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Abstract Einstein complex spacetimes admitting null Killing or null homothetic
Killing vectors are studied. Such vectors define totally null and geodesic 2-surfaces
called the null strings or twistor surfaces. Geometric properties of these null strings are
discussed. It is shown, that spaces considered are hyperheavenly spaces (HH-spaces)
or, if one of the parts of the Weyl tensor vanishes, heavenly spaces (H-spaces). The
explicit complex metrics admitting null Killing vectors are found. Some Lorentzian
and ultrahyperbolic slices of these metrics are discussed.

Keywords Hyperheavenly spaces · Heavenly spaces · Isometric Killing vectors ·
Homothetic Killing vectors · Null Killing vectors · Null strings

1 Introduction

The idea of using the complex numbers in analysis of the spacetime is almost so
old, as theory of relativity. [Einstein himself used the imaginary time coordinate in
special theory of relativity]. However, advanced complex methods in general theory
of relativity have been discovered in the sixties. R. Penrose [1] and Newman [2]
introduced the spinorial formalism, Debney et al. [3] and others developed the null
tetrad formalism. Several important works were dedicated to the methods of finding
new metrics of real spacetime from already known metrics by appropriate complex
transformations [4,5]. These methods had their origins in the work [6] where searching
for the solutions to the Maxwell equations were considered. Then Newman [7] showed
that each asymptotically flat spacetime defines some 4-dimensional complex analytic
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differential manifold endowed with a holomorphic Riemannian metric. This metric
satisfies the vacuum complex Einstein equations and the self-dual or anti-self-dual
part of its conformal curvature tensor (Weyl tensor) vanishes. Such a space was called
by Newman the heavenly space (H-space).

Plebański [8]showed that vacuum complex Einstein equations for a heavenly space
can be reduced to a single second order nonlinear partial differential equation, heavenly
equation (H-equation), for one holomorphic function. Besides very interesting math-
ematical properties, the solutions of heavenly equation have been considered as “basic
bricks” which could be used to construct the solutions of Einstein equations by appro-
priate superpositions of two such solutions [9]. This approach, however, appeared to
be limited. This is why the new methods of looking for the real solutions from the
complex ones have been developed. One of them is the hyperheavenly space theory.

Hyperheavenly spaces (HH-spaces) was introduced in 1976 in famous work by
Plebański and Robinson [10] as a natural generalization of the heavenly spaces.
Hyperheavenly spaces with cosmological constant � are complex spacetimes with
algebraically degenerate self-dual or anti-self-dual part of the Weyl tensor satisfying
the vacuum Einstein equations with cosmological constant. The transparent advantage
of hyperheavenly spaces theory is the reduction of Einstein equations to one, nonlinear
differential equation of the second order, i.e. hyperheavenly equation.

Moreover, it has been pointed out that all the real, algebraically special, vacuum,
Lorentzian metrics are hidden inside the hyperheavenly metrics! It seemed, that finding
new real vacuum solutions of Einstein field equations with the Lorentzian signature
was only a matter of time. It was enough to solve the hyperheavenly equation and then
to find Lorentzian slices of respective complex spacetimes. This research programme,
often called the Plebański programme has its origin in the works by Trautman [6] and
Newman et al. [4,5] (see also [11]). Unfortunately, obtaining the real Lorentzian slices
appeared to be more difficult then anyone suspected.

In order to better understand the problem, the structure of hyperheavenly spaces
together with their spinorial description have been investigated by Plebański, Finley
III et al’s. [12–14]. Believing that symmetry of the spacetime simplifies the problem,
some authors have studied Killing symmetries in heavenly and hyperheavenly spaces
[15–18]. But Lorentzian slices still remain elusive. Except some examples [14,19–22]
and discussions [23] no general techniques to find the Lorentzian (physical) slices
have been presented. Exceptionally, some reality conditions have been analyzed [24],
but practical applications of these ideas appeared to be problematic. Probably it was
the reason why hyperheavenly machinery became less popular in nineties.

Within five last years hyperheavenly spaces found their place in deep mathematical
considerations. Their relation to Walker and Osserman geometry has been noticed
in 2008. Some transparent results have been obtained with help of hyperheavenly
formalism [25,26]. It appeared, that HH-spaces are the most natural tool in inves-
tigating real spaces of the neutral (ultrahyperbolic) signature (+ + −−). Moreover,
a few works devoted to Killing symmetries in heavenly and hyperheavenly spaces
appeared [27–30]. These papers generalized the previous ideas of Plebański, Finley
III and Sonnleitner [16–18]. Between Killing vectors especially useful are these ones,
which are tangent to self-dual null strings. The existence of such (null) Killing vectors
simplifies the hyperheavenly equation, making it solvable in majority of cases.
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The main aim of our work is to find all complex hyperheavenly and heavenly metrics
admitting null homothetic and isometric Killing symmetry. Such metrics appear to be
important in (++−−) real geometries. However, the existence of a null Killing vector
appeared to be helpfull for finding the Lorentzian slices [28]. We develop this idea
and examine all possible Lorentzian slices of the complex spacetimes admitting the
null Killing vector.

It is well known [23] that if a complex spacetime admits any real Lorentzian slice
then both self-dual and anti-self-dual part of the Weyl tensor must be of the same
Petrov–Penrose type. So if this complex spacetime is a hyperheavenly space (with or
without �) then by the Goldberg–Sachs theorem it admits both self-dual and anti-
self-dual congruences of null strings (i.e. totally null and geodesic 2-surfaces) which
intersect each other and these intersections constitute the congruence of null geodesics.
To assume the existence of null Killing vector field and identify this field with con-
gruence of null geodesics seem to be the natural first steps in investigating Lorentzian
slices.

The paper is organized as follows.
In Sect. 2 we investigate the general properties of Killing vectors, especially of null

ones. Some useful theorems are given and relation between null Killing vector and null
strings is pointed out. Then the detailed discussion on the possible Petrov–Penrose
types admitting null Killing symmetry is presented. Section 3 is a concise summary
of the properties of hyperheavenly spaces. The main goal of our work is to present
explicit form of the metrics with null Killing symmetry. The results are gathered in
Sects. 4 and 5. There are seven different hyperheavenly metrics with null isometric or
homothetic Killing vector and five different heavenly metrics.

In (the most important) Sect. 6 we discuss the possible real slices of the metrics
found in preceding sections. In order to find the Lorentzian slices we use the idea of
complex coordinate transformations. We introduce the appropriate complex transfor-
mations of the complex metrics and then we replace all the holomorphic functions and
coordinates by the real ones. After these steps we obtain, quite surprisingly, metrics
with the Lorentzian signature. Our technique leads to a new method for obtaining the
Lorentzian metrics. This method is different from the analysis of the reality conditions
[24], superposition of two heavenly metrics [9] or complex transformation of the real
metrics [6]. Finally Lorentzian slices of the type [II] and [D] are found. Then we dis-
cuss some metrics of the neutral signature. Two-sided Walker and globally Osserman
spaces are obtained. The concluding remarks end our paper.

