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Abstract Many real world operational research problems, such as frequency assign-
ment and exam timetabling, can be reformulated as graph colouring problems (GCPs).
Most algorithms for theGCPoperate under the assumption that its constraints are fixed,
allowing us to model the problem using a static graph. However, in many real-world
cases this does not hold and it is more appropriate to model problems with constraints
that change over time using an edge dynamic graph. Although exploring methods
for colouring dynamic graphs has been identified as an area of interest with many
real-world applications, to date, very little literature exists regarding such methods. In
this paper we present several heuristic methods for modifying a feasible colouring at
time-step t into an initial, but not necessarily feasible, colouring for a “similar” graph
at time-step t + 1. We will discuss two cases; (1) where changes occur at random, and
(2) where probabilistic information about future changes is provided. Experimental
results are also presented and the benefits of applying these particular modification
methods are investigated.
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1 Introduction

Given a graph G = (V, E) with vertex set V and edge set E , the NP-hard graph
colouring problem (GCP) aims to colour each vertex such that adjacent vertices are
coloured differently and the number of colours used is minimised. The minimum
number of colours required to colour a graph G is called the chromatic number of G,
denoted by χ(G).

By considering the different aspects of a given problem instance and how they
might relate to the components of a graph (vertices, edges and colours), one can
reformulate many real world problems into a GCP. A prominent example is frequency
assignment (Aardal et al. 2007) where we wish to assign communication frequencies
(e.g. radio wavelengths) to a set of physical locations such that there is no interference.
Here, each location is represented by a vertex, an edge exists between two vertices if
their respective locations are within a certain proximity of one another (which could
lead to interference) and colours represent the communication frequencies. Other
examples include register allocation (Chaitin 1982), tournament scheduling (Costa
1995), exam timetabling (Erben 2001; Qu et al. 2009), designing seating plans (Lewis
and Carroll 2016) and grouping people in social networks (Tantipathananandh et al.
2007).

Most GCP methods suggested in the literature have only been applied to static
graphs and can therefore only be applied to real world problems under the assumption
that the size and constraints of a given problem are fixed (i.e. V and E are fixed in the
associated graph G = (V, E)). However, in areas such as the frequency assignment
problem (Dupont et al. 2009) this is not always appropriate because physical locations
can be added or removed from the communication network, or relocated within the
communication network.

On-line graph colouring, is one example of dynamic graph colouring that has
received some attention in the literature. In this case, one vertex and its associated edges
are revealed at each time-step. Once revealed, a vertex must be coloured using only the
information available up to and including that time-step and may not be “recoloured”
in subsequent time-steps. Research concerning on-line graph colouring mainly con-
sists of worst-case behaviour analysis of simple constructive algorithms (Gyárfás and
Lehel 1988; Lovász et al. 1989).

The aim of this particular research is to explore graph colouring on edge dynamic
graphs where the edge set E changes over time. More specifically, we wish to look
at methods that are able to modify a feasible colouring for one graph into an initial
colouring for a new graph in a subsequent time-step. In doing so, we wish to explore
whether this modification approach leads to any advantages with regards to colouring
quality and/or time requirements. We also wish to explore how information about the
likelihood of future changes can be used to produce more robust colourings. To the
best of our knowledge, the problem of colouring edge dynamic graphs has received
very little attention in the literature to date.

This paper has the following structure: Sect. 2 will formally define edge dynamic
graphs and the associated graph colouring problem. Section 3will then introduce ways
of representing a colouring (or solution) and the various solution spaces inwhich graph
colouring heuristics generally operate. In Sect. 4, the idea of future adjacency will be
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Tackling the edge dynamic graph colouring problem 323

discussed along with move operators that can maintain the feasibility of a colouring.
Section 5 will then outline a general approach for solving the edge dynamic GCP (both
with and without future adjacency information) and define the different modification
operators used. Sections 6 and 7 then contain the experimentation details and results
respectively. Finally, Sect. 8 summarises the findings of the experiments and discusses
opportunities for future work.

2 Edge dynamic graphs

The importance of studying dynamic graphs and their associated problems is high-
lighted by Harary and Gupta (1997) who have described many practical application
areas, especially in the area of computer science, and postulate that techniques applied
to static graphs should be extended for dynamic graphs. Despite this, there has been
very little research regarding methods designed explicitly for colouring dynamic
graphs.

For the purpose of this particular work, we define a dynamic graph G =
(G0,G1, . . . ,GT ) as a series of T + 1 static graphs where Gt = (Vt , Et ) ∈ G is
the static representation of G at time-step t ∈ {0, 1, . . . , T }. At every time-step the
objective of the dynamic GCP is analogous to the static GCP (i.e. we wish to min-
imise the number of colours used). In terms of methodology, this means that we are
interested in finding a feasible kt -colouring for each time-step t , where kt is a good
approximation of χ(Gt ) (see Sect. 3 for a formal definition of a “feasible” colouring).
Objectively, this is an attempt to minimise

∑T
t=0 kt .

The concept of dynamic graphs can be considered as two separate cases: edge
dynamic graphs and vertex dynamic graphs. In this paper we focus solely on the
former case. For an edge dynamic graph, changes can only occur on the edge set Et ;
therefore Vt = V for all time-steps t ∈ {0, 1, . . . , T }. Given an edge dynamic graph
G, consider the graph Gt = (V, Et ) for time-step t . To get to time-step t +1 we define
a set of deleted edges E−

t+1 ⊆ Et and a set of new edges E+
t+1 ⊆ (E\Et ) where E is

the set of all
(|V |
2

)
possible edges between vertices in V . The edge set for time-step

t + 1 is then defined as Et+1 = (Et\E−
t+1) ∪ E+

t+1.
An example of how an edge dynamic graph can change between time-steps is

illustrated in Fig. 1. As mentioned, the vertex set V remains fixed between time-steps.

3 Colourings and solution spaces

In this section we introduce ways of representing a colouring (or solution) and the
various solution spaces that are commonly used with graph colouring heuristics.

