imaging can. In chronic MI, native T1 and ECV are
increased, but values are lower than those observed in acute MI
[64]. Native T1 values in chronic MI by widely used bSSFP
mapping methods should be interpreted with caution as T1

values may be subject to additive or subtractive bias when water
and fat coexist in the myocardium—intramyocardial fat due to
lipomatous metaplasia in chronic myocardial scar potentially
predisposes to such T1 biases [66]. In the field of stress perfusion
CMR for ischemia, T1 mapping of the spleen is being explored
as a surrogate indicator of adequacy of vasodilator stress with
adenosine [67]. The splenic blood flow paradoxically reduces

during the course of adenosine myocardial vasodilatation and
native splenic T1 decreases as a result. This makes native splenic
T1 in the course of the adenosine infusion (and before GBCA
administration) a potential surrogate marker of stress adequacy
[67].

Cardiac amyloidosis

The ventricular myocardium is affected by immunoglob-
ulin light chain (AL) and transthyretin (ATTR) amyloid-
osis, which has two subtypes, wildtype and mutant [68].
Amyloid deposits and infiltrates the myocardial intersti-
tium and is the major determinant of outcome [43].
Amyloidosis on LGE has characteristic appearances,
particularly with the phase-sensitive inversion recovery
technique. In early disease, the LGE may be normal.
Later, global subendocardial LGE (but more prevalent

Table 3 Measured ECV
relationship in some heart muscle
disease

Condition ECVa (%) [T; n] Reference

Acute myocardial infarction ⇑ 56 ± 1.4

[1.5 T; 39]

Kidambi et al. 2016 [36]

Aortic stenosis|| ↔ 24.3 ± 1.9

[3 T; 50]

⇑ 28.3 ± 1.7

[3 T; 20]

Singh et al. 2015 [37]

Chin et al. 2014 [28]

Hypertrophic cardiomyopathy ⇑ 37.1 ± 10.1

[3 T; 50]

Swoboda et al. 2017 [38]

Dilated cardiomyopathy ⇑ 27 ± 4

[1.5 T; 29]

aus dem Siepen et al. 2015 [31]

Systolic heart failure ⇑ 31.2, 29.0–34.1~

[3 T; 40]

Su et al. 2014 [39]

Heart failure preserved ejection fraction ⇑ 28.9, 27.8–31.3~

[3 T; 62]

Su et al. 2014 [39]

Athletic adaptation ↓ 22.5 ± 2.6

[1.5 T; 30]

McDiarmid et al. 2016 [40]

Fabry disease ↔ 21.7 ± 2.4

[1.5 T; 31]

Thompson et al. 2013 [41]

Iron overload ⇑ 31.3 ± 2.8

[1.5 T; 19]

Hanneman et al. 2016 [42]

Light chain amyloidosis ⇑ 54 ± 7

[1.5 T; 92]

Fontana et al. 2015 [43]

Transthyretin amyloidosis ⇑ 60 ± 7

[1.5 T; 44]

Fontana et al. 2015 [44]

Acute myocarditis ⇑ 30, 27–32§

[1.5 T; 48]

Bohnen et al. 2017 [45]

ECV extracellular volume. Other abbreviations as in Table 2

↑ increase, ↓ decrease, ⇑ marked increase, ↔ static
a Cited ECV values (%) are as mean ± SD except where otherwise stated. Field-strength (T) and sample size (n)
are additionally provided. ECV ranges per disease were derived from at least one representative work in the
published literature (other relevant works exist that have not been referenced here)
|| Conflicting data currently

§Median, first, and third quartiles

~Mean, interquartile range
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at the base) may occur, associated with blood and myo-
cardium nulling together. Later still, transmural LGE
appears [69]. However, native myocardial T1 and ECV
may have more discriminatory and predictive power
than LGE [46, 70], and they change before LGE [71].
The current working hypothesis is that the ECV can be
higher in ATTR due to higher cell volume (derived as
1 − ECV × myocardial mass), indicating concomitant
myocyte hypertrophy [44]. Conversely, native T1

(Fig. 3a) can be higher in AL due to the influence of
myocardial inflammation [30]. As treatment options dif-
fer between AL and ATTR, differentiating between the
two by T1 mapping and ECV is clinically important
[72].