2 Null Killing vectors and null strings

2.1 Killing equations and their integrability conditions in spinorial formalism.

Let M be a 4-dimensional complex analytic differentiable manifold endowed with a
holomorphic metric ds2. Thus (M, ds2) is a 4-dimensional holomorphic Riemannian
manifold and one deals with complex relativity. The metric ds2 on M can be written in
terms of a null complex tetrad (e1, e2, e3, e4) (where ei , i = 1, . . . , 4 are co-vectors)
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ds2 = 2 e1 ⊗
s

e2 + 2 e3 ⊗
s

e4 (2.1)

Let (∂1, ∂2, ∂3, ∂4) be the inverse basis of (complex) vectors. For our purposes it
is useful to use the spinorial formalism. Thus we introduce the respective spinorial
images of basis of co-vectors and vectors

(g AḂ) := √
2

[
e4 e2

e1 −e3

]
, (∂AḂ) := −√

2

[
∂4 ∂2
∂1 −∂3

]
, A = 1, 2 , Ḃ = 1̇, 2̇

(2.2)
We use the following rules of manipulating the spinorial indices

m A = ∈AB m B, m A = m B ∈B A, m Ȧ = ∈ Ȧ Ḃ m Ḃ, m Ȧ = m Ḃ ∈Ḃ Ȧ (2.3)

where ∈AB and ∈ Ȧ Ḃ are the spinor Levi-Civita symbols

(∈AB) :=
[

0 1
−1 0

]
=: (∈AB), (∈ Ȧ Ḃ) :=

[
0 1

−1 0

]
=: (∈ Ȧ Ḃ)

∈AC∈AB= δB
C , ∈ ȦĊ∈ Ȧ Ḃ= δ Ḃ

Ċ
, (δA

C ) = (δ Ḃ
Ċ
) =

[
1 0
0 1

] (2.4)

Correspondence between the null tetrad formalism and spinorial formalism is realized
with the use of the spin-tensor ga AḂ which is defined by the relation g AḂ = g AḂ

a ea .

It is easy to see that − 1
2 ga AḂ gbAḂ = δa

b and − 1
2 ga AḂ gaC Ḋ = δA

C δ Ḃ
Ḋ

. The operators

∂ AḂ and ∇ AḂ are the spinorial images of operators ∂a and ∇a , respectively, given by

∂ AḂ = g AḂ
a ∂a ∇ AḂ = g AḂ

a ∇a (2.5)

In spinorial notation the metric can be written in the form

ds2 = −1

2
gAḂ ⊗

s
g AḂ (2.6)

[In complex relativity the 1-forms g AḂ are unrelated. In real relativity there are some
constraints for the 1-forms g AḂ . For example, for the real spaces of the signature

(+ + −−) there must be g AḂ = g AḂ and for the Lorentzian signature (+ + +−)

there must be g AḂ = gB Ȧ where bar stands for the complex conjugation].
More complete treatment of the spinorial formalism in complex relativity see

[31,32].
Now we recall some basic facts about the Killing vectors. The system of Killing

equations are given by
∇(a Kb) = χ gab (2.7)
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The Killing vector is said to be conformal, if χ �= const, homothetic if χ = χ0 =
const �= 0 and isometric if χ = 0. A conformal Killing vector K can be written as

K = K a ∂a = −1

2
K AḂ∂ AḂ (2.8)

Components K a and K AḂ are related by

K a = −1

2
ga AḂ K AḂ ⇐⇒ K AḂ = ga AḂ K a (2.9)

Conformal Killing equations with conformal factor χ (2.7) in spinorial form read

∇ Ḃ
A K Ḋ

C + ∇ Ḋ
C K Ḃ

A = −4χ ∈AC∈Ḃ Ḋ (2.10)

and this is equivalent to the following system of equations

∇ (Ḃ
(A K Ḋ)

C) = 0 (2.11a)

∇N Ṅ KN Ṅ + 8χ = 0 (2.11b)

From (2.11a) and (2.11b) it follows that

∇ Ḃ
A K Ḋ

C = lAC ∈Ḃ Ḋ + l Ḃ Ḋ ∈AC −2χ ∈AC∈Ḃ Ḋ (2.12)

with

lAC := 1

2
∇ Ṅ

(A KC)Ṅ l Ḃ Ḋ := 1

2
∇N (Ḃ K Ḋ)

N (2.13)

The integrability conditions of (2.12) in Einstein space (CABĊ Ḋ = 0, R = −4�)
consist of the following equations

∇ Ȧ
R lST + 2C N

RST K Ȧ
N + 2

3
� ∈R(S K Ȧ

T ) + 2 ∈R(S ∇ Ȧ
T ) χ = 0 (2.14a)

∇ A
Ṙ

lṠṪ + 2C Ṅ
ṘṠṪ

K A
Ṅ

+ 2

3
� ∈Ṙ(Ṡ K A

Ṫ )
+ 2 ∈Ṙ(Ṡ ∇ A

Ṫ )
χ = 0 (2.14b)

KN Ṅ ∇N Ṅ CABC D + 4C N
(ABClD)N − 4χCABC D = 0 (2.14c)

KN Ṅ ∇N Ṅ CȦḂĊ Ḋ + 4C Ṅ
( Ȧ ḂĊ

lḊ)Ṅ − 4χCȦḂĊ Ḋ = 0 (2.14d)

∇ Ȧ
A ∇ Ḃ

B χ − 2

3
�χ ∈AB∈ Ȧ Ḃ= 0 (2.14e)

C N
ABC∇ Ȧ

N χ = 0 (2.14f)

C Ṅ
ȦḂĊ

∇ A
Ṅ
χ = 0 (2.14g)

[Deep analysis of the Killing equations and their integrability conditions for Killing
vectors and Killing tensor fields can be found in [15]].
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2.2 Null strings via null Killing vectors

The existence of a null Killing vector has a significant influence on the geometry of
the space. To explain this we first note that the null Killing vector can be presented in
the form

K AḂ = μAνḂ ⇐⇒ K AḂ K AḂ = 0 (2.15)

where μA and νḂ are some nonzero spinors.
Moreover, it is well known that every spinor symmetric in all indices can be decom-

posed according to the formula

�A1 A2...An = �(A1 A2...An) = �
(1)
(A1

�
(2)
A2

. . . �
(n)
An) (2.16)

where �
(i)
A are some spinors. In particular, there exist spinors AA, BA, A Ȧ and B Ȧ

such that
lAB = A(ABB), l ȦḂ = A( ȦBḂ) (2.17)

We prove the following

Lemma 2.1 Spinors lAB and l ȦḂ can be brought to the form lAB = μ(ABB) and
l ȦḂ = ν( ȦBḂ) without any loss of generality.

