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Abstract The inspiral and merger of two orbiting black holes is among the most
promising sources for the first (hopefully imminent) direct detection of gravitational
waves (GWs), and measurements of these signals could provide a wealth of informa-
tion about astrophysics, fundamental physics and cosmology. Detection and measure-
ment require a theoretical description of the GW signals from all possible black-hole-
binary configurations, which can include complicated precession effects due to the
black-hole spins. Modelling the GW signal from generic precessing binaries is there-
fore one of the most urgent theoretical challenges facing GW astronomy. This article
briefly reviews the phenomenology of generic-binary dynamics and waveforms, and
recent advances in modelling them.
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1 Introduction

Our first major physical theory was Newton’s law of gravitation, which was powerful
enough to describe both the fall of fruit on Earth and the orbits of planets in the solar
system. Newton’s calculations of two-body dynamics from one general law were the
central triumph of the scientific revolution. Now Newton’s theory of gravitation has
been upgraded to Einstein’s general theory of relativity, where two-body dynamics can
become far more complex, and may once again be the catalyst for discoveries about
the universe. The motion of two orbiting bodies has been modified in two important
ways. (1) All acceleration generates gravitational waves; those generated by the orbital
motion carry away energy, which causes the orbital separation to slowly decrease, and
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the bodies to spiral together. (2) The angular momenta of the bodies are no longer
individually conserved, and in general their individual angular momenta (spins), and
the orbital plane of the binary, all precess. These effects are weak when the two bodies
are far apart (being only a small correction to the Newtonian description), but for
compact objects like neutron stars and black holes, which may continue to orbit up
to very small separations, the precession effects can lead to wild complex dynamics,
before the inspiral terminates in a collision that produces an intense final burst of
gravitational radiation.

The extreme physics of black-hole and neutron-star inspiral and merger may soon
be measurable by the new gravitational-wave observatories Advanced LIGO (aLIGO)
and Advanced Virgo (AdV), which are due to come online in 2015-2016 [1,2]. The
primary goal of these experiments is to make the first direct detection of gravitational
waves, and our current understanding of astrophysics suggests that “compact binary
coalescences” are most likely to provide the first detections; indeed, when aLIGO and
AdV reach their design sensitivity around 2018 [3], they may observe neutron-star and
black-hole mergers on a daily basis—although the uncertainty in astrophysical event
rates is so large that they are also consistent with no detections at all [4].

Our ability to observe the gravitational waves from binary mergers, and in particular
to measure the binary’s properties from the GW signals (their masses and angular
momenta, and the binary’s location in the sky and distance from Earth), all depend on
theoretical predictions of the signals produced by all possible binary configurations.

The GW signal from the slow inspiral can be predicted by a post-Newtonian (PN)
expansion of the Einstein equations [5]. The late inspiral and merger requires numerical
solutions of the full nonlinear Einstein equations [6]. Both approaches are necessary
because the PN approximation breaks down as the black holes approach merger, and
numerical-relativity (NR) simulations are too computationally expensive to generate
waveforms that cover the thousands of orbits that could be observable by aLIGO
and AdV. The construction of complete inspiral-merger-ringdown (IMR) models for
generic-binary configurations in principle require NR simulations across a seven-
dimensional parameter space (explained in more detail in Sect. 2). By 2010 models
had been produced for a subset of binary configurations that do not precess (the black-
hole spins are parallel to the binary’s orbital angular momentum, as I will describe
later). In these configurations the waveforms have a simple structure, and most of the
signal power resides in the dominant waveform harmonic, and we need only model
its (relatively simple) amplitude and phase. These models required 20–30 numerical
simulations [7–11]. A simple counting argument suggests that extending these models
to generic configurations would require tens of thousands of simulations. In addition,
the precession spreads the signal power across other waveform harmonics, making the
modeling of these waveforms (not just describing a single waveform, but also the subtle
waveform variations with respect to binary configurations) far more challenging. In
the strong-field regime near merger the detailed phenomenology of generic binaries
can be determined only after the numerical simulations have been performed, so a
judicious sampling of that parameter space is difficult to estimate a priori. For these
reasons, modeling the GW signal from generic binary mergers has become the most
urgent theoretical challenge facing gravitational-wave astronomy.
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The statements above summarize our understanding of the problem around 2010.
Since then a number of important studies have shown how to factorize out the com-
plex precession effects from the waveforms, and have indicated that we can, to a
good approximation, produce generic models by applying a time-dependent rota-
tion to non-precessing-binary waveforms, based on the precessional dynamics of the
particular configuration we wish to describe. In other words, we can “twist up” the
non-precessing-binary models that we already have to produce generic models. This
is an approximation that does not remove all of the issues in generic-binary waveform
modeling, and so far includes only a rudimentary treatment of the merger and ring-
down phase—but these results nonetheless mark a huge step forward in the modeling
of generic systems, and suggest that a solution sufficient for the needs of gravitational-
wave astronomy may be possible in the near future.

The purpose of this review is to expand on the above. The focus is on the goal of
constructing IMR models for generic-binary systems. I will summarize the basic phe-
nomenology of generic-binary dynamics and waveforms (Sect. 2), the PN description
of the inspiral (Sect. 3), and then IMR models from the current non-precessing-binary
models (Sect. 4) through to the latest results in generic-binary modelling (Sect. 5). At
the end I will discuss some of the remaining issues and challenges (Sect. 6).