Iron overload

Iron shortens all three CMR relaxation times—T1, T2,
and T2* [73] (Fig. 3d). T2* at 1.5 Tesla (T) (but not at
3 T [74]) is the gold standard for myocardial iron over-
load assessment and has transformed clinical outcomes
when it is used as it can target chelation therapy to

where it is needed most [75]. T1 mapping has potential here
as well and can serve as a complementary tool [76]. Native
myocardial T1 correlates well with T2* but has the added
advantage of greater reproducibility and sensitivity, and it
can detect lower myocardial iron levels potentially missed
by T2* [34, 42, 77–79]. In thalassemia major, for example,
native T1 detected cardiac iron overload in a third of cases
missed by T2* [76].

Challenges facing the roll-out of native myocardial T1 for
cardiac iron assessment include the known variation of abso-
lute T1 between sequences and scanners [78] and its non-spec-
ificity—its susceptibility to alter in a large number of heart
muscle diseases. In this respect, T2* is more disease specific
[80]. This advantage should not be overstated—the T1 chang-
es of significant iron completely swamp all other patholo-
gies—the T1 can lower by an impressive 25 standard devia-
tions in severe iron overload, for example. The ECV can be
used in iron overload, although there are concerns when iron
loading is significant. The ECV can be increased in thalasse-
mia major patients with documented cardiac iron overload,
and it correlates with T2* but not with LV systolic function
and global longitudinal strain [42]. The impression is that

Fig. 3 The practical clinical utility of T1 mapping in selected heart
muscle diseases. a Cardiac amyloidosis showing marked septal
thickening. There is high native T1 (1270 ms in the septum) and near
transmural and myocardial enhancement and severe expansion of the
ECV is predicted (in-line synthetic ECV 49). b Acute myocarditis
showing abnormal myocardium tissue characterization with high native
T1 (1345ms in the septum) and T2 (71 ms in the septum), extensive LGE,
and high ECV (in-line synthetic ECV 54). c Fabry disease showing no LV
hypertrophy (early-phenotype) and low native T1 globally (877 ms)

except for the basal infero-lateral wall, co-locating with no-ischemic
fibrosis. ECV is normal. d Cardiac iron overload in a thalassemic
patient showing T2* 8 ms and native T1 reduction to 670–750 ms by
MOLLI. ECV extracellular volume fraction, FB free-breathing, FISP
fast imaging with steady-state precession, GBCA gadolinium-based
contrast agent, LGE late gadolinium enhancement, LV left ventricle,
MOCO motion-corrected, MOLLI modified Look-Locker inversion
recovery, PSIR phase-sensitive inversion recovery, SSFP steady-state
free precession
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cardiac iron could be transitioning to a fibrotic phenotype,
although there is little autopsy evidence for this [81].

T1 mapping and ECV in selected modest signal
diseases

Dilated cardiomyopathy

In dilated cardiomyopathy (DCM), diffuse myocardial fibro-
sis may be a prominent feature during disease progression and
cardiac remodeling, which eludes depiction by LGE imaging.
Early myocardial fibrosis detected by native T1 mapping in
DCM [31] can predict adverse outcomes [82] allowing for risk
stratification and for the initiation of timely and appropriate
management. However, the T1 signal change in DCM is not
large and conventional T1 mapping approaches have in-plane
resolution limitations when applied to thin-walled hearts (a
prevalent phenotype in DCM [83]). Native T1 is prolonged
in DCM and inversely correlated with wall thickness [84, 85]
where confounding by partial volume effects may play a part.
During the early (subclinical) stages, hearts may have normal
LV wall thickness values (~10 mm), so a conventional T1

mapping sequence could potentially be used, but once the
DCM phenotype manifests (often with an increase in overall
LV mass), wall thickness may or may not decline with signif-
icant partial volume implications. ECV was shown to corre-
late with clinical prognosis in DCM [86] and with LV systolic
dysfunction [87], and although it is recommended in the 2013
T1 mapping consensus document [18], it is still not accurate
enough to be of proven utility for early diagnosis and risk
stratification in DCM [18, 31, 88]. T2 mapping can detect
myocardial inflammation that appears to play an important
role in non-ischemic DCM [89].