A feasible colouring for a graph G = (V, E) is a partition of the vertex set V into
k disjoint (i.e. non-overlapping) subsets S = {S1, . . . , Sk} such that adjacent vertices
are always in different subsets. By partitioning V in this way, each Si ∈ S is an
independent set. We call S a k-colouring of G and Si the i th colour class of S. For
convenience, we can also use the colouring function c : V → {1, . . . , k} which is
defined such that c(v) = i for all v ∈ Si . If adjacent vertices are assigned to the same
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v1 v2

v3 v4 v5

v6 v7 v8

v9 v10

Gt = (V,Et)

v1 v2

v3 v4 v5

v6 v7 v8

v9 v10

Gt+1 = (V,Et+1)

Fig. 1 Edge dynamic graph with E−
t+1 = {{v1, v6}, {v1, v7}, {v3, v7}, {v4, v5}, {v4, v7}, {v9, v10}} and

E+
t+1 = {{v1, v9}, {v2, v4}, {v2, v8}, {v2, v10}, {v7, v8}, {v7, v10}}

colour class, such that c(u) = c(v) and {u, v} ∈ E , then this is called a clash. By
definition, feasible colourings have no clashes.

Another way of representing feasible colourings, not used here, involves graph
homomorphisms. In this representation, non-adjacent vertices are contracted to pro-
duce a complete graph with k hyper-vertices such that each hyper-vertex represents a
colour class (Hell and Nešetril 2004).

When considering heuristic methods for solving the static GCP, Hertz et al. (2008),
Lewis (2015), and Lewis et al. (2012) suggest three main solution spaces: (1) feasible
only, where every vertex is coloured, there are no clashes, and the number of colour
classes is allowed to vary; (2) complete, improper, where every vertex is coloured
but clashes are permitted; and (3) partial, proper, where no clashes occur but there
may be “uncoloured” vertices. The number of colour classes k is generally fixed when
operating in the latter two cases, though it is often reduced once a feasible k-colouring
has been obtained.

The feasible only solution space is rarely used for the static GCP. This is due to the
difficulty in determining which of two feasible k-colourings is “closer” to becoming a
colouring with k − 1 colour classes. One exception is a simulated annealing approach
proposed by Johnson et al. (1991). As we will see in Sect. 4, this solution space is
perhaps themost usefulwhen considering the edge dynamic problemwith probabilistic
future adjacency information.This is becauseworkingwithin this solution space allows
a colouring to be optimised with regards to a secondary objective without violating
the constraints of the GCP.

As mentioned, in the complete, improper solution space a colour class Si ∈ S is
allowed to contain adjacent vertices. Therefore, an appropriate objective function for
this solution space is simply

f (S) =
k∑

i=1

|E ∩ {Si × Si }| (1)

which is equivalent to the number of clashes in the colouring. If f (S) = 0 then S is
a feasible k-colouring.
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Tackling the edge dynamic graph colouring problem 325

To move from one colouring S to a neighbouring colouring S ′ within the complete,
improper solution space, one popular strategy is to transfer a vertex v from its current
colour class Sc(v) to a different colour class S j where j �= c(v). The vertex v to
be moved can also be chosen exclusively from the set of currently clashing vertices
(i.e. we can transfer v ∈ Si if and only if ∃u ∈ Si such that u �= v and {u, v} ∈ E).
The tabu search algorithm TabuCol (Hertz and Werra 1987) works in this solution
space and uses this particular move operator. Other examples can be found in Galinier
and Hao (1999), Johnson et al. (1991) and Lü and Hao (2010).

When considering a colouring S in the partial, proper solution space, the accom-
panying set of “uncoloured” vertices is defined as U = V \(⋃k

i=1 Si ), within which
clashes are permitted. In this solution space, a suitable objective function is

f (S) = |U | = |V | −
k∑

i=1

|Si | (2)

which is simply the number of “uncoloured” vertices. As with the previous objective
function, f (S) = 0 indicates that S is a feasible k-colouring.

A common strategy for moving from one colouring S to a neighbouring colouring
S ′ within the partial, proper solution space, is to transfer an “uncoloured” vertex
v ∈ U to a colour class Si and then transfer all vertices adjacent to v in Si into U .
The tabu search algorithm PartialCol (Blöchliger and Zufferey 2008), which is a
modification of TabuCol, works in this solution space and uses this move operator.

A discussion of alternative solution spaces, objective functions and neighbourhood
move operators for local search methods for the GCP can be found in Galinier and
Hertz (2006).

4 Future adjacency

In this section we discuss what is meant by future adjacency with regards to edge
dynamic graphs and introduce two neighbourhood operators that work in the feasible
only solution space.

For a graph Gt = (V, Et ) ∈ G, let pt+1(u, v) be the probability that {u, v} ∈
Et+1. At time-step t , we say that vertices u and v are future adjacent with probability
pt+1(u, v). If pt+1(u, v) is known for every possible edge {u, v} ∈ E then we can
define the |V | × |V | future adjacency matrix Pt+1 such that the (u, v)th entry of Pt+1
is equal to pt+1(u, v).

Regardless of whether Pt+1 is known, given the distribution of future adjacency
probabilities for {u, v} ∈ E\Et , we can estimate the number of clashes in a feasible
k-colouring St (for Gt ) in time-step t + 1 as

F(St ) = E(pt+1) ·
k∑

i=1

(|Si |
2

)

(3)

where pt+1 is simply the distribution of future adjacency probabilities for edges in
E\Et and E(pt+1) is the expected value of this distribution. If the number of vertices
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in each colour class is approximately equal (i.e. |Si | ≈ n
k for i = 1, . . . , k) then Eq. (3)

can be simplified to

F(St ) = E(pt+1) · n(n − k)

2k
. (4)

It should be apparent that if Pt+1 is unknown then, other than increasing k, little
can be done with regards to minimising F(St ) because every edge needs to be treated
as having the same future adjacency probability. On the other hand, if Pt+1 is known
then F(St ) is given by

F(St ) =
k∑

i=1

∑

u∈Si

∑

v∈Si
v �=u

pt+1(u, v) (5)

which is more useful. Vertices in St can now be “recoloured” in an attempt to reduce
Eq. (5), without increasing k or violating the constraints of the GCP. In doing so, a
more robust, feasible k-colouring for Gt can be produced that is likely to have fewer
clashes in time-step t + 1 and therefore be “closer” to a feasible colouring for Gt+1
also.