2 The effect of spin on binary dynamics and waveforms

The effect of spin on the dynamics of two compact bodies was first considered by
Barker and O’Connell [12]. Extensive reviews of early work are given in Refs. [13,14].
The phenomenology of the binary dynamics and the gravitational-wave signals are
discussed and illustrated in detail by Apostolatos et al. [15] and Kidder [16]. In this
section I summarize these effects in the order of their impact on the GW signal, which
mimics the progress of GW-modelling efforts in recent years.

In the following we consider two black holes of masses m1 and m2, and refer to
the total mass as M = m1 + m2. The mass-ratio between the two black holes is
q = m1/m2, where m1 > m2 and q > 1, although other conventions are also used
in the literature. A less ambiguous indicator of the mass ratio is η = m1m2/M2,
which is independent of whether we define q > 1 or q < 1. If the black-hole spin-
angular-momenta are S1 and S2, then the dimensionless spins are χ1 = |S1|/m2

1 and
χ2 = |S2|/m2

2, and χi ∈ [0, 1], where χ = 1 corresponds to an extreme Kerr black
hole.

The mass ratio and spin vectors give us a seven-dimensional parameter space. In
this work we consider only black-hole binaries following non-eccentric inspiral, and
so eccentricity does not add to our total parameter count. We do this because we
expect that by the time most binaries enter the aLIGO and AdV sensitivity bands, any
eccentricity present at the binary’s formation will have essentially radiated away [17].
We also do not need to include the total mass of the binary in analytic or numerical-
relativity calculations, because this defines the overall length scale of the spacetime,
and can be factored out of any solution. In applications of our waveforms to GW
astronomy, however, the mass scale must be included, as well as the particular form of
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Fig. 1 Phenomenology of inspiral for aligned-spin systems. The figures show the motion of one black hole
in a mass-ratio 1:4 binary, from a separation of D ≈ 8M through to merger, where M is the total mass of
the binary. For a binary with total mass 25 times that of our sun, 8M would be approximately 300 km, and
the inspirals shown would all take less than a quarter of a second. The central figure depicts a binary made
up of nonspinning black holes; in the left figure the spins are parallel to the orbital angular momentum, and
in the right figure they are in the opposite direction; the spins are χi = 0.75. The “hang-up” effect aligned
with spins is clear

the GW signal for a given binary orientation, polarization, distance and sky position—
but these intrinsic parameters do not need to be included in the waveform model.

2.1 Non-precessing systems

If two black holes do not spin, or if their spins are parallel to the orbital angular
momentum of the binary, then the direction of the orbital plane of the binary is fixed.
The black holes follow non-eccentric, but slowly decaying orbits. The rate of decay is
determined by the loss of energy due to gravitational radiation, and this is a function
both of the black-hole masses, but also their spins. In a post-Newtonian expansion of
the equations of motion, we can see that if the spins are parallel to the orbital angular
momentum, then the rate of energy loss is reduced, and the black holes inspiral more
slowly, e.g., see Eqn. (1) in Ref. [18]. If the spins are in the opposite direction to the
orbital angular momentum, then the black holes inspiral more quickly. This effect
is illustrated in Fig. 1 for three spin configurations of a mass-ratio 1:4 binary. As
the inspiral proceeds, angular momentum is radiated from the system and the orbital
angular momentum of the binary decreases; although the spin magnitudes can vary in
some PN treatments (see, for example, Ref. [19]), this effect is far smaller than other
uncertainties in the PN calculations, and in all waveform models discussed here the
spin magnitudes are treated as constant.

2.2 Precession

When the spins are not aligned with the orbital angular momentum, then spin-orbit
and spin-spin couplings lead to precession of the spins and orbital plane. This is a
purely relativistic effect: in Newtonian physics the individual angular momenta of the
two bodies, and of the total system, are all individually conserved. In the absence of
gravitational radiation, the direction of the total angular momentum L̂ would remain
fixed, and the orbital and spin angular momenta all precess around it, i.e., J̇ = 0 and
so L̇ = −Ṡ. For single-spin systems it is possible to estimate the rate of precession,
i.e., the angular speed of L̂ about Ĵ, to be Ωp ∝ J/r3, where r is the separation of the
binary [15]. When we include radiation-reaction effects, we find that in most cases
the direction of Ĵ remains approximately fixed; it is certainly the closest we have to a
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Fig. 2 As in Fig. 1, but for a mass-ratio 1:3 binary, where the larger black hole’s spin is χ1 = 0.75, and
is perpendicular to the orbital angular momentum, leading to significant precession. The precession over
several orbits is mild at large separations (left), but leads to complicated dynamics near merger (right)

fixed direction during the inspiral. Figure 2 shows an example of the orbital motion
of one of the black holes in a precessing binary.

The exceptions to this description are configurations where the black-hole spins are
almost anti-aligned with the total angular momentum, such that |J| = |L+S| ≈ 0. Now
there is no fixed precession axis, and the orbital plane “tumbles” in space [15]. Loss
of angular momentum through gravitational-wave emission means that this situation
cannot persist indefinitely; |L| decreases while |S1| and |S2| remain fixed, and |J | does
not remain small. For this reason the phenomena is known as transitional precession.
Although a fascinating effect, transitional precession will be rare in binaries that are
observable by GW detectors: it requires very particular spin configurations, which
would have to be met while the binary is within the detectors’ sensitivity band.