Proof Inserting (2.15) and (2.17) into (2.12) we obtain

μC∇ Ḃ
A ν Ḋ + ν Ḋ∇ Ḃ

A μC = A(ABC) ∈Ḃ Ḋ + A(ḂB Ḋ) ∈AC −2χ ∈AC∈Ḃ Ḋ (2.18)

Contracting (2.18) with μAμCνḊ one gets

ν Ḃ AAμA BCμC = 0 (2.19)

so AA or BA must be proportional to μA. Let AA = AμA, A �= 0. Redefining the
spinor BA (absorbing A into BA) we finally get lAB = μ(ABB). Analogously we prove
that l Ȧ Ḃ = ν( ȦBḂ). 	


Before we formulate another theorem, we present some basic facts about the two-
dimensional holomorphic distributions and their integral manifolds, i.e. null strings.

Let us consider two-dimensional, holomorphic distribution DμA = {μAνḂ, μAρḂ}
which is given by the Pfaff system

μA g AḂ = 0 (2.20)

Distribution DμA is self-dual in the sense, that the 2-form “orthogonal” to the 2-plane
belonging to DμA is self-dual. Such a distribution is integrable in the Frobenius sense,
if the spinor μA satisfies the equations

μBμC ∇ Ȧ
B μC = 0 (2.21)
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Integral manifolds of the congruence DμA appear to be totally null and geodesic and
they are called the null strings. They constitute the congruence of self-dual null strings.

Analogously one can consider anti-self-dual two-dimensional distribution D
ν Ȧ =

{μAνḂ, σAνḂ}, μAσ A �= 0 given by the Pfaff system

νḂ g AḂ = 0 (2.22)

Such distribution is integrable in the Frobenius sense if ν ḂνĊ ∇ A
Ḃ
νĊ = 0 and the

integral manifolds are called anti-self-dual null strings.
Null strings are the basic geometrical objects in the theory of heavenly and hyper-

heavenly spaces. Detailed analysis of the properties of the null strings can be found
in [33,34].

Theorem 2.2 Let the null Killing vector K AḂ be of the form (2.15). Then the two-

dimensional self-dual holomorphic distribution {μAνḂ, μAρḂ}, νḂρ Ḃ �= 0, is inte-
grable and its integral manifolds constitute the congruence of self-dual null strings
and the anti-self-dual distribution {μAνḂ, σAνḂ}, μAσ A �= 0, is also integrable and
its integral manifolds constitute the congruence of anti-self-dual null strings. More-
over, both Weyl spinors CABC D and CȦḂĊ Ḋ are algebraically special with μA and νḂ
being the undotted and dotted, respectively, multiple Penrose spinors.

Proof Contracting (2.18) with μAμC and remembering that AA = μA we get (2.21).
This means that the spinor μA defines a congruence of self-dual null strings in the
sense that the 2-dimensional holomorphic distribution {μAνḂ, μAρḂ}, ν Ȧρ Ȧ �= 0
is integrable and its integrable manifolds constitute the congruence of self-dual null
strings. From the complex Sachs–Goldberg theorem it follows [33], that CABC D is
algebraically special and μA is multiple Penrose undotted spinor, i.e.

CABC DμAμBμC = 0 (2.23)

Analogously we prove that

ν ḂνĊ ∇ A
Ḃ
νĊ = 0

Sachs–Goldberg theorem⇐⇒ CȦḂĊ Ḋν ȦνĊνĊ = 0 (2.24)

	

In particular, from Theorem 2.2 it follows that the integral curves of a null Killing

vector are given by the intersection of self-dual and anti-self-dual congruences of null
strings.

Note that

μBμC ∇ Ȧ
B μC = 0 ⇐⇒ ∇ Ȧ

B μC = Z Ȧ
B μC+ ∈BC 
 Ȧ

ν ḂνĊ ∇ A
Ḃ
νĊ = 0 ⇐⇒ ∇ A

Ḃ
νĊ = X A

Ḃ
νĊ+ ∈ḂĊ 
A

(2.25)

where 
A and 
 Ȧ describe the optic properties of the congruence of anti-self-dual
and self-dual null strings, respectively. Indeed, if 
 Ȧ = 0 then the self-dual null
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strings are parallely-propagated, if 
A = 0 then anti-self-dual null strings are parallely
propagated. Therefore the concept of the expansion of the congruence of the null strings
is rather different from the concept of expansion of geodesic congruence in the case
of the Lorentzian spacetime. Inserting (2.25), AA = μA and A Ȧ = ν Ȧ into (2.18),
after some straightforward calculations we obtain

X AḂ = −Z AḂ , BA = 
A , B Ȧ = 
 Ȧ , μA
A + ν Ȧ
 Ȧ + 4χ = 0 (2.26)

We prove another important theorem.

Theorem 2.3 Assume that at least one of the spinors CABC D or CȦḂĊ Ḋ is nonzero.
Then

(i) if � �= 0 then χ = 0

(i i) if � = 0 then χ = χ0 = const

Proof Assume that CABC D �= 0. Then from (2.14f) it follows that ∇ Ȧ
A χ is the

quadruple Debever–Penrose spinor. However, as is well known, two quadruple DP
spinors are necessarily linearly dependent so ∇ A1̇χ has to be proportional to ∇ A2̇χ

or, equivalently

∇AȦχ · ∇ AȦχ = 0 (2.27)

Acting on (2.27) with ∇ Ḃ
B and using (2.14e) one quickly obtains

�χ ∇ Ḃ
B χ = 0 (2.28)

Hence if � �= 0 then ∇ Ḃ
B χ = 0. Finally, using (2.14e) we get χ = 0 what proves (i).

If � = 0, then still ∇ Ȧ
N χ is a quadruple DP-spinor. However, we proved that μN

is a multiple DP-spinor, so
∇N Ȧχ = μN χ Ȧ (2.29)

with some χ Ȧ. Inserting (2.29) into (2.14e) and contracting with μB we arrive at the

conclusion 
 Ȧχ Ḃ = 0, so if we want to maintain possible conformal symmetries, the
self-dual null string defined by the (conformal) Killing vector must be nonexpanding,

 Ȧ = 0. Consequently, l Ȧ Ḃ = 0. Inserting this into (2.14b) and contracting with ∈Ṙ Ṡ

we finally get χ Ȧ = 0. From (2.29) it follows that ∇N Ȧχ = 0 and this proves (i i). 	


Summing up, null conformal symmetries can appear only in the Einstein spaces
with CABC D = 0 = CȦḂĊ Ḋ , i.e. in the de-Sitter space (with � �= 0) or in Minkowski
space (with � = 0). We do not consider these spaces here.
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The null Killing vector field defines congruence of null (complex) geodesics. The
optical scalars of Killing vector field can be easily obtained. One gets

1

2
∇a Ka = 2χ0 (expansion) (2.30a)

1

2
∇[a Kb] ∇[a K b] = −2χ2

0 (twist) (2.30b)

1

2
∇(a Kb) ∇(a K b) − 1

4

(∇a Ka
)2 = −2χ2

0 (shear) (2.30c)

Thus we conclude that null homothetic Killing field defines null geodesic congruence
with nonzero expansion, twist and shear, while null isometric Killing field is nonex-
panding, nontwisting and shearfree. It is worth to note, that optical scalars of the null
(complex) geodesic congruence defined by Ka are related to the expansions of the
self-dual congruence of the null strings 
 Ȧ and anti-self-dual congruence of the null
strings 
A. This relation is given by the Eqs. (2.30a)–(2.30c) and the crucial condition
(2.31f). More general analysis of the optical properties of the congruences of the null
strings can be found in [34].