4.1 Move operators that maintain feasibility

The main challenge when attempting to reduce F(St ) is the requirement for St to
remain feasible for Gt . As mentioned in Sect. 3, neighbourhood move operators
designed to work in the feasible only solution space are useful here. Outlined below
are two suitable move operators.

4.1.1 Kempe-Chain interchange

Given a feasible k-colouring S for G = (V, E), a vertex v ∈ V and a colour class S j

such that j �= c(v), the Kempe-chain from Sc(v) to S j that contains v is the maximal
connected subset of V which contains v and whose vertices are either in Sc(v) or S j .
This is denoted byKempe(v, c(v), j). TheKempe-chain interchange takes the vertices
in Kempe(v, c(v), j) and transfers those in colour class Sc(v) to colour class S j and
vice versa. It should be noted that if |Kempe(v, c(v), j)| = |Sc(v)| + |S j | then the
Kempe-chain interchange is simply a re-labelling of the colour classes.

It is shown in Lewis (2015) that ifS is feasible forG then applying theKempe-chain
interchange to S cannot result in an infeasible colouring for G.

To illustrate, the graph in Fig. 2 contains the following unique Kempe-chains:
{v1, v3, v6, v7}, {v2, v4, v8, v10}, {v5} and {v9}.Applying theKempe-chain interchange
to Kempe(v1, 1, 2) = {v1, v3, v6, v7} transfers vertices v1 and v3 from S1 to S2 and
vertices v6 and v7 from S2 to S1. Note that although there are (k−1)×n = 10 distinct
Kempe-chain labels for this example, these labels onlymaponto four unique sets of ver-
tices, e.g. Kempe(v1, 1, 2) can also be identified as Kempe(v3, 1, 2), Kempe(v6, 2, 1)
or Kempe(v7, 2, 1).
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S1:

S2:

v1 v2 v3 v4 v5

v6 v7 v8 v9 v10

Fig. 2 A feasible 2-colouring with the vertices in colour class S1 displayed in the row above those in colour
class S2

4.1.2 Pair swap

An additional move operator for the feasible only solution space is the pair swap.
This operator transfers a single vertex v ∈ V to a colour class S j such that j �= c(v)

and no clashes are incurred whilst simultaneously moving a vertex u ∈ S j to Sc(v)

such that, again, no clashes are incurred. It should be noted that a pair swap is the
simultaneous application of 2 Kempe-chain interchanges on Kempe(v, c(v), c(u))

andKempe(u, c(u), c(v)) such that |Kempe(v, c(v), c(u))| = |Kempe(u, c(u), c(v))|
= 1.

By observing this relationship to Kempe-chain interchanges, it follows that the pair
swap does not alter the feasibility of an already feasible colouring either. There is only
one pair swap in Fig. 2 which transfers vertex v5 from S1 to S2 and v9 from S2 to S1.

5 Methods

The NP-hard nature of the static GCP (Garey and Johnson 1979), together with the
fact that no approximation algorithm exists with an approximation ratio of less than
two (Garey and Johnson 1976), means that heuristic methods are usually the go-to
solution approach for finding colouringswith good approximations ofχ(G) for a given
graph G. Previously, local search, evolutionary and hybrid heuristics have all been
applied to solving theGCP, all ofwhichhavebeen shown toproduce competitive results
on publicly available benchmark instances.1 Due to the time constraints we choose to
enforce during our experimentation, we will focus on local search methods (Galinier
and Hertz 2006) here, which are usually quicker at locating local optima (Lewis 2015).

The most common approach for solving the static GCP via heuristic methods is to
solve a series of k-GCPs for G such that k is decreasing. The goal of a k-GCP is to
determine whether a graph G can be feasibly coloured using k colours. In practice,
an initial value for k can be calculated by a constructive operator that is guaranteed
to produce a feasible colouring for G, such as the well known greedy (Welsh and
Powell 1967) or DSatur (Brélaz 1979) algorithms. Once an initial, feasible value of
k has been identified, an attempt can be made to find a feasible colouring with k − 1
colour classes. If this is successful then an attempt to find a feasible colouring with
one fewer colour class can be made, and so on, until some stopping criteria (e.g. a
time or computational limit) is reached.

1 These can be found at http://mat.gsia.cmu.edu/COLOR/instances.html.
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For the edge dynamic GCP, we can replace the constructive operator with a modi-
fication operator that takes a feasible colouring St for Gt and modifies it for use as an
initial (though not necessarily feasible) colouring St+1 for Gt+1. From here, we can
then attempt to change St+1 into a feasible k-colouring forGt+1 where, at least for the
initial feasible colouring, k ≥ |St |. Our strategy for the latter is shown in Algorithm 1.

Algorithm 1 Generic Dynamic GCP Time-step Algorithm
Input: A graph Gt+1 and a feasible colouring St for Gt
Output: A feasible colouring St+1 for Gt+1
1: Sbest ← ∅
2: St+1 ← St modified in some way (see Sect. 5.1)
3: k ← |St+1|
4: while not stopping criterion do
5: Attempt to make St+1 a feasible k-colouring for Gt+1
6: if St+1 is a feasible k-colouring for Gt+1 then
7: Sbest ← St+1
8: k ← k − 1
9: if Sbest = ∅ and a computation limit is reached then
10: k ← k + 1
11: St+1 ← Sbest
12: return St+1

A problem arises, however, if St is modified into a k-colouring for Gt+1 such that
k < χ(Gt+1). If this happens then it will be impossible to find a feasible k-colouring
for Gt+1. To combat this, we allow the value of k to be increased as shown on Lines
9 and 10 of Algorithm 1.

As mentioned previously, one of the main objectives of this research is to explore
the different methods for modifying a feasible colouring for time-step t into an initial
colouring for time-step t + 1 (i.e. Line 2 of Algorithm 1). The essential question to be
answered is: can a feasible colouring for one graph Gt be used in some advantageous
way to help find a feasible colouring for a similar but currently unknown graph Gt+1?