2.3 Waveforms

We can see the effect of precession on the gravitational-wave signal simply by con-
sidering the leading-order quadrupole contribution, which takes into account only
variations in the moment of inertia of the binary, i.e., the accelerations of the two
bodies. For an orbiting binary, the wave signal estimated from the quadrupole approx-
imation is directed predominantly perpendicular to the orbital plane. This is why, in
a non-precessing binary, the GW signal is strongest directly above or below the plane
of the binary. This dominant contribution to the signal can be represented entirely by
the (l = 2, |m| = 2) spin-weight (−2) spherical harmonics, which means that the
signal will be the same for all orientations of the binary, up to an overall amplitude
factor and phase offset. This simplifies both the modeling of these signals—to a good
approximation we can focus on only the (2,±2) modes—and searches for them in
detector data. Most searches comb through the data with a template bank of theoretical
waveforms, and in these non-precessing configurations the search template bank does
not need to include waveforms that vary with respect to binary orientation and detector
polarization, because these do not change the functional form of the waveform; the
search only need cover a parameter space of the two masses and spin magnitudes.
(To date actual searches in detector data have considered only nonspinning black
holes, so the template banks have been two-dimensional; the most recent examples
are Refs. [20,21]).

When the orbital plane precesses, the principal emission direction will also precess.
Now the waveform structure is more complicated. If the inclination angle between L
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Fig. 3 Gravitational waveforms for the mass-ratio 1:3 system shown in Fig. 2. In the upper figure the
observer is oriented approximately along the direction Ĵ, and the effect of precession on the waveform is
minimal. In the lower figure the observer is perpendicular to Ĵ, and significant modulation effects are visible

and J is small, and the wave signal is decomposed with respect to spin-weighted
spherical harmonics −2Y�m(θ, φ) that are defined such that the θ = 0 direction (the ẑ
axis) is aligned with J, then the signal can again be represented to a good approximation
by only the (2,±2) modes. But there will now be a quadrupole contribution to other
l = 2 harmonics, which grows as the L̂–Ĵ inclination angle is increased. Furthermore,
the signal will now vary significantly depending on the relative orientation of the
binary to the detector; now that the dominant quadrupole contribution to the signal is
made up of all l = 2 harmonics, the variations in the waveform with binary orientation
cannot be treated as an overall amplitude factor in a search (although of course the
orientation-dependence of the waveform can be described analytically, by varying
(θ, φ) in the spherical harmonics).

This is illustrated in Fig. 3, which shows the GW signal from a precessing mass-
ratio 1:3 binary from two different orientations, where the observer is aligned with
Ĵ, and where the observer is perpendicular to Ĵ. We might loosely refer to these
orientations as “face-on” and “edge-on”, but this is misleading. Since L̂ precesses
around Ĵ, the average direction of the normal to the orbital plane lies approximately
along Ĵ, but the observer is in fact never exactly face-on to the binary. Similarly,
in configurations with a large L̂–Ĵ inclination angle, we may choose orientations
where the binary alternates between being face-on and edge-on as the precession
progresses. Nonetheless, the waveform viewed from the Ĵ-aligned orientation appears
very similar to one from a non-precessing binary, and indeed would be difficult to
distinguish in a GW observation. It is also important to note that it is the waveform
phase, not amplitude, that has the dominant effect in waveform measurements, and
these figures are a meaningful illustration of the differences in the waveforms with
respect to orientation only because modulations in waveform amplitude and in phase
are closely related. If that were not the case and these two waveforms had the same
phase evolution, these two waveforms would be difficult to distinguish if used in a
search template bank.

Having summarized the phenomenology of binary dynamics and waveforms, I will
move on to the details of waveform modelling.
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3 In the beginning: inspiral

The early inspiral of the binary, from which thousands of GW cycles may be visible to
ground-based detectors, can be described by a post-Newtonian (PN) approximation to
the Einstein equations. A detailed summary of PN calculations of the orbital dynamics
and waveforms is beyond the scope of this short review; the reader is referred to
Blanchet [5] for a thorough review of the current status of PN calculations, and to
Apostolatos et al. [15] and Kidder [16] for detailed illustrations of the phenomenology
of precessing systems.

The key ingredients in the construction of most PN waveforms for generic systems
following adiabatic quasicircular inspiral are: (1) The orbital frequency evolution,
which depends on the total mass M , the mass ratio η, and the components of the
bodies’ spins Si . (2) The precessional dynamics, expressed as equations of motion for
L and Si . (3) The waveform polarizations as a function of the orbital motion.

Ingredients (1) and (2) arise from the equations of motion for the conservative
dynamics (i.e., without gravitational radiation), plus the gravitational-wave flux terms.
In the equations of motion the non-spinning terms are known up to 3.5PN order [5],
and the energy for circular orbits up to 4PN [22]. Spin-orbit coupling terms are also
known up to 3.5PN order [23,24]. Spin-spin couplings are known to next-to-leading-
order (NLO, 3PN), and some terms are also known to next-to-next-to-leading-order
(NNLO, 4PN) [25,26]. In the flux NNLO (3.5PN) spin-orbit terms are known [27], and
“tail” effects to next-to leading order (4PN) [28], while spin-spin effects are known
only to leading order (2PN) [29].

Note that the expressions for the GW phasing at a given PN order are not unique,
and that depending on the way the PN terms are truncated in the calculation of a given
“approximant”, the results will differ in the error terms at higher PN orders.