Gathering above considerations: we reduced the problem of null Killing vectors in
Einstein space to the set of equations

K AḂ = μAνḂ (2.31a)

lAB = μ(A
B) , l ȦḂ = ν( Ȧ
Ḃ) (2.31b)

χ0 = const , �χ0 = 0 (2.31c)

∇AḂμC = Z AḂμC+ ∈AC 
Ḃ (2.31d)

∇AḂνĊ = −Z AḂνĊ+ ∈ḂĊ 
A (2.31e)

μA
A + ν Ȧ
 Ȧ + 4χ0 = 0 (2.31f)

Inserting (2.31b) and (2.31f) into (2.12) we obtain

∇ Ḃ
A K Ḋ

C = μC
A ∈Ḃ Ḋ +ν Ḋ
Ḃ ∈AC (2.32)

The formula (2.32) proves, that first covariant derivative of the null Killing vector can
be expressed only by the undotted and dotted multiple Penrose spinors and expansions
of both self-dual and anti-self-dual congruences of null strings.

Algebraic degeneration conditions CABC DμAμBμC = 0 and CȦḂĊ Ḋν Ȧν ḂνĊ = 0
can be combined with (2.14a) and (2.14b). After some work we obtain

2C N
RST μN + � μRμSμT + (3� + �)μ(RμsmT ) = 0 with m AμA = 1

(2.33a)

2C Ṅ
ṘṠṪ

νṄ + �̇ νṘνṠνṪ + (3�̇ + �)ν(ṘνṠnṪ ) = 0 with n Ȧν Ȧ = 1 (2.33b)
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where �, �̇, � and �̇ are defined by the relations

∇ Ȧ
R

(
μ(S
T )

) = ν Ȧ(
� μRμSμT + 2�μRμ(SmT ) + (� + �)μSμT m R

)
(2.34a)

∇ Ȧ
R

(
ν(Ṡ
Ṫ )

) = μR
(
�̇ ν ȦνṠνṪ + 2�̇ ν Ȧν(ṠnṪ ) + (� + �̇)n ȦνṠνṪ

)
(2.34b)

We end this subsection by pointing out two relations essential in further analysis.
Contracting (2.34a) with μSμT and using (2.31d) we obtain


 ȦμS
S = 0 (2.35)

Analogously, contracting (2.34b) with νṠνṪ and using (2.31e) one gets


AνṠ
Ṡ = 0 (2.36)

Now we are ready to discuss the possible algebraic types admitting null Killing
vector. Note, that we follow Petrov–Penrose algebraic classification of the Weyl
spinors CABC D and CȦḂĊ Ḋ in complex spacetimes [32,8,13,14]. In real relativ-
ity with Lorentzian signature (+ + +−) the algebraic type of the undotted Weyl
spinor is the same, as the type of dotted Weyl spinor. However, in complex specetimes
spinors CABC D and CȦḂĊ Ḋ are unrelated. Hence, the “mixed” types (like [N] ⊗ [D]
or [II] ⊗ [III]) can appear.

2.3 Null homothetic symmetries

Here we assume χ0 �= 0, what immediately gives � = 0. Simple analysis of Eqs.
(2.35)–(2.36) together with (2.31f) brings us to the conclusion that the only possibilities
are

• 
 Ȧ = 0 (the congruence of self-dual null strings is nonexpanding), μA
A �= 0
(the congruence of anti-self-dual null strings is necessarily expanding, more even,
expansion 
A cannot be proportional to DP-spinor μA)

• 
A = 0 (the congruence of anti-self-dual null strings is nonexpanding), ν Ȧ
 Ȧ �= 0
(the congruence of self-dual null strings is necessarily expanding, more even,
expansion 
 Ȧ cannot be proportional to DP-spinor ν Ȧ)

Of course, both possibilities constitute Eintein spaces with the same geometric proper-
ties. It is enough to consider only one of them with details, say 
 Ȧ = 0. From (2.34b)
we conclude that �̇ = �̇ = 0. Careful analysis of (2.34a) gives � = 0. From (2.33a)
and (2.33b) we obtain

2C N
RST μN + � μRμSμT = 0 (2.37a)

2C Ṅ
ṘṠṪ

νṄ = 0 (2.37b)
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where
� μRμT ν Ȧ := ∇R Ȧ
T + 
T Z R Ȧ (2.38)

(the last formula is a consequence of (2.34a).
The only possible anti-self-dual Petrov types are [N,−]. From (2.37a) we easily

get that the only possible self-dual Petrov types are [III,−]; self-dual type [N] is not
admitted. Indeed assume, that CABC D is of the type [N], so C N

RST μN = 0 what gives
� = 0. Contracting (2.38) with 
T we obtain 
T ∇R Ȧ
T = 0, so 
T defines the
congruence of self-dual null strings. But we proved earlier (see Theorem 2.2), that
the self-dual null string is defined by μT . The number of independent congruences of
self-dual null strings is equal to the number of multiple undotted DP-spinors, so there
are infinitely many independent congruences of self-dual null strings in the heavenly
spaces, two for the self-dual type [D] and only one for the self-dual types [II, III, N].
But here we examine self-dual type [N], so there is only one congruence of the null-
strings. It means, that 
T must be proportional to μT or 
T μT = 0 �⇒ χ0 = 0. This
contradicts our assumption that χ0 �= 0 and proves that the only possible Petrov types
which admit null homothetic symmetries are [III,−] ⊗ [N,−]. Then the congruence
of self-dual null strings is nonexpanding and the congruence of anti-self-dual null
strings must be expanding.

Remark considering the second possibility with 
A = 0 we obtain possible Petrov
types [N,-] ⊗ [III,-], but still type [III] admits the congruence of nonexpanding null
strings and the type [N] admits the expanding congruence.

All possible types via geometric properties of the congruence of null strings are
presented in the table below:


 Ȧ = 0 
 Ȧ �= 0


A = 0 Not admitted [N, −]e ⊗ [III, −]n

A �= 0 [III, −]n ⊗ [N, −]e not admitted

The upper index e means, that the corresponding congruence of null strings is
expanding, index n - nonexpanding.