At this point it is worth noting that the edge dynamic GCP has previously been
considered by Preuveneers andBerbers (2004)who proposed an agent-based approach
for “repairing” colourings between time-steps; however, their method differs from our
approach as it is only concerned with the quality of the initial colourings achieved. As
such, it does not include any local optimisation between time-steps.

5.1 Modification operators

The final feasible colouringSt forGt is likely to be a complete, improper colouring for
Gt+1. This holds because every vertex v ∈ V will be coloured but the new edges E+

t+1
could potentially cause clashes where none existed previously. With this knowledge,
we propose applying one of the following modification methods to find an initial
(but not necessarily feasible) colouring St+1 for Gt+1. The effectiveness of these
modification operators will be explored and assessed in Sect. 7.
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Method 0 (reset): Ignore St completely and use a constructive operator to produce an
initial colouring St+1. This is the approach used for G0 and can be used
for a base-line comparison against the remaining methods for time-steps
t = 1, . . . , T .

Method 1 (calculateClashes): Simply set St+1 = St , calculate the number of clashes,
and then pass St+1 directly to a tabu search operator that operates in the
complete, improper solution space and attempts to remove all clashes to
achieve a feasible k-colouring for Gt+1 (where k = |St |).

Method 2 (uncolourClashes): Identify pairs of clashing vertices inSt and then transfer
one vertex from each of these pairs to a set of “uncoloured” vertices U .
The resultant colouring St+1 is a partial, proper colouring for Gt+1 which,
along with U , can then be passed to a tabu search operator that operates
in the partial, proper solution space and attempts to feasibly colour all
“uncoloured” vertices, to achieve a feasible k-colouring for Gt+1 (where
k = |St |).

Method 3 (solveClashes): First apply Method 2, to obtain a partial, proper colouring
St+1 for Gt+1 and a set of “uncoloured” vertices U . Then attempt to re-
insert each “uncoloured” vertex v ∈ U into a colour class of St+1 such that
no clashes are incurred. The residual graph G̃ induced by the remaining
“uncoloured” vertices inU is then passed to a constructive operator which
produces a feasible k̃-colouring S̃ for G̃. Finally, combine St+1 and S̃ to
produce a feasible colouring for Gt+1 with k + k̃ colour classes where
k = |St | and k̃ = |S̃|.

The details regarding the constructive and tabu search operators used within these
modification operators are discussed in Sect. 6.2.

5.2 Future adjacency reduction

As noted in Sect. 4, if Pt+1 is known then we can also attempt to reduce the estimated
number of clashes in St for time-step t + 1 by reducing F(St ), given by Eq. (5).
The approach outlined in Algorithm 2 is a two-stage approach that first attempts to
find a feasible colouring for the current time-step with a target number of colour
classes (Lines 1–10). It then attempts to reduce the estimated number of clashes in the
following time-step (Lines 11–16).

Stage 1 (Lines 1–10) of this approach is almost identical to Algorithm 1 with
the exception that a user-defined, target number of colour classes k� must also
be provided. For Stage 2 (Lines 11–16) a tabu search operator is implemented
that, at each iteration, identifies and executes the best Kempe-chain interchange or
pair swap, and then makes all inverse moves “tabu” for a given number of sub-
sequent iterations (see Sect. 6.2 for specific parameter settings). With regards to
the example given in Sect. 4.1 for Fig. 2, the inverse moves of the Kempe-chain
interchange applied to Kempe(v1, 1, 2) is the Kempe-chain interchange applied to
Kempe(v1, 2, 1), Kempe(v3, 2, 1), Kempe(v6, 1, 2) or Kempe(v7, 1, 2).
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Algorithm 2 Two-stage Approach for “Robust” Colourings
Input: A graph Gt+1, a target number of colour classes k�, a feasible colouring St for Gt such that

|St | ≥ k� and the future adjacency matrix Pt+2
Output: A feasible colouring St+1 for Gt+1 such that |St+1| ≥ k�

1: Sbest ← ∅
2: St+1 ← St modified in some way (see Sect. 5.1)
3: k ← |St+1|
4: while not stopping criterion and |Sbest| �= k� do
5: Attempt to make St+1 a feasible k-colouring for Gt+1
6: if St+1 is a feasible k-colouring for Gt+1 then
7: Sbest ← St+1
8: k ← k − 1
9: if Sbest = ∅ and a computational limit is reached then
10: k ← k + 1
11: Fbest ← F(Sbest) (see Eq. (5) in Sect. 4)
12: while not stopping criterion do
13: Attempt to reduce F(St+1)

14: if F(St+1) < Fbest then
15: Sbest ← St+1
16: Fbest ← F(St+1)

17: St+1 ← Sbest
18: return St+1

6 Experimentation details

6.1 Test instances

In our experiments we consider edge dynamic random graphs. For each test instance
we specify the number of vertices n = |V |, a desired density d, an “expected” change
probability p and a number of time-steps T . In our case we use n = 500,2 d ∈
{0.1, 0.5, 0.9}, p ∈ {0.005, 0.01, . . . , 0.05} and T = 10. These values of n and
d are broadly in line with the parameters of the static random graphs presented in
the benchmark instances (referenced in Sect. 5 and Footnote 1). Preliminary trials
indicated that larger values of p greatly diminished the benefits of using amodification
operator between time-steps. For each combination of these parameters, 20 dynamic
graphs were produced.

In each case, G0 is constructed such that every edge {u, v} ∈ E exists with proba-
bility d. Then for t = 0, 1, . . . , T − 1, every edge in Et is copied to the set of deleted
edges E−

t+1 with probability p and the edges in E\Et are copied to the set of new edges

E+
t+1 with probabilities sampled from the uniform distribution U [0, 2pd

1−d ]. By using
this distribution, each edge in E\Et is copied to E+

t+1 with an expected probability of
pd
1−d which ensures that the density remains approximately equal over all time-steps.