The GW polarization amplitudes are known to 3PN order in nonspinning terms [5],
although the 3.5PN contribution to the (� = 2, m = 2) harmonic is also known [30].
The spin terms are known only to their respective (spin-orbit, spin-spin, and tail)
leading orders, which means that the highest PN order for which all spin terms are
consistently known is 2PN [31].

Note that some of these terms were calculated only in the last year. Some higher-
order spin terms are likely to appear in the near future, while others (for example
calculations to 4PN order in the flux) will be far more challenging. The convergence
properties of the PN expansion are poorly understood, and it is not clear how many more
terms are necessary to reach the desired accuracy for GW observations. Our current
understanding, based on comparisons of all of the available approximants, is that
nonspinning PN waveforms are sufficiently accurate for low-mass systems where the
merger and ringdown are at the high-frequency edge of the detectors’ sensitivity band
(i.e., for detection of neutron-star binaries [32]), but that the uncertainty in spinning PN
waveforms from low-mass systems (in particular neutron-star–black-hole binaries) is
large enough to cause some reduction in detection efficiency [33,34]. The accuracy
of PN waveforms for many non-precessing-binary configurations has been quantified
near merger (where the PN waveforms are least accurate) by comparison with fully
general-relativistic NR calculations [35–39], and these comparisons have provided
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independent validation for the use of PN waveforms during the inspiral, up to a few
orbits before merger.

The accuracy of the PN waveforms could in principle be improved by an appro-
priate resummation of the series. This has been achieved to a remarkable degree by
the effective-one-body (EOB) programme. The conservative dynamics are mapped to
the motion of a test particle in an effective metric, which is the Schwarzschild met-
ric deformed by the symmetric mass ratio η. This was first proposed by Buonanno
and Damour [40]. In follow-up work the flux terms responsible for radiation reac-
tion were also resummed (initially by Padé resummation) to produce the full inspiral
dynamics, and the GW signal was constructed at leading (quadrupole, or “restricted”)
PN order [41]. The inspiral waveform was then matched to a ringdown waveform at
the “light ring” (an unstable orbit for massless particles), motivated by test-mass and
close-limit-approximation results. Those results constituted the first prediction of a
full inspiral-merger-ringdown (IMR) waveform.

The first EOB model for non-spinning binaries in 2000 was followed in 2001 by an
extension to spinning objects [42], using an effective Kerr metric, although it was later
found that similar accuracy can be obtained by simply augmenting the non-spinning
EOB Hamiltonian with standard PN spin terms [43].

These models were based on heuristic arguments for the phenomenology of the
merger (in particular that the inspiral makes a rapid transition to ringdown at a certain
point, and this point can be estimated as the light ring), but had to wait for full numerical
simulations in 2005 [44–46] for confirmation and further extension.

4 Start simple: complete models for non-precessing binaries

The first IMR model calibrated to numerical simulations was produced using a dif-
ferent (“phenomenological”) approach [47], motivated by the need in GW searches
for computationally efficient frequency-domain models. This work proposed separate
phenomenological ansatzes for the GW phase and amplitude, based on PN results
for the inspiral, empirical observations of the late-inspiral/merger phase [48], and
ringdown results from perturbation theory. The coefficients in these ansatzes were
determined from NR simulations of nonspinning binaries, and these in turn were used
to produce an analytic fit of the coefficients across the parameter space. One of the
key results of this work (besides the construction of the first NR-based IMR model),
was that the phenomenological coefficients varied almost linearly with respect to the
binary’s mass ratio, suggesting that a complete nonspinning-binary model could be
constructed from only a small number (∼5) of NR simulations.

Spinning binaries present a far greater challenge, with six additional parameters
(the components of the two spin vectors). Modelling efforts began first with the simple
subset of non-precessing binaries, where the spins are parallel or anti-parallel to the
binary’s orbital angular momentum. As described earlier, the dominant effect of the
spin in these cases is to increase or decrease the rate of inspiral; it will also modify the
spin of the final black hole, since to first approximation Jfinal = L + S1 + S2, where
we consider the orbital and spin angular momenta just prior to merger [49]; more
accurate expressions of the final spin based on NR simulations have been calculated
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for both non-precessing [50] and generic binaries [51]. Besides these spin effects, the
basic structure of the waveforms remains unchanged from nonspinning configurations,
which greatly simplifies the modelling.

In PN theory we also find that the dominant spin effect on the inspiral rate arises
from a combination (essentially a weighted sum) of the two spins [52]. Ajith et al.
realized that this allows us to construct a simple non-precessing-binary model with
only three physical parameters (M, η, χeff) [7,9], where χeff is a total-effective-spin,
χeff = (m1χ1 +m2χ2)/M , which is closely related to the “reduced spin” combination
that appears in PN expressions [52,53]. Such reductions in the parameter space are
important: they identify the dominant physical effects in the waveforms, and therefore
the physical parameters (or, more often, and unfortunately, combinations of physical
parameters) that could be measured in GW observations; they reduce the number of
templates necessary in a GW search, which is crucial to make such searches com-
putationally feasible; and they potentially reduce the parameter space of necessary
NR simulations to construct models. The total-effective-spin was used in the first NR-
based non-precessing-binary IMR model, which was proposed in Ref. [7] (using 26 NR
simulations) with only minor modifications to the procedure introduced in Ref. [54],
and later refined to use the most accurate PN expressions for the inspiral [9].