Hypertrophic cardiomyopathy

Myocardial disarray, small vessel disease, and fibrosis are his-
topathological hallmarks of familial sarcomeric HCM. In
HCM, LGE is a risk factor for heart failure and an additional
risk factor for SCD [90]. T1 mapping can have additive value
[91]. Native T1 is modestly elevated in HCM as compared to
healthy controls and highest in the areas of maximal hypertro-
phy [90]. T1 may also be elevated in HCM patients without
overt LV hypertrophy, suggesting potential clinical utility as an
early disease biomarker [84]. Native T1 was better than ECVat
discriminating HCM from hypertensive heart disease [92] and
it identified subclinical HCM in sarcomere gene mutation car-
riers [92], although some of these have rather thin walls and
crypts that could lead to partial volume effects and native T1
correlated with LV remodeling and global systolic function
[85]. ECV cannot discriminate between overt HCM and
DCM being similarly elevated in both, suggesting a final

common pathway of interstitial change [93], but it can differ-
entiate between sarcomeric HCM and athletic heart as the latter
exhibits reduced ECV in the hypertrophied segments [94].

Valvular heart disease

Most T1 mapping studies for valvular heart disease have fo-
cused on aortic stenosis (AS). AS is associated with two forms
of myocardial fibrosis: diffuse (interstitial) fibrosis that may
appear prior to symptom manifestation and architectural
change, and the more focal, late irreversible replacement fi-
brosis. Our understanding of fibrosis in AS is incomplete.
Some fibrosis is clearly advantageous, but maladaptive fibro-
sis also occurs and the myocardial adaptation to the narrowed
valve is key to the clinical impact [95]. T1 mapping can quan-
tify the diffuse myocardial fibrosis in AS providing an indica-
tion of AS severity and cardiac function [37, 96] and histo-
pathological correlation has been achieved [74, 97]. Mild to
moderate diffuse fibrosis in AS has been linked to postopera-
tive LVH reduction and better symptomatic improvement
compared to severe fibrosis at baseline [98]. Native T1 and
ECV were shown to be increased in AS [28] especially in
patients with more abnormal patterns of LV remodeling, and
they tracked the prognostic biomarker n-terminal pro-brain
natriuretic peptide [29], but in another study of asymptomatic
moderate/severe AS patients, native T1 and ECV did not differ
significantly from those in age-matched controls at 3 T [37].

Current guidelines classify AS severity mostly by echocar-
diography via trans-valvular pressure and aortic valve area
measurements, and intervention is recommended based on
LV ejection fraction and the presence of symptoms, ignoring
the myocardial state, in spite of myocardial fibrosis having
been shown to determine outcomes in AS patients [99] and
ECV demonstrating prognostic value post-tissue aortic valve
replacement [100]. The prognostic value of ECV in AS has
recently been demonstrated [101] and the BiECV,^ derived
from the product of ECV and body surface area-indexed LV
end-diastolic volume, showed good correlation with histology
[101]. Diffuse fibrosis assessment by T1 mapping in chronic
mitral regurgitation may also have clinical utility to guide
timing of intervention [102].