2 Trials were also conducted on test instances with n = 250 and 1000 and the relationships observed
between the different modification operators were similar regardless of the value of n. To reduce the
volume of results presented, we have opted to present results regarding test instances with n = 500 only.
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6.1.1 Legal parameter combinations

Note that at time-step t there are |Et | active edges out of the |E | possible edges between
all the vertices in V where |E | = (|V |

2

)
. If at each time-step a proportion p of the active

edges are deleted and a proportion q of the non-active edges are added then

|Et+1| = |Et | − |E−
t+1| + |E+

t+1|
= |Et | − p|Et | + q(|E | − |Et |).

If we want the density of G to remain approximately equal to d over all time-steps
then |Et | ≈ d|E | for all t and the above equation becomes

|Et+1| = d|E | − pd|E | + q(|E | − d|E |).

Setting |Et+1| = d|E | and rearranging gives q = pd
1−d . Hence, if each edge in Et is

added to E−
t+1 with probability p then each non-active edge in E\Et should be added

to E+
t+1 with probability

pd
1−d .

As q is a probability, it must hold that 0 ≤ q ≤ 1. It therefore follows that p and
d must satisfy pd

1−d ≤ 1 and p ≤ 1−d
d . Because p is also a probability (satisfying

0 ≤ p ≤ 1) these inequalities can only be reasonably violated when d > 0.5. Figure 3
clearly illustrates the legal combinations of p and d (represented by the shaded area).

6.2 Algorithm parameters

For our experiments we used DSatur (Brélaz 1979) as our constructive operator. In
the case of G0, this is used to find an initial colouring (i.e. DSatur replaces Line

0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ytilibaborP
egnah C
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2 in Algorithms 1 and 2 for G0). We used a time limit of 10 seconds3 per time-step
(i.e. Line 4 in Algorithm 1, and Lines 4 and 12 in Algorithm 2). If this time limit had
been set much longer, say hours, then the advantage of modifying colourings between
time-steps obviously diminishes.

Asmentioned in Sect. 5, local search heuristics lend themselves more appropriately
to this short time limit in comparison tomore elaborate evolutionary or hybridmethods.
Therefore, we exclusively use tabu search operators to solve each k-GCP (i.e. Line
5 in Algorithms 1 and 2). More specifically, we use the TabuCol (Hertz and Werra
1987) and PartialCol (Blöchliger and Zufferey 2008) algorithms in the complete,
improper and partial, proper solution spaces, respectively. These algorithms use the
neighbourhood move operators and objective functions outlined in Sect. 3.

At each iteration of these algorithms, the best “non-tabu” move is selected and
executed. The inverse moves are then made “tabu” for 0.6 × f (S ′) + r iterations,
where f is the objective function given in Eqs. (1) and (2) respectively, S ′ is the
resultant colouring after the neighbourhood move, and r is a random integer from the
set {0, 1, . . . , 9} (this tabu tenure is recommended in Blöchliger and Zufferey 2008;
Hertz and Werra 1987).

We implement TabuCol such that only the moves that involve currently clashing
vertices are considered. By doing so, the algorithm only examines the problematic
region of the neighbourhood of all possible moves. By design, PartialCol acts in
a similar manner by only considering the moves that involve currently “uncoloured”
vertices.

Our implementations of TabuCol and PartialCol also include an aspiration
criterion that allows “tabu”moves to be selected and executed if they lead to a colouring
which has fewer clashes or “uncoloured” vertices, respectively, than the best colouring
observed up until that iteration.

During execution, the target number of colour classes is adjusted in the following
way. If a feasible k-colouring, where the initial value of k is defined by themodification
operator, cannot be obtained within half of the allotted time limit then k is increased by
1. If a feasible k-colouring cannot then be obtained within half of the remaining time
limit then k is again increased by1, and so on (i.e. Lines 9 and10ofAlgorithms1 and2).
This adjustment is particularly useful if the initial value of k satisfies k < χ(Gt+1)

(see Sect. 5).
Note that Method 1 operates exclusively in the complete, improper solution space,

and Method 2 operates exclusively in the partial, proper solution space. On the other
hand, Methods 0 and 3 can operate in either solution space as required. Because of
this, only comparisons between methods operating in the same solution space will be
compared (i.e. Methods 1 and 2 will not be compared against one another).

The tabu search operator described in Sect. 5.2 for reducing F(St ) (i.e. Line 13
of Algorithm 2) uses a tabu tenure of |V |

2 iterations, which for our test instances is
250. When applying Algorithm 2 to test instances with d = 0.1, 0.5 and 0.9, we have
found that appropriate values of k� lie in the ranges of 12–18, 48–70 and 125–170

3 All algorithms were programmed in C++ and executed on a 3.3 GHZWindows 7 PC with an Intel Core
i3-2120 processor and 8 GB RAM.
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respectively. If the initial, feasible colouring achieved has less than k� colour classes
then empty colour classes are added until k� is reached.

7 Results

In this section we present analysis of our experimental results. The majority of our
data was found to be non-normally distributed, therefore non-parametric statistical
techniques are employed. Unless stated otherwise, all statistical comparisons are based
on the Wilcoxon signed rank test with significance level α = 0.01.

7.1 Without future adjacency information

We first consider the situation where we have no information regarding the likelihood
of changes between time-steps (i.e. changes to the edge set occur at random). In this
case our goal is to use the available time limit to find feasible colourings for each
Gt ∈ G with the fewest number of colour classes using the approach described in
Algorithm 1.

7.1.1 Initial, feasible colourings

We start by comparing the initial, feasible colourings achievedwhen applying different
modification operators. For all values of d and p tested,Methods 1 and 2were found to
achieve initial, feasible colouringswith significantly fewer colour classes thanMethods
0 and 3 but there is a trade off as they also required significantly more time to do so.
These observations can be seen in Fig. 4 and Table 1, respectively.

A main contributing factor to the time difference may be found in the nature of
the different methods: Methods 0 and 3 both start from feasible colourings, whereas
Methods 1 and 2 do not and therefore require more time to move to a feasible region of
the solution space. In fact, observations in Table 1 with values greater than 5 seconds
indicate that, for at least half of the test instances, with the associated parameters
settings the initial value of k has been increased at least once.