In the case of the EOB IMR models, it was found that the EOB dynamics, while
they display much-improved accuracy over the original PN calculations, do not agree
sufficiently at the known PN order with fully general-relativistic NR results near
merger. (Note that while the phenomenological models require the PN waveforms
to be sufficiently accurate up to only ∼10 orbits before merger, when they make a
transition to an NR-calibrated model, EOB models require the EOB dynamics to be
accurate all the way to merger. One’s definition of “sufficiently accurate” depends on
the application, and remains a subject of study; see Sect. 6 for more). To overcome this,
a “pseudo-4PN” term was introduced and calibrated to equal-mass nonspinning NR
simulations [55]. Further adjustable parameters were later introduced into the EOB
Hamiltonian, the flux terms, the resummation of the waveform modes, and (when
extending to spinning systems) the matching time to ringdown modes; all of these
parameters were fit to NR simulations.

Nonspinning “EOBNR” models were introduced shortly after the first phenom-
enological model, and successively refined with additional NR simulations, fur-
ther adjustable parameters, and a more accurate resummation (factorization) of the
waveform modes [56,57]; the most recent nonspinning-binary model is presented in
Ref. [58], and a model with harmonics beyond � = 2 is presented in Ref. [59]. A first
non-precessing-binary model was introduced in 2010 [8]. Unlike the phenomenolog-
ical models, it included the magnitudes of both black-hole spins. It was updated in
2012 [10] based on an improved spinning EOB Hamiltonian [60], and more recently
calibrated to a larger set of 27 numerical simulations [11].

The EOBNR models are currently computationally expensive to generate, which
limits their practicality for GW parameter estimation. However, there have been recent
efforts to use reduced-order modelling techniques to construct efficient and accurate
surrogate models. Test models of the nonspinning EOBNR model have been con-
structed over a series of mass-ratio intervals [61], as well as a complete reduced-order
model of the non-precessing SEOBNR (version 1) [62]. Related methods have also
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been applied to phenomenological models, for example in Ref. [63] singular-value-
decomposition (SVD) methods were used to calibrate a reduced basis of nonspinning
phenomenological waveforms against a set of NR waveforms [63]. These methods
are likely to play a key role in providing usable waveform models for GW astronomy
applications in the coming years.

5 The final challenge: generic binaries

The leap from non-precessing to generic binaries is large: the phenomenology of the
binary dynamics and waveforms becomes far more complex; in addition, the parame-
ter space grows from three (or two) intrinsic parameters, to seven. Let us enumerate
the parameters more clearly. A number of parameters of the GW signal can be mod-
ified (or added) analytically to a single waveform, and so do not need to be included
in an underlying model, or in numerical simulations to construct the model. These
include the total mass of the system, which is an overall scale factor in the wave-
forms; the orientation of the binary with respect to the detector, or the orientation of
a detector with respect to the source on the sky; and the distance of the source from
the detector. We may also trivially apply a time shift to a waveform, and an over-
all physical rotation to the entire binary. (For nonprecessing binaries, this rotation is
equivalent to a constant phase offset in the waveform). We are now left to model the
waveforms with respect to the binary’s mass ratio, and the three components of each
black hole’s spin. Note that, although there may be approximate degeneracies between
these parameters, the essential parameter space remains formally seven-dimensional
in non-eccentric binaries.

Several approximate degeneracies between configurations may simplify the mod-
elling problem, but it is important to emphasize that they are only approximate, and in
particular may break down completely through merger and ringdown. We’ve already
seen one example, the total effective spin χeff in the phenomenological non-precessing-
binary models. In the ringdown it is instead the final total spin that characterizes the
binary, and so the validity of the effective total spin in parametrizing the waveforms
weakens in higher-mass binaries, where the detector is more sensitive to the merger
and ringdown [64,65].

Another example is an approximate degeneracy between cases where the compo-
nents of the black-hole spins in the orbital plane have the same relative orientation,
i.e., the same angle between the in-plane spin components: if we rotate both spins in
the orbital plane, to leading order this does not change the waveform beyond an overall
phase change that can be incorporated analytically. This near-equivalence has been
exploited in the past in PN models (see, for example, Ref. [18]), but it is not an exact
degeneracy because a rotation of the spins and a phase change do not commute. An
easy way to see this is to consider the “superkick” configuration [66–68]. The black
holes have equal spins, both in the orbital plane, and oppositely directed, such that the
orbital plane does not precess, but does bob up and down due to the emission of linear
momentum out of the plane. When this effect terminates at merger, the final black
hole recoils out of the orbital plane. The magnitude and direction (up or down) of the
recoil will vary with the initial direction of the spin vectors in the plane. The final
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recoil is an unambiguous physical effect (it is independent of the binary and observer
orientations) that depends on the initial spin direction, and cannot be removed by a
mere phase change. During inspiral the effect of this spin angle on the waveform is
minimal, and can be ignored to a good approximation, but not during merger and
ringdown.

In order to develop a general procedure to model generic systems through merger
and ringdown, we are faced with two problems. The first is to choose the config-
urations to simulate numerically. If we make the naive estimate that, based on the
non-precessing-binary phenomenological models, we need ∼4 simulations in each
direction of the parameter space, then for our seven-dimensional parameter space, we
will need on the order of tens of thousands of simulations. We do not expect this to
be computationally feasible in the next few years. The second problem is that, given
these waveforms, we need a means to model the far more complex waveform struc-
ture of precessing systems. Prior to 2010, it was not clear how to solve either of these
problems. A preliminary effort was made to bridge the gap between generic inspi-
ral PN waveforms and the ringdown [69], but that model’s physical fidelity was not
tested beyond a small number of equal-mass binaries, and it has not lead to a general
approach to generic-binary modelling.