2.4 Null isometric symmetries

Here we assume χ0 = 0. Analysis of Eqs. (2.35), (2.36) and (2.31f) leads to the
conclusion that 
A and 
 Ȧ must have the form


A = 
μA, 
 Ȧ = 
̇ ν Ȧ (2.39)

(dot in 
̇ does not mean derivative here). Hence

lAB = 
μAμB, l Ȧ Ḃ = 
̇ν ȦνḂ (2.40)
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Using (2.39) and (2.40) in (2.34a) and (2.34b) we find � = �̇ = 

̇. Equations
(2.33a) and (2.33b) can be rearranged to the form

2C N
RST μN + � μSμRμT + (� + 3

̇)μ(SμRmT ) = 0 (2.41a)

2C Ṅ
ṘṠṪ

νṄ + �̇ νṠνṘνṪ + (� + 3

̇) ν(ṠνṘnṪ ) = 0 (2.41b)

and the Eqs. (2.34a) and (2.34b) read

∇R Ȧ
 + 2
 Z R Ȧ =: ν Ȧ

(
�μR + (� + 3

̇)m R

)
(2.42a)

∇R Ȧ
̇ − 2
̇ Z R Ȧ =: μR
(
�̇ν Ȧ + (� + 3

̇)n Ȧ

)
(2.42b)

Multiplying (2.42a) by 
̇ and (2.42b) by 
 and adding both equations one arrives at
the useful formula

1

3
∇R Ȧ(�+3

̇) = (�
̇+ �̇
)μRν Ȧ + (�+3

̇)(
μRn Ȧ +
̇ m Rν Ȧ) (2.43)

When both congruences of null strings are nonexpanding (
 = 
̇ = 0) then from
(2.42a) and (2.42b) it follows that � = � = �̇ = 0. Consequently, from (2.41a) and
(2.41b) we infer that the only possible types are [N,−] ⊗ [N,−].

If the congruence of anti-self-dual null strings is nonexpanding (
 = 0) and the
congruence of self-dual null strings is expanding (
̇ �= 0) then from (2.42a) we get
� = � = 0, so the self-dual type is at most of the type [N]. The anti-self-dual type
can be of the type [III] (if �̇ �= 0) or of the type [N,−] (if �̇ = 0), so in this case
we deal with the types [N,−] ⊗ [III,N,−]. [The case with expanding congruence of
anti-self-dual strings and nonexpanding congruence of self-dual strings has the same
geometry and leads to the types [III,N,−] ⊗ [N,−].

In the last case both congruences of null strings are expanding 
 �= 0, 
̇ �= 0.
Equations (2.41a) and (2.41b) give in general types [II,D] ⊗ [II,D]. Cosmological
constant � can be arbitrary here. [It does not follow from (2.41a) - (2.41b), but the
mixed types [II]⊗[D] and [D]⊗[II] are not admitted, we will prove this during further
analysis].

Now we deal with the self-dual type [III], CABC DμCμD = 0. From (2.41a) we got
� + 3

̇ = 0 (so the cosmological constant � is necessarily nonzero), from (2.41b)
we conclude, that the anti-self-dual type is [III]. Indeed, anti-self-dual types [N,−]
imply �̇ = 0, what combined with (2.43) gives � = 0. But � = 0 automatically
reduces the self-dual type to [N,−].

In self-dual types [N,−], CABC DμD = 0 so � = 0 = �+ 3

̇. Immediately we
have �̇ = 0, so anti-self-dual type is [N,−] too. Like in previous case, cosmological
constant � must be nonzero here.

All possible types are gathered in the table below:
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̇ = 0 
̇ �= 0


 = 0 [N,−]n ⊗ [N, −]n , � = 0 [N,−]e ⊗ [III,N, −]n , � = 0

 �= 0 [III,N,−]n ⊗ [N, −]e, � = 0 [II]e ⊗ [II]e, [D]e ⊗ [D]e, � arbitrary

[III]e ⊗ [III]e,� �= 0
[N,−]e ⊗ [N, −]e, � �= 0

3 Hyperheavenly spaces

The considerations from the previous section allow us to establish all possible algebraic
types of the spaces which admit the null Killing symmetry. Main aim of the present
paper is to find the explicit metrics with such symmetries. Due to Theorem 2.2, any
null Killing vector defines the congruences of both self-dual and anti-self-dual null
strings and implies the algebraic degeneration of both self-dual and anti-self-dual part
of the Weyl curvature spinor. Let us remind the definition of hyperheavenly space
[10,12–14].

Definition 3.1 Hyperheavenly space (HH-space) with cosmological constant is a
4-dimensional complex analytic differential manifold endowed with a holomorphic
Riemannian metric ds2 satisfying the vacuum Einstein equations with cosmologi-
cal constant and such that the self-dual or anti-self-dual part of the Weyl tensor is
algebraically degenerate. These kind of spaces admits a congruence of totally null,
self-dual (or anti-self-dual, respectively) surfaces. 	


A complex 4-dimensional space which admits the null Killing vector is equipped
with both self-dual and anti-self-dual congruences of null strings. If, moreover, such
a space is Einstein then by the Goldberg–Sachs theorem it is algebraically special for
both sides and of course is a HH-space. Vacuum Einstein equations in HH-space can
be reduced to one, nonlinear, partial differential equation of the second order, for one
holomorphic function. This equation is called hyperheavenly equation.

The existence of the null strings allows us to introduce some useful tetrad and
the coordinate system. The self-dual null string generated by the null Killing vector
is given by the equation μBμC ∇ Ȧ

B μC = 0 which is equivalent to the Pfaff system

μAg AḂ = 0. Choosing the spinorial basis in such a manner that μA = (0, μ2), μ2 �= 0
we arrive at the conclusion, that the congruence of self-dual null strings is defined by
the Pfaff system

e1 = 0, e3 = 0 ⇐⇒ g2 Ȧ = 0 (3.1)

(the surface element of the null string is given by e1 ∧ e3).
A null tetrad (e1, e2, e3, e4) and a coordinate system (qȦ, pḂ) can be always chosen

so that [13,10,14]

− 1√
2

g2
Ȧ

=
[

e3

e1

]
= φ−2 dqȦ

1√
2

g1 Ȧ =
[

e4

e2

]
= −dpȦ + Q ȦḂ dqḂ (3.2)
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where φ and Q ȦḂ = Q Ḃ Ȧ are holomorphic functions. Coordinates qȦ label the null

strings and pȦ are coordinates on them. Dual basis is given by

−∂ Ȧ =
[

∂4
∂2

]
, ð

Ȧ =
[

∂3
∂1

]
, ∂ AḂ = √

2(δA
1 ð

Ḃ − δA
2 ∂ Ḃ) (3.3)

where

∂ Ȧ := ∂

∂pȦ
, ð

Ȧ := φ2
(

∂

∂qȦ
+ Q ȦḂ∂Ḃ

)
(3.4)

Of course, for consistency with (2.3), the rules to raise and lower spinor indices in
spinorial differential operators read ∂ Ȧ = ∂Ḃ ∈ Ȧ Ḃ , ∂ Ȧ =∈Ḃ Ȧ ∂ Ḃ , ð Ȧ = ðḂ ∈ Ȧ Ḃ ,