The number of colour classes in the initial, feasible colourings achieved byMethod
3 was found to be significantly and positively correlated to p for all values of d tested.
This leads to observations in which Method 3 achieves initial, feasible colourings
with both significantly fewer and significantly more colour classes thanMethod 0 (see
Fig. 4).

Considering computational effort, we found that the time required by Method 3 to
achieve initial, feasible colourings was significantly less compared to Method 0 for
all values of d and p. Both Methods 0 and 3 employ the same constructive operator
(DSatur); however, Method 0 applies it to the whole graph Gt at each time-step t ,
whereas Method 3 only applies it to a residual graph of Gt , which is subsequently
“smaller” than Gt . We conclude, therefore, that applyingMethod 3 to dynamic graphs
with low values of p is advantageous with regards to both the number of colour classes
in the initial, feasible colourings achieved and the time required to obtain them.

123



334 B. Hardy et al.

12

13

14

15

16

17

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

sessalCruoloCforeb
mu

N

Expected Change Probability

d = 0.1 and S.S. = C.I.

reset calculateClashes solveClashes

12

13

14

15

16

17

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

sessalCru oloCforeb
mu

N

Expected Change Probability

d = 0.1 and S.S. = P.P.

reset uncolourClashes solveClashes

45

50

55

60

65

70

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

sessalCruoloCforeb
mu

N

Expected Change Probability

d = 0.5 and S.S. = C.I.

reset calculateClashes solveClashes

45

50

55

60

65

70

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

sessalCruoloCforeb
mu

N

Expected Change Probability

d = 0.5 and S.S. = P.P.

reset uncolourClashes solveClashes

120

130

140

150

160

170

180

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

sessalCruoloCforeb
mu

N

Expected Change Probability

d = 0.9 and S.S. = C.I.

reset calculateClashes solveClashes

120

130

140

150

160

170

180

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

sessalCruolo Cfore b
mu

N

Expected Change Probability

d = 0.9 and S.S. = P.P.

reset uncolourClashes solveClashes

Fig. 4 Meannumber of colour classes in initial, feasible colourings (LHS representmethods in the complete,
improper solution space, RHS represent methods in the partial, proper solution space, and rows from top to
bottom represent graphs with d = 0.1, 0.5 and 0.9, respectively)

7.1.2 Final, feasible colourings

We now look at the final (or “best”), feasible colourings achieved after applying dif-
ferent modification operators. The Friedman test with significance level α = 0.01
shows no significant difference in the number of colour classes of the final, feasible
colourings achieved when using any of the modification operators on test instances
with d = 0.1. This continues to hold for Methods 0, 2 and 3 operating in the partial,
proper solution space on test instances with d = 0.5.

In comparison to Method 0, Method 1 was found to produce final, feasible colour-
ings with significantly fewer colour classes, for d = 0.5 with small values of p. For
small values of p, it is likely that an algorithm that uses Method 0 will require more
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Table 1 Median time (in seconds) required to obtain an initial, feasible colouring

d M. p

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

0.5 0 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015

1 1.732 2.683 2.504 2.887 3.136 3.362 3.572 3.409 4.126 3.534

2 1.920 2.278 2.511 2.582 3.058 3.097 2.324 2.723 3.058 3.058

3 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗
0.9 0 0.016 0.016 0.016 0.016 0.016 0.031 0.016 0.016 0.016 0.016

1 5.055 5.351 5.312 5.226 5.733 5.406 5.320 5.296 5.421 5.554

2 4.431 5.008 5.039 5.008 5.008 5.039 5.008 5.008 5.086 5.008

3 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

Results for test instances with d = 0.1 are omitted due to their relatively small values, which were deemed
to be insufficiently accurate to present
0 represents a time less than 10−3 seconds
∗ A time that is significantly less than all others for the same values of d and p

time to achieve a feasible colouring with the same number of colour classes as the
initial, feasible colourings achieved byMethod 1, which is often also the final, feasible
colouring.

On the other hand, Methods 1 and 2 achieve final, feasible colourings with signif-
icantly more colour classes than Method 0 for d = 0.9 with some values of p. This
observation is likely due to the relatively large amount of time required by Methods 1
and 2 to find an initial, feasible colouring compared to Method 0 for d = 0.9 with all
values of p (see Table 1). This “wasted” time then translates to time not being allo-
cated to finding feasible colourings with fewer colour classes. For the same reasons,
Method 3 was observed to achieve final, feasible colourings with significantly fewer
colour classes than those achieved when using Methods 0 to 2 for d ∈ {0.5, 0.9} with
some values of p.

The following time comparisons correspond to trials where employing the cor-
responding modification operators achieved final, feasible colourings with an equal
number of colour classes. These results are displayed in Table 2.

When usingMethods 1 and 2, the time required to achieve a final, feasible colouring
was found to be significantly less for d = 0.1 with all values of p compared toMethod
0. Both of these methods were also able to reach final, feasible colourings significantly
faster than Method 3 for d = 0.1 with some values of p. These observations are again
likely due to the fact that the initial, feasible colourings achieved by Methods 1 and 2
are also the final, feasible colourings achieved for d ∈ {0.1, 0.5} with low values of
p. The opposite was found to hold for d = 0.9 and most values of p. This is probably
the result of the “wasted” time mentioned previously with regards to finding an initial,
feasible solution for d ∈ {0.5, 0.9} and high values of p.