5.1 Quadrupole alignment

The key to solving the second problem—the complicated mode structure and ampli-
tude and phase modulations of precessing-binary waveforms—lies in the qualitative
description of waveforms in Sect. 2.3. The dominant GW emission directions are per-
pendicular to the plane of the binary, and in a coordinate system aligned with that
direction, most of the signal’s power resides in the (� = 2, |m| = 2) spin-weighted
spherical harmonics. Although a full description of the GW signal is more compli-
cated, we nonetheless expect that, so long as our coordinate system is appropriately
aligned with respect to the orbital plane, then the GW signal will be relatively simple.
In other words, if we describe the waveform in a “co-precessing” coordinate system,
then generic-binary waveforms will take on a far simpler form than in a real observer’s
inertial frame.

A co-precessing frame was first used by Buonanno et al. [18] in the study of post-
Newtonian inspiral waveforms. They observed that the waveforms were indeed simpler
in this frame; in fact, the waveform amplitude and phase modulations were removed.
This observation lead them to extend the representation proposed in Ref. [70] of a
generic waveform as a simple “carrier waveform” modulated by two time-dependent
polarization tensors. Ultimately, though, the co-precessing frame was used primarily
as a technical tool in the generation of PN waveforms, in particular later in Ref. [71],
and to motivate a model that includes a carrier wave plus modulations [18].

Eight years later, a co-precessing frame arose again as a consequence of the work of
Schmidt et al. [72]. Their original goal was to track the precession of a binary from the
gravitational-wave signal alone, since time-delay effects make it difficult in numerical
simulations to match the orbital precession at the binary source to the corresponding
effects in the waveform at the observer. They noted that, since the dominant GW
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power lies in the quadrupole (� = 2, |m| = 2) modes when the coordinate system is
appropriately aligned, it follows that the instantaneous direction of the orbital angular
momentum could be identified with the orientation of the coordinate system for which
the (� = 2, |m| = 2) modes of the waveform were maximized. In doing so, the
precession can be tracked from the GW signal alone. It turns out that this direction is
not exactly normal to the orbital plane, but in fact follows the direction of the orbital
angular momentum; in general the two do not coincide, as can be seen by a simple
analysis of a PN expansion of the orbital angular momentum. They referred to this
accelerating frame of reference as the “quadrupole aligned” (QA) frame.

An alternative co-precessing frame was proposed in 2011 [73], defined by the
principal axes of the GW signal. It was later shown in Ref. [74] that this reduces to
the QA frame if the principal-axis calculation is restricted to only the � = 2, m = ±2
harmonics in the co-precessing frame. The main purpose of Ref. [74] was to complete
the construction of a unique co-precessing frame with a third rotation. This corresponds
to a time-dependent phase shift in the co-precessing waveform, and its importance is
clear in examples of long (PN) waveforms, where the additional phase shift is necessary
to recover a smooth monotonic frequency evolution in the co-precessing waveform.

5.2 Mapping to non-precessing binaries

The most important consequence of the QA frame was the observation that the wave-
forms in the QA frame not only have the same simple (non-modulated) form as non-
precessing-binary waveforms, but that the entire mode structure of the corresponding
non-precessing-binary waveform seems to have been reproduced.

The identification between quadrupole-aligned (QA) and non-precessing-binary
waveforms was observed in Ref. [72] for the mode amplitudes. As we have discussed
previously, it is not the waveform amplitude, but the phase, which is most important in
GW observations and measurements. But, remarkably, Schmidt et al. later found that a
correspondence between each QA waveform and the (2,2) mode of a non-precessing-
binary counterpart could also be extended to the phase, and therefore to the entire
waveform [75]. They saw that, to a good approximation, the inspiral part of a QA
waveform is the same as the waveform produced by a non-precessing system with the
same values of the non-precessing spin components; good phase agreement with other
modes was also found for the inspiral in Ref. [65]. In fact, since the motivation was
to extend the single-effective-spin phenomenological models to precessing systems,
the authors tested their claim against systems with only the same value of the total
effective spin χeff defined from the aligned-spin components, and so the identification
was between systems with the same values of (M, η, χeff ).

They also noted a crucial corollary. Let us split the spins into those components
parallel to the orbital angular momentum, χ||, and those perpendicular to the orbital
angular momentum, i.e., approximately in the plane of the binary, χ⊥. If we can fac-
torize a precessing-binary waveform h(M, η, χ||, χ⊥) into a non-precessing-binary
waveform h(M, η, χ||) (where the common parameters are the same in both wave-
forms), plus a rotation defined by the precession dynamics, then the modelling prob-
lem has been reduced to finding a model for the precession angles alone. Given such
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a model, we can use it to construct any generic-binary waveform out of its underlying
non-precessing-binary waveform. The efficacy of this approach is demonstrated for
one example in Ref. [75], and this prescription is effectively applied in Ref. [76] to
produce a closed-form frequency-domain generic-binary inspiral model.