ð Ȧ =∈Ḃ Ȧ ðḂ , so

∂ Ȧ = ∂

∂pȦ
, ð Ȧ = φ2

(
∂

∂q Ȧ
− Q Ḃ

Ȧ
∂Ḃ

)
(3.5)

The metric ds2 is given by

ds2 = 2 e1⊗
s

e2+2 e3⊗
s

e4 = −1

2
gAḂ⊗

s
g AḂ = 2φ−2 (−dpȦ⊗

s
dqȦ+Q ȦḂ dqȦ⊗

s
dqḂ)

(3.6)
The congruence of null strings have some invariant properties. Investigating the

equation ∇ Ȧ
B μC = Z Ȧ

B μC+ ∈BC 
 Ȧ with μ1 = 0, μ2 �= 0 we easily find, that


 Ȧ = �112 Ȧ μ2 (3.7)

Z AḂ = −�12AḂ− ∈A2 �112Ḃ + ∂AḂ ln μ2 (3.8)

If 
 Ȧ = 0 ⇐⇒ �112 Ȧ = 0 then self-dual null strings are parallely propagated. The
hyperheavenly spaces based on such congruence of null strings are called nonexpand-
ing. If the null strings are not parallely propagated (
 Ȧ �= 0 ⇐⇒ �112 Ȧ �= 0), the
corresponding hyperheavenly space is called expanding.

Vacuum Einstein equations impose some constraints on φ and Q ȦḂ . The final
forms of the φ and Q ȦḂ are esentially different for expanding and nonexpanding
hyperheavenly spaces.

Nonexpanding hyperheavenly spaces
If 
 Ȧ = 0 the φ and Q ȦḂ can be brought to the following forms

φ = 1, Q ȦḂ = −θpȦ pḂ
+ 2

3
F ( Ȧ pḂ) + 1

3
� pȦ pḂ (3.9)
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where θpḂ := ∂θ

∂pḂ
, etc.. The Einstein equations can be reduced to the nonexpanding

hyperheavenly equation with �

1

2
θpȦ pḂ

θpȦ pḂ + θpȦq Ȧ + F Ȧ
(
θpȦ − 2

3
pḂ θpȦ pḂ

)
+ 1

18
(F Ȧ pȦ)2

+1

6

∂ FȦ

∂q Ḃ
p Ȧ pḂ + �

(
pȦθpȦ − θ − 1

3
pȦ pḂθpȦ pḂ

)
= NȦ p Ȧ + γ (3.10)

where F Ȧ, N Ȧ and γ are arbitrary functions of qĊ only (constant on each self-dual
null string), � is a cosmological constant and θ = θ(pȦ, qḂ) is the key function. The

metric is defined by (3.6) with φ and Q ȦḂ given by (3.9).
Expanding hyperheavenly spaces
If the congruence of self-dual null strings is expanding, we obtain

φ = JȦ p Ȧ , Q ȦḂ = −2 J ( ȦWpḂ)
− φ WpȦ pḂ

+ 1

τ 2 K Ȧ K Ḃ
(
μφ3 + �

6

)
(3.11)

where μ = μ(q Ṅ ) is an arbitrary function, � is the cosmological constant, W =
W (pȦ, qḂ) is the key function and JȦ and K Ȧ are constant, nonzero spinors, satisfying
the relation

K Ȧ JḂ − K Ḃ J Ȧ = τ δ Ȧ
Ḃ

where τ = K Ȧ JȦ �= 0 (3.12)

[τ is an arbitrary constant; not loosing generality one can set τ = 1.]
Einstein equations can be reduced to the expanding hyperheavenly equation with

�

1

2
φ4(φ−2WpḂ

)pȦ
(φ−2WpḂ )pȦ + φ−1WpȦq Ȧ − μφ4 [φ−1(φ−1W )φ]φ

+ η

2τ 2

(
ηJ Ċ − φK Ċ

)
μqĊ − �

6
φ−1 Wφφ = NȦ p Ȧ + γ (3.13)

where N Ȧ and γ are arbitrary functions of qĊ only (constant on each self-dual null
string). Instead of the (pȦ, qḂ)-coordinate system , another one, namely (φ, η,w, t)
is universally used

φ = JȦ p Ȧ, η := K Ȧ pȦ ⇐⇒ τpȦ = ηJ Ȧ + φK Ȧ

w := JȦq Ȧ, t := K ȦqȦ ⇐⇒ τqȦ = t JȦ + wK Ȧ

(3.14)

with the operators

∂φ = 1

τ
K Ȧ∂ Ȧ, ∂η = 1

τ
J Ȧ∂ Ȧ, ∂w = 1

τ
K Ȧ ∂

∂q Ȧ
, ∂t = 1

τ
J Ȧ ∂

∂q Ȧ
(3.15)
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In (φ, η,w, t)-language, the hyperheavenly equation reads

τ 2
(

WηηWφφ − WηφWηφ + 2φ−1WηWηφ − 2φ−1WφWηη

)
+ τφ−1

(
Wwη − Wtφ

)

−μ
(
φ2Wφφ−3φWφ+3W

)
+ η

2τ
(μtη−μwφ)− �

6
φ−1Wφφ = 1

2
�φ− 1

2
νη+γ

(3.16)

where 2NȦ =: νK Ȧ + � JȦ.
The metric (3.6) takes now the form

ds2 = (φτ)−2
{

2τ(dη ⊗
s

dw − dφ ⊗
s

dt) + 2
(

− τ 2φ Wηη + μφ3 + �

6

)
dt ⊗

s
dt

+4
(
−τ 2φ Wηφ + τ 2 Wη

)
dw ⊗

s
dt + 2

(
−τ 2φ Wφφ + 2τ 2 Wφ

)
dw ⊗

s
dw

}

(3.17)

We do not present here the curvature formulas and connection forms. The reader is
referred to [12,25,26]. We note only that the expansion of the congruence of the self-
dual null strings is proportional to nonzero spinor JȦ, namely 
 Ȧ = −√

2φ−1μ2 JȦ.