Unlike Methods 1 and 2, Method 3 did not require significantly more time than
Method 0 for any combination of d and p to achieve final, feasible colourings. More-
over, for d = 0.1 with all values of p, and d = 0.5 with some low values of p,
it required significantly less time. It should be highlighted that for low values of p,
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Table 2 Median time (in seconds) required to obtain final, feasible colourings with an equal numbers of
colour classes across all modification operators for the given solution space

d S.S. M. p

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

0.5 C.I. 0 3.947 3.682 3.245 3.276 3.799 3.417 3.316 3.931 2.839 2.901

1 1.607 2.824 3.058 3.385 3.167 3.783 3.635 3.931 4.227 3.572

3 0.874∗ 1.622 2.348 2.325 3.526 2.801 2.987 3.151 3.166 3.105

P.P. 0 3.136 3.198 2.855 2.668 2.996 2.800 2.481 2.980 3.237 2.933

2 2.247 2.200 2.589 3.299 3.869 3.121 2.402 2.964 3.620 2.823

3 1.669 2.324 2.324 2.207∗ 2.746 2.714 2.901 2.652 2.769 2.948

0.9 C.I. 0 5.662 5.351 4.977 6.052 4.586 4.882 5.710 4.695 5.195 4.984

1 6.661 7.191 7.129 7.442 7.894 7.378 7.559 7.550 7.488 7.933

3 6.224 3.993∗ 4.711 5.507 4.150 5.616 6.139 5.070 5.132 4.851

P.P. 0 4.274 4.851 6.100 5.218 5.117 3.947 4.532 4.095 4.226 4.789

2 4.852 5.460 5.257 5.640 5.882 6.380 6.217 5.881 6.396 6.021

3 4.259 4.477 4.337 5.117 5.226 3.885 4.228 4.454 5.070 4.789

As with Table 1, results for test instances with d = 0.1 are omitted as they were deemed to be insufficiently
accurate to present
∗ A time that is significantly less than all others for the same solution space, and values of d and p

Method 3 is able to produce initial, feasible colourings with significantly fewer colour
classes thanMethod 0 and requires less time to do so. This has a knock-on effect which
allows the algorithm to attempt to find feasible colourings with fewer colour classes
from an earlier point in the allotted time limit.

7.2 With probabilistic future adjacency information

We now consider the situation where the future adjacency matrix P(t+1) is known for
every time-step t ∈ {0, . . . , T − 1}. By using this additional information we have
implemented the approach outlined in Algorithm 2 in an attempt to produce more
robust colourings. Here we explore how our approach affects the initial number of
clashes at the start of each time-step, the number of colour classes in the initial,
feasible colourings achieved, and the time required to achieve these colourings. Final,
feasible colourings are not be explored, because altering the value of k� will naturally
cap the number of colour classes in these colourings.

7.2.1 Initial clashes

The secondary objective of the approach outlined in Algorithm 2 is to reduce the
value of F(St ) such that the returned colouring St has fewer expected future clashes
for Gt+1. To measure the effectiveness of our approach, we compare the number
of clashes at the start of the following time-step when using our approach against an
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Table 3 Significant differences between the number of clashes at the start of each time-step when using
modification operator 3 (solveClashes) within our approach (Algorithm 2) compared against an algorithm
without any secondary optimisation on test instances with d = 0.1

k� p

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

12 – – – – – – – – – –

13 – – – – – – – – – X

14 – – – X X X X X X X

15 – X X X X X X X X X

16 – X X X X X X X X X

17 X X X X X X X X X X

18 X X X X X X X X X X

“X” indicate that our approach achieves colourings with significantly fewer clashes, and “–” indicates no
significant difference

algorithm that does not include a secondary optimisation stage (i.e. againstAlgorithm2
with Lines 11–16 omitted).

Our results show that the number of clashes at the start of the following time-
step is significantly reduced dependent on both k� and p. As k� becomes larger than
χ(Gt+1), we begin to observe fewer clashes at the start of the time-step t + 1 for
higher values of p. This is likely due to the fact that as k� increases, so too does the
number of feasible k�-colourings, which grants more opportunities for our method to
reduce F(St ). Moreover, as k� increases, the values of p decrease for which we first
observe these significant reductions.

For example, consider test instanceswith d = 0.1where it is likely thatχ(Gt ) ≈ 12
or 13 for all t ∈ {0, 1, . . . , T } (illustrated in Table 3). When using Method 3 within
our approach and operating in the complete, improper solution space, significantly
fewer clashes were observed for k� = 13 with p = 0.05, k� = 14 with p ≥ 0.02,
k� ∈ {15, 16} with p ≥ 0.01, and k� ∈ {17, 18} with all values of p.

It can also be shown that the magnitude of the reduction is significant and positively
correlated with k� for all modification operators. This can be seen in Fig. 5 where the
two lines (corresponding to the omission and inclusion of secondary optimisation)
become further apart as the value of k� increases.

7.2.2 Initial, feasible colourings

Here, we assume that if a colouring St has fewer clashes for the following time-step
then our modification operators should require less time to achieve initial, feasible
colourings. It might also be possible that these initial, feasible colourings will have
fewer colour classes.We now investigate whether our results support these hypotheses.

In our experiments we found that secondary optimisation of F(St ) significantly
reduced the time required to achieve initial, feasible colourings when using Methods
1 and 2 formost instanceswith d = 0.9, k� ≥ 143 and p ≥ 0.01 and 0.02, respectively.
For these test instances, we also observed a high level of reduction with regards to
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Fig. 5 Mean number of clashes in St for time-step t + 1 against the target number of colour classes k� for
test instances with d = 0.5 and p = 0.05 whilst applying modification operator 1 (calculateClashes)

the number of clashes at the start of a time-step, which supports our hypothesis that
reducing clashes leads to reduced time requirements. Conversely, there appears to be
no effect on the number of colour classes in the initial, feasible colouring achieved
when using Methods 1 and 2.

However, these modification operators are still able to produce initial, feasible
colourings with significantly fewer colour classes than Method 0 provided that k� is
small enough (i.e. k� ≤ 15, 66 and 164 for test instances with d = 0.1, 0.5 and 0.9
respectively). In addition, the time required to achieve these colourings is dependent
on both k� and p, as illustrated in Table 4. Therefore, our secondary optimisation when
used in conjunction withMethods 1 and 2 can produce initial, feasible colourings with
fewer colour classes and require less time to do so in comparison to Method 0 for low
values of k� and p.

For Method 3 there is no significant difference in the time required to reach an
initial, feasible colouringwhen including or omitting the secondary optimisation phase
in most cases. In the few instances where differences do occur (for test instances with
d = 0.9, operating in the complete, improper solution space), there are no observable
patterns with regards to the values of k� and p. In comparison to Method 0, for all
values of k�, d and p, Method 3 requires significantly less time to achieve initial,
feasible colourings for the same reasons outlined in Sect. 7.1.