This identification is not expected to hold through ringdown, because the ringdown
waveform is determined by the final black hole’s spin, and this depends more strongly
on the in-plane components of the individual black-hole spins prior to merger. One con-
figuration was studied in Ref. [75], and it was found that the identification seems to hold
up until the beginning of the ringdown. Pekowsky et al. [65] examined merger wave-
forms in more detail. They showed that the QA merger-ringdown waveform once again
agrees well with a non-precessing counterpart, but, consistent with Ref. [75], there is
no simple identification between the QA waveform and its non-precessing counterpart,
as there is in the inspiral regime. They also performed a test complementary to that
in Ref. [75]: for a set of numerical configurations they applied the appropriate time-
dependent rotation to a phenomenological non-precessing model, and compared the
new “synthetic” waveform to the numerical-relativity merger-ringdown waveform,
and again found good agreement. They argued, however, that since this procedure
neglects some of the physics of the generic systems (for example, the breaking of
the symmetry between the (2,2) and (2,−2) modes of the co-precessing waveform),
IMR models based on twisting up non-precessing waveforms may not be sufficiently
accurate for GW parameter estimation.

5.3 Twisting waveforms

Following these preliminary studies, generic-binary models now have been produced
by twisting up non-precessing waveforms.

The “PhenomP” model [77] provides a simple implementation of the procedure
proposed in Ref. [75]. This model uses one of the phenomenological models as the
underlying non-precessing-binary model. The model of the precessional dynamics is
provided by PN results; these are closed-form frequency-domain expressions for the
inclination angle between the orbital and total angular momenta, and the precession
angle, augmented by recent next-to-next-to-leading order (NNLO) calculations [27].
The ringdown non-precessing-binary model is modified based on predictions of the
final black hole’s spin [51]. Finally, the authors claim that they can adequately model
generic precessing waveforms using only three physical parameters. The symmetric
mass ratio and effective total spin (parallel to the orbital angular momentum) carry
over from the non-precessing-binary model, and follow from the results in Ref. [75].
For the remaining four in-plane spin components, they exploit the observation that
the dominant precession effects can be parameterized by only one “precession spin”
parameter, χp, which is effectively an average of the relevant PN spin terms through
the inspiral [78]. With only two spin parameters, they choose to write the final model in
terms of the spin of only one of the black holes. That this is a reasonable choice (if not
necessarily optimal; studies are ongoing) follows from the arguments above, and also
from the results in [71], which show that the additional modulations in the dynamics in
two-spin systems will be minor and in most cases not observable in gravitational-wave
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observations. The initial orientation of the spin in the plane is treated as an overall
factor, which is the approximate degeneracy discussed in detail at the beginning of
this section—however, this initial choice will in some cases be measurable in GW
observations, allowing us to in principle track the direction of the orbital angular
momentum through the inspiral [79].

PhenomP is a proof-of-principle model that involves many approximations: that the
single-effective-spin approximation carries over to the precessional motion, that the
precession effects can be parametrized by a single “precession spin” parameter χp,
that the stationary phase approximation (used to translate to the frequency domain) can
be made through merger and ringdown, and that the PN expressions for the precession
angles can be continued through merger and ringdown. The first two approximations
are motivated by prior work, but the last two have no justification a priori. Nonetheless,
when compared against a number of hybrid PN–NR waveforms, which included two-
spin configurations and configurations with a high degree of precession, the model
performed well: it met the standard detection requirements (technically, a fitting factor
with the signal higher than 0.97) for all but a small number of binary orientations.

The proposal of twisting non-precessing-binary waveforms has also been adopted
to construct a generic EOB model [80]. Here the non-precessing-binary “SEOBNR”
model is used as the underlying model. The precessional dynamics are produced
by solving the EOB equations of motion for the precessing system. The reason for
twisting up the underlying non-precessing-binary model, rather than calculating the
waveform directly from the EOB dynamics using the results of Arun et al. [31], is
that the more accurate EOB-factorized waveform modes are known only in the non-
precessing case. The resulting inspiral precession waveform is then connected to the
ringdown waveform associated with the correct final spin, which is estimated, as in
Ref. [77] by the empirical fits in Ref. [51]. The procedure to construct the inspiral
precession waveform again relies on the observation of Ref. [75] that each precessing
configuration has a specific non-precessing counterpart. As with the non-precessing-
binary EOBNR model, this model does not make any reduction of the number of
physical parameters: it uses all six spin components.

Beyond the approximations used to generate the inspiral waveforms, which are all
well-motivated and backed up by studies of PN waveforms, the main open issue in these
models is the treatment of the merger and ringdown. The results of Ref. [81] suggest
that precession effects continue through the ringdown. The precession angles continue
to evolve in PhenomP, but using only a naive continuation of the PN expressions
used during the inspiral. As with typical frequency-domain PN expressions for the
waveform phase, the expressions for the precession angles cannot be expected to be
accurate through merger, but they do remain physically reasonable, and their accuracy
does not have as strong an effect on the waveform as the phase. However, although
these expressions appear to perform well in the comparisons in Ref. [77], it should be
noted that in low-mass binaries most of the signal power is due to the inspiral, and so
errors in the merger and ringdown have little effect on the overall agreement of two
waveforms, while in high-mass binaries, where only the merger and ringdown will
be detectable, there are very few GW cycles in the detectors’ sensitivity band, and it
is much easier to achieve a strong agreement after exploiting our freedom to make
arbitrary relative time and phase shifts.
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In contrast to the PhenomP model, in the EOBNR model no precessional transfor-
mation is performed during the ringdown. We know from Ref. [81] that this is also
incorrect, but, very likely for the same reasons as just argued above, the EOB model
agrees well when compared against the two NR waveforms used for comparison in
Ref. [80]. We should note, however, that these comparisons were performed with GW
detection in mind, and the physical fidelity of these waveform models for parame-
ter estimation remains to be studied in detail. It is very likely that such studies will
highlight the aspects of these models that require improvement.