4 Metrics admitting null homothetic symmetries

4.1 Hyperheavenly spaces of the type [N]e ⊗ [III]n

The hyperheavenly spaces which admit the null homothetic symmetry must be of types
[N]e ⊗ [III]n or [III]n ⊗ [N]e. Such spaces have been considered previously in [29]
and [28] but without any details. Since the type [III]n ⊗ [N]e can be obtained from
[N]e ⊗ [III]n just by changing the orientation we study the case [N]e ⊗ [III]n and use
the general formulas from [29]. Killing vector has the form

K = −2χ0 pȦ ∂

∂pȦ
(4.1)

and
lAB = 0 , l Ȧ Ḃ = 4χ0φ

−1 J ( Ȧ pḂ) (4.2)

The key function and the curvature read

W = φ2 F(x, w, t), x := η

φ
(4.3)

C (1) = 2φ7τγt , CȦḂĊ Ḋ = C( Ȧ pḂ pĊ pḊ)

CȦ := 4τ 3φ−2 Fxxx JȦ + τ 4φ−3 Fxxxx pȦ (4.4)
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where F = F(x, w, t) and γ = γ (w, t) are arbitrary functions of their arguments
such that Fxxx �= 0 and γt �= 0. Inserting the key function W (4.3) into hyperheavenly
equation we get

F2
x − 2F Fxx + Fxw′ + x Fxt ′ − 2Ft ′ = γ ′ (4.5)

where w′ = τw, t ′ = τ t and γ ′ = τ−2γ . The general solution of the Eq. (4.5) is not
known. The metric has the form

ds2 = 2φ−2
{
τ−1(dη ⊗

s
dw − dφ ⊗

s
dt) − φ Fxx dt ⊗

s
dt

+2φ x Fxx dw ⊗
s

dt + φ
(

2F − x2 Fxx

)
dw ⊗

s
dw

}
, η = xφ (4.6)

where F = F(x, w, t) satisfies the Eq. (4.5).

4.2 Heavenly spaces of the type [N]e ⊗ [−]n

There are two, essentially different heavenly reductions of the hyperheavenly space
of the type [N]e ⊗ [III]n with null homothetic symmetry. Taking Fxxx = 0 ⇐⇒
CȦ = 0 ⇐⇒ CȦḂĊ Ḋ = 0 in (4.4) we obtain the space of the type [N]e ⊗ [−]n with
expanding self-dual null strings.

Equation (4.5) under the additional assumption Fxxx = 0 can be easily solved.
Using gauge freedom which is still available (see [29] for details) one gets

W = 1

2
f (w, t) φ2 (4.7)

C (1) = −2φ7 ft t (4.8)

where f = f (w, t) is an arbitrary function. The metric is

ds2 = 2

τ
φ−2(dη ⊗

s
dw − dφ ⊗

s
dt + τ f φ dw ⊗

s
dw) (4.9)

4.3 Heavenly spaces of the type [III]n ⊗ [−]e

The second possible heavenly reduction of the hyperheavenly space of the type [N]e ⊗
[III]n with null homothetic symmetry is the heavenly space of the type [−]e ⊗ [III]n .
Formally it is enough to set C (1) = 0 ⇐⇒ γt = 0 in subsection 4.1. However, the Eq.
(4.5) is still hard to solve. It appears to be much more convenient to attack the problem
from the opposite side and consider the space of the type [III]n ⊗ [−]e. As a starting
point we take the nonexpanding hyperheavenly spaces and we set CȦḂĊ Ḋ = 0. It

allows us to take the general key function as a third-order polynomial in pȦ coordinates
(see [27,28] for details). The metric appears to be two-sided Walker [25]. Using the
general results from [28] and [25] (especially Theorem 5.1 from [25]) we find the form
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of the Killing vector

K = 2χ0 pȦ ∂

∂pȦ
(4.10)

and the spinors lAB and l Ȧ Ḃ

lAB = −4χ0δ
1
(Aδ2

B) , l Ȧ Ḃ = 0 (4.11)

The key function and the curvature read

θ = 1

6
p1̇ pṀ

(
p2̇ ∂ X

∂q Ṁ
− p1̇eX ∂Y

∂q Ṁ

)
(4.12)

C (2) = 2
∂

∂q1̇

(
eX ∂Y

∂q1̇
− ∂ X

∂q2̇

)
, C (1) = pȦ

(
FȦC (2) + ∂C (2)

∂q Ȧ

)

where F1̇ = ∂ X

∂q2̇
− 2eX ∂Y

∂q1̇
, F2̇ = ∂ X

∂q1̇
(4.13)

where X = X (q Ṁ ) and Y = Y (q Ṁ ) are arbitrary functions. The metric is

ds2 = 2 (−dpȦ ⊗
s

dqȦ + Q ȦḂ dqȦ ⊗
s

dqḂ)

Q1̇1̇ = −p1̇ ∂ X

∂q 2̇
, Q1̇2̇ = −p1̇eX ∂Y

∂q 2̇
,

Q2̇2̇ = −p2̇ ∂ X

∂q 1̇
− p2̇eX ∂Y

∂q 2̇
+ p1̇eX ∂Y

∂q 1̇

(4.14)

[Note, that the conditions CȦḂĊ Ḋ = 0 = � assure the existence of infinitely many
congruences of nonexpanding anti-self-dual null strings, that is why the space consid-
ered belongs to the two-sided Walker class. However, the congruence of anti-self-dual
null strings generated by the null Killing vector is expanding.]

5 Metrics admitting null isometric symmetries

5.1 Spaces of the type [II]e ⊗ [II]e

5.1.1 General case � �= 0

If both congruences of null strings are expanding then null isometric symmetries are
admitted by the types [II] ⊗ [II] and [D] ⊗ [D]. The respective metrics have been
discussed in [18] (with � = 0) and then in [29] (with � �= 0). The Killing vector
reads

K = ∂

∂η
(5.1)
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and

lAB = 2φ

τ

(
μ0φ

3 + �

6

)
δ2
(Aδ2

B) , l Ȧ Ḃ = −2

τ
φ−1 J Ȧ J Ḃ (5.2)

The key function and the curvature are

W = W (φ,w, t) (5.3)

C (3) = −2μ0φ
3 , C (1) = 6τφ7μ0Wt , μ0 = const �= 0

CȦḂĊ Ḋ = −φ3 J( Ȧ JḂCĊ DḊ) , C(Ċ DḊ) = 6μ0

τ 2 KĊ K Ḋ − Wφφφφ JĊ JḊ (5.4)

The metric reads

ds2 = 2φ−2
{
τ−1(dη ⊗

s
dw − dφ ⊗

s
dt) +

(μ0

τ 2 φ3 + �

6τ 2

)
dt ⊗

s
dt

+ (
2 Wφ − φ Wφφ

)
dw ⊗

s
dw

}
(5.5)

After inserting the key function (5.3) into the hyperheavenly equation we get

(
μ0φ

3 + �

6

)
Wφφ − 3μ0φ

2Wφ + 3μ0φW + τWtφ = 0 (5.6)

In order to maintain the type [II] ⊗ [II] we have to assume Wt �= 0 and Wφφφφ �= 0.
The general solution of the Eq. (5.6) is not known. Its reduction to canonical form is
realized by the transformation

s := μ0

τ
t, z := μ0

τ
t −

∫
dφ

φ3 + �
6μ0

(5.7)

Considering the key function W as a function of the variables (z, s, w) we obtain the
equation

Wzs − 6φ2Wz − 3φ

(
φ3 + �

6μ0

)
W = 0 (5.8)

Multiplying Eq. (5.8) by φ
(
φ3 + �

6μ0

)−2 one can bring it to the form

∂s

[
φ

(
φ3 + �

6μ0

)−2

Wz

]
− ∂z

[(
φ3 + �

6μ0

)−1

W

]
= 0 (5.9)

From (5.9) we infer the existence of the potential � = �(z, s, w) such that

�z = φ

(
φ3 + �

6μ0

)−2

Wz (5.10a)

�s =
(

φ3 + �

6μ0

)−1

W (5.10b)
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From the (5.10b) one can calculate W

W =
(

φ3 + �

6μ0

)
�s (5.11)

Inserting it into (5.10a) we arrive to the equation

�zs = 3φ2�s + φ−1
(

φ3 + �

6μ0

)
�z (5.12)

Of course, φ has to be considered as a function of coordinates s and z, φ = φ(z, s),
according to (5.7). The integral in (5.7) can be calculated in all subcases, leading
to the condition z = z(s, φ). Unfortunately, the inverse function φ = φ(z, s) is an
elementary function only if � = 0. However, if � = 0 more efficient transformation
can be proposed.