With regards to the number of colour class in the initial, feasible colourings achieved
by Method 3, any significant differences when compared against omitting the sec-
ondary optimisation appear to be dependent on k�. For low values of k� there are
no significant differences. For mid-range to high values of k� there is a significant
reduction (an example of which is illustrated in Fig. 6). On the other hand, significant
increases were observed for test instances with d = 0.1, the highest values of k� and
low values of p. When k� is much larger than χ(G) for a given graphG, our algorithm
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Table 4 Significant differences between the time required to achieve an initial, feasible colouring when
using modification operator 1 (calculateClashes) within our approach (Algorithm 2) compared against
Method 0 on test instances with d = 0.9

k� p

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

125 O O O O O O O O O O

128 O O O O O O O O O O

131 O O O O O O O O O O

134 O O O O O O O O O O

137 O O O O O O O O O O

140 – O O O O O O O O O

143 X X O O O O O O O O

146 X X – O O O O O O O

149 X X X X – O O O O O

152 X X X X X – – O O O

155 X X X X X X X X – O

158 X X X X X X X X X –

161 X X X X X X X X X X

164 X X X X X X X X X X

167 X X X X X X X X X X

170 X X X X X X X X X X

“X” indicate that our approach requires significantly less time, “O” indicates the opposite, and “–” indicates
no significant difference
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Fig. 6 Mean number of colour classes in initial, feasible colourings for test instances with d = 0.5 and
k� = 60 whilst applying modification operator 3 (solveClashes) in the complete, improper solution space
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Table 5 Significant differences between the number of colour classes in the initial, feasible colourings
achieved when using modification operator 3 (solveClashes) within our approach (Algorithm 2) compared
against Method 0 on test instances with d = 0.5

k� p

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

48 X X X X X X X X – O

50 X X X X X X X X X O

52 X X X X X X X X – O

54 X X X X X X – O O O

56 X X X X – O O O O O

58 X X X O O O O O O O

60 X X O O O O O O O O

62 – O O O O O O O O O

64 O O O O O O O O O O

66 O O O O O O O O O O

68 O O O O O O O O O O

70 O O O O O O O O O O

“X” indicate that our approach achieves colourings with significantly fewer colour classes, “O” indicates
the opposite, and “–” indicates no significant difference

is more likely to find an initial, feasible k-colouring for G such that k < k� and, there-
fore, a number of empty colour classes will be added to this colouring (see Sect. 6.2).
During secondary optimisation, it is likely that vertices are being moved into these
empty colour classes and, subsequently, these colour classes are less likely to feasi-
bly accommodate “newly clashing” vertices at the start of the following time-step.
Therefore, depending on the test instance, our experiments appear to both support and
contradict our hypothesis with regards to secondary optimisation leading to initial,
feasible colourings with fewer colour classes.

In comparison to Method 0, the number of colour classes in the initial, feasible
colouring produced by this modification operator are dependent on k� and p, similar
to the case without future adjacency information. For low values of k� and p, there
are significantly fewer colour classes and vice versa for high values of k� and p. As
k� increases, the value of p decreases, for which these significant differences can be
observed, as illustrated in Table 5.

8 Conclusions and future work

This paper has introduced a number of methods for modifying colourings for graphs
whose edge sets are subject to change over time.We have also introduced a tabu search
method which maintains the feasibility of a colouring for the current time-step whilst
attempting to reduce the estimated number of clashes in the subsequent time-step, thus
producing more robust colourings.
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Our experiments have shown that, for edge dynamic graphs without future adja-
cency information, initial colourings with significantly fewer colour classes can be
achieved by using Methods 1 and 2 (calculateClashes and uncolourClashes, respec-
tively), which both modify a feasible k-colouring forGt into an infeasible k-colouring
forGt+1 and then pass this colouring directly to a tabu search operator. However, there
is a significant trade off with respect to the time required to achieve an initial, feasible
colouring when these modification operators are applied. These operators were also
found to achieve final, feasible colourings with both significantly fewer or more colour
classes depending on p. The time required to achieve comparable final colourings via
these methods also appears to be dependent on both d and p.

It has also been shown, again without future adjacency information, that Method
3 (solveClashes), which modifies a feasible k-colouring for Gt into a feasible k′-
colouring for Gt+1 such that k′ ≥ k, can also achieve initial, feasible colourings with
significantly fewer colour classes for small values of p. This modification operator
was also shown to require significantly less time to produce initial, feasible colourings
for all values of d and p. Finally, this modification operator also results in final,
feasible colourings with the same or significantly fewer colour classes and requires
significantly less time to do so for low values of d and p.

By using future adjacency information to reduce the estimated number of clashes
in the following time-step, the number of clashes observed at the start of each
time-step is significantly reduced for high values of k� and p. In some cases, reduc-
ing the initial number of clashes has also reduced the amount of time required to
achieve initial, feasible colourings and the number of colour classes in these colour-
ings.

All of the previous conclusions against Method 0 (reset) without future adjacency
information continue to hold here but become dependent on the value of k� also, with
the strength of the statements diminishing as the value of k� increases.

Future issues of interest may include the addition of a cost associated with altering
the colour of a vertex between time-steps, in a similar fashion to the dynamic frequency
assignment problem in Dupont et al. (2009). If a colouring is no longer feasible in the
subsequent time-step, then it is desirable to achieve feasibility by “recolouring” as few
vertices as possible. We hypothesise that reducing the estimated number of clashes
in the following time-step will also reduce the number of colour changes required
between time-steps.

Moving away from the edge dynamic GCP, some of our previous work has intro-
duced and explored the effects of modification operators for the vertex dynamic GCP
without future change information (see Hardy et al. 2016). We plan to extend this
work, as we have done here, to explore the situation where information regarding the
likelihood of future changes is provided. More specifically, we wish to investigate
whether this information can again be used in some advantageous way.

The main foreseeable problem with such work is the difficulty in formulating a
“future cost” function analogous to Eq. (5) for the vertex dynamic problem. When a
new vertex is introduced, it is not determined beforehand which colour class it will be
placed in, which makes the question “how likely is it that we can feasibly colour the
new vertex?” a very difficult one to answer in practice.
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