6 Challenges and prospects

There has been tremendous progress in the last few years in the modeling of gravita-
tional waveforms from generic binaries. Until recently an accurate model of the full
inspiral, merger and ringdown from generic binaries was considered a challenge that
may not be met in time for the first GW detections. Now that has changed, and just in
the last year two IMR models of generic binaries were proposed [77,80].

Nonetheless, a number of questions and challenges remain.
The current IMR models incorporate minimal physical information about the effects

of precession on the merger and ringdown. It is not clear how difficult it will be to
perform adequate numerical simulations to model those effects—can we again extract
the main features from a subspace of the full binary parameter space, and if so, how
does this subspace differ from that during the inspiral? In doing this, we must address
the question of the required length of NR simulations. In non-precessing systems
estimates of the required NR waveform lengths ranged from hundreds of orbits before
merger if one wishes to eliminate all systematic bias from observations [82–84], down
to tens of orbits if we allow small parameter biases at levels that are not expected to
have any astrophysical impact [85,86]. It seems unlikely that long waveforms will be
required to model the precession effects near merger, but no studies have yet addressed
these questions. We must also ask how much of the merger physics will be detectable
in GW observations. Although the merger is in the strong-field regime of Einstein’s
theory, the variations in the waveforms with respect to spin configurations are likely to
be subtle and potentially invisible to ground-based detectors. It is important to clarify
these issues, and prioritize the physical effects that need to be modelled, and efforts
to do this are already underway [65,81].

We should also note that the current generic IMR models consider only the � = 2
harmonics of the waveforms. Although these are likely to be sufficient for detection, at
least for comparable-mass binaries (for the non-precessing-binary case, see Ref. [87]),
the effect on parameter estimation is yet to be fully understood.

In determining the necessary physical fidelity of the models, the impact on parame-
ter estimation is likely to be the deciding factor. This also includes an understanding
of the limits of parameter estimation inherent in the approximate degeneracies of the
physical configurations. In non-precessing systems, we know that such a degener-
acy between the mass ratio and spin will limit our ability to accurately measure the
binary masses [88–91]. The efficacy of an effective-total-spin in the phenomenolog-
ical [7,9] and PN [53] models tells us that it will be difficult to measure individual
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spins [64]. And our ability to parameterize precession effects with a single precession
spin in Ref. [77] suggests that relative spin orientations will be difficult to determine.
The details of these degeneracies need to be understood, not just to clarify the pos-
sibilities and limitations of astrophysical measurements from GW observations, but
also to inform the regions of binary parameter space that most urgently need to be
modeled.

All of these degeneracies are approximate, and can be disentangled in sufficiently
strong signals. But we should bear in mind that the accuracy requirements of the theo-
retical models depends on the strength of the signals. By definition most observations
with aLIGO and AdV will be close to the detection threshold of signal-to-noise ratio
(SNR) ∼10. Less than ∼4 % of observations will have an SNR above 30, and even at
the most optimistic end of astrophysical event rate predictions, we will require several
years of observation at design sensitivity before observing a signal with an SNR higher
than 100. On the other hand, when such an observation occurs, we should be ready to
extract the maximum scientific information from it!

Associated with all of these issues is the question of how many NR waveforms
are needed, and where in the parameter space they must come from. The answer to
that question will likely emerge as part of the process of building waveform mod-
els: we won’t know which waveforms we need until we can be sure that we don’t
need any more. Meanwhile, the production of NR waveforms proceeds at an encour-
aging pace. As striking examples, in the last year a collection of 224 generic wave-
forms were used in the study in Ref. [65], and a catalog of 174 generic waveforms
was presented in Ref. [92]. In addition, the Numerical Injection Analysis (NINJA)
collaboration [93] has produced a catalog of 64 PN–NR hybrids [94], which are
being used to study the efficacy of search and parameter-estimation codes, and the
Numerical-Relativity–Analytical-Relativity (NRAR) collaboration has performed an
extensive study of the accuracy of a collection of 27 NR waveforms [95]. The NINJA
study is currently limited to non-precessing binaries, and the quantification of wave-
form accuracies, and their requirements for modelling, remain problematic, but recent
progress in numerical simulations is certainly comparable to the progress in mod-
elling.

Beyond modelling issues, we also lack a search strategy for generic binaries, besides
the first-approximation expectation that non-precessing-binary models will be suffi-
cient to capture a large number of generic sources [96]. By definition a search that
employed full generic-binary models would locate a wider range of signals, but it is
possible that the increased false-alarm rate incurred by including more parameters in
the search model would outweigh the better agreement between the generic-binary
sources and the search templates.

In the long term (after ∼2025), if third-generation and space-based detectors come
online [97,98], then the situation may be quite different. As parameter degeneracies
become less important and more accurate measurements become possible, the accuracy
requirements of the waveform models will increase, and higher harmonics will be
essential. It may also be possible at that stage to perform stringent tests of the general
theory of relativity [99]; such tests will require far greater waveform precision than
astrophysical measurements, although the details are yet to be clarified.
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