Biomarker roadmap for T1 mapping

Familiar imaging biomarkers used daily in cardiac imaging
include LVejection fraction, wall thickness, and left atrial size.
New imaging biomarkers such as T1 mapping and ECV are
typically first established as useful complementary tools for
new biological insights before becoming surrogate secondary
endpoints in clinical studies. They must then cross the
Btranslational gap^ before they can become clinical decision-
making tools [103] (Fig. 4). Therefore, for T1 mapping and
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ECV, three parallel, not entirely sequential processes, are
needed: technical validation (e.g., through the use of phan-
toms [103, 104]), biological/clinical validation, and cost-
effectiveness analysis. We are still missing cost-effectiveness
studies for T1 mapping and ECV—not every T1 mapping
sequence will have commercial viability as a diagnostic prod-
uct in healthcare systems, although some sequences certainly
will. T1 mapping cost-effectiveness studies are needed to in-
form on this dichotomy. The funded research agendas of in-
dividual centers make it easier to carry on with adding layers
of T1 mapping innovation rather than halt the advancement,
and scrutinize old work for cost-effectiveness, that may well
end up generating unwelcome results. Even those T1 mapping
sequences found to lack commercial viability as products may
still have niche roles in the research setting, justifying the
development of new models to oversee their continued re-
search and development funding, and regulation. Large-scale
health-economic considerations and cost-effectiveness studies
in T1 mapping, when they happen, will also need to consider
the broader portfolio of competitor tests that include other
CMR (e.g., LGE, T2 mapping) and non-CMR imaging bio-
markers, as well as biospecimen-derived biomarkers (e.g., tro-
ponin, N-terminal pro-brain natriuretic peptide, etc.) [105].

Furthermore, we need standardization and centrally coor-
dinated accreditation systems for T1 mapping sites [105]. The
issues of standardization and inter-operability is important for
T1 mapping as measurements differ between CMR scanners,
manufacturers, field strengths, protocols, pulse sequences
[106], patient characteristics [107], and other factors.
Depending on the sequence used, T1 mapping has specific
limitations (see Table 1) that innovative approaches keep try-
ing to address with encouraging results. Partial-volume effects
at the interface between myocardium and blood-pool result in
reduced accuracy and reproducibility [83, 108] and dark-

blood preparation as well as systolic T1 mapping have been
proposed as potential solutions to overcome these issues [108,
109]. Elaborate post-processing using improved modeling of
the perturbed inversion curve has been studied to increase the
accuracy of inversion-recovery-based T1 times [9, 110].
Saturation recovery methods were shown to improve the ac-
curacy of T1 measurements compared to MOLLI, albeit at the
expense of precision. Reconstructions with a reduced number
of fit parameters have been proposed to trade off some of the
precision loss against a slight drop in accuracy [83, 111].
Alternatively, SAPPHIRE can be employed, which through
the use of a combined inversion/saturation recovery approach
allows accurate T1 estimation without sacrificing as much of
the precision as SASHA [107, 112]. Other efforts have ad-
dressed the RR-interval sensitivity of T1 mapping to improve
its performance in the presence of arrhythmias such as atrial
fibrillation [113]. Free-breathing T1 mapping sequences are
being proposed to overcome motion artifact in sicker patients
unable to breath-hold [111] coupled with advances in motion-
correction algorithms [20, 114]. Lastly, to increase imaging
efficiency and improve specificity beyond conventional T1

mapping, several methods for joint estimation of parameters
have recently been explored [115, 116].

Conclusion

T1 mapping and ECVof the heart are transforming contempo-
rary CMR through their research and potential clinical appli-
cations. These biomarkers have potential to accurately inform
clinical decision-making, but like all other biomarkers, they
must first survive rigorous scrutiny, validation, and qualifica-
tion. In spite of the research outputs and excitement within the
CMR community, to date, although there has been a first con-
sensus statement [18] with a second one pending, T1 mapping
has yet to enter disease-specific guidelines (this may be pend-
ing for myocarditis). Still clinical utilization is proceeding
with the use of these tools daily in many centers, so more is
needed including a wider range of research (technical, trans-
lational, standardization) and further consensus/summary pro-
cesses [117] to illuminate the T1 mapping field. Roadmapping
these excellent biomarkers into healthcare for evidence-based
patient management is an arduous, time-consuming, but im-
portant task. The CMR community needs such guidance.
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Fig. 4 Overview of imaging biomarker roadmap for T1 mapping. The
technical and early clinical validation of imaging biomarkers often occur
in tandem. Cost-effectiveness and usability must be assessed for the bio-
marker to have the potential of full translational application. In parallel,
prognostic assessment with hard outcomes must occur before routine
integration into patient care
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