5.1.2 Special case � = 0

In what follows we assume � = 0 and we introduce the transformation (φ, η,w, t) →
(x, y, u, v):

φ2 =
(

− 1

μ0

) 2
3 1

4x
,

t

τ
=

(
− 1

μ0

) 1
3
(x + iy) ,

w

τ
= −1

4

(
− 1

μ0

) 2
3
u , η = v

(5.13)
In terms of the coordinates (x, y, u, v) the metric (5.5) has the form

ds2 = −2x du ⊗
s

(dv + Mdu) + x− 1
2 (dx ⊗

s
dx + dy ⊗

s
dy) (5.14)

where

M := −τ 2

4

(
− 1

μ0

) 2
3
(2Wφ − φWφφ) ≡ 2τ 2

(
− 1

μ0

) 1
3
(∂x + i∂y)

(
x

5
2 (∂x + i∂y)W

)
(5.15)

Obviously, M is a function of the variables (x, y, u). The hyperheavenly Eq. (5.6)
takes the form

4x2(Wxx + Wyy) + 12x(Wx + iWy) + 3W = 0 (5.16)

differentiating Eq. (5.16) twice by ∂x + i∂y and using definition of M , after some
algebraic work we obtain

x Mxx + x Myy + Mx = 0 (5.17)

Equation (5.17) is equivalent to the Euler–Poisson–Darboux equation (EPD equa-
tion) and its solutions have been discussed in literature [35]. The form of the met-
ric (5.14) and the Eq. (5.17) are especially useful in obtaining the Lorentzian slices
(see Sect. 6).

123



Null Killing vectors and geometry Page 21 of 28 1714

5.2 Spaces of the type [D]e ⊗ [D]e

From the previous subsection one can easily obtain the general metric for the type
[D]e ⊗ [D]e with �. Self-dual type [D] we get after setting C (1) = 0 ⇒ Wt =
0 ⇒ W = W (φ,w). General solution of the hyperheavenly Eq. (5.6) reads W =
μ0 f1(w)φ3 + f2(w)φ − (�/3) f1(w) and it automatically causes anti-self-dual type
being of the type [D]. Moreover, it can be proved that arbitrary functions f1 and f2 can
be gauged to zero without any loss of generality. [We do not prove that fact here, but it
can be easily done by using the results from [29] together with some straightforward
calculations]. Finally it brings us to conclusion, that in the hyperheavenly spaces of
the type [D] ⊗ [D] admitting null Killing vector the key function W can be gauged to
zero. [The inverse implication is also true; putting W = 0 in expanding hyperheavenly
equation and all curvature formulas we easily get, that such hyperheavenly space
automatically becomes of the type [D] ⊗ [D] with the metric (5.18)]. The metric

ds2 = (φτ)−2
{

2τ(dη ⊗
s

dw − dφ ⊗
s

dt) + 2

(
μ0φ

3 + �

6

)
dt ⊗

s
dt

}
(5.18)

admits, together with null isometric Killing vector ∂η, three other isometric Killing
vectors ∂w, ∂t and w∂w−η∂η and - if � = 0 - one homothetic Killing vector 2

3χ0(2t∂t −
φ∂φ + η∂η).

If � = 0 the metric (5.18) can be easily transformed to coordinate system
(x, y, u, v) defined by (5.13). According to (5.15) function M = 0 and the metric
reads

ds2 = −2x du ⊗
s

dv + x− 1
2 (dx ⊗

s
dx + dy ⊗

s
dy) (5.19)

5.3 Spaces of the type [III]e ⊗ [III]e and [N,−]e ⊗ [N,−]e

The next possible metrics generated by null Killing vector with both self-dual and anti-
self-dual congruences of expanding null strings, are metrics of the type [III]e ⊗ [III]e,
[N]e ⊗ [N]e and [N]e ⊗ [−]e or [−]e ⊗ [N]e. All of them have been found in [29].
Here we have the Killing vector

K = ∂

∂η
(5.20)

and

lAB = �φ

3τ
δ2
(Aδ2

B), l Ȧ Ḃ = −2

τ
φ−1 J Ȧ J Ḃ (5.21)

The key function and the curvature

W = α0ηφ3 + f (z, w) − 3

7�
τ 2α2

0 φ7 + gt φ2 − �

3τ
g φ, z := φ − �t

6τ

C (2) = −2τα0�φ5, C (1) = −4τ 2φ7(gttt + α2
0�φ3)

CȦḂĊ Ḋ = φ3 J( Ȧ JḂ JĊ L Ḋ)
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L Ȧ :=
(

fzzzz − 360

�
τ 2α2

0 φ3
)

JȦ − 24α0 K Ȧ (5.22)

where f = f (z, w) and g = g(w, t) are arbitrary functions of their variables. The
metric reads

ds2 = (φτ)−2
{

2τ(dη ⊗
s

dw − dφ ⊗
s

dt) + �

3
dt ⊗

s
dt − 8τ 2α0φ

3 dw ⊗
s

dt

+2
(

− τ 2 fzz φ + 2τ 2 fz + 12

�
τ 4α2

0 φ6 + 2τ 2gt φ − 2

3
τ�g

)
dw ⊗

s
dw

}

(5.23)

In all formulas � �= 0. Particular types are characterized by

• type [III]e ⊗[III]e: α0 �= 0, α0 can be re-gauged to 1 without any loss of generality
• type [N]e ⊗ [N]e: α0 = 0, gttt �= 0, fzzzz �= 0
• type [N]e ⊗ [−]e: α0 = 0, gttt �= 0, fzzzz = 0 (one can set f = 0 without any

loss of generality)
• type [−]e ⊗[N]e: α0 = 0, fzzzz �= 0, gttt = 0 (one can set g = 0 without any loss

of generality)

Of course, spaces of the types [N]e ⊗ [−]e and [−]e ⊗ [N]e have the same geometry
of null strings, since both self-dual and anti-self-dual congruences of null strings are
expanding. The case [−]e ⊗[N]e has been considered with details in [30]. It describes
the general heavenly metric with � admitting null Killing vector. In real case this
solution has the signature (++−−) and it is general metric of the 4-dimensional global
Osserman space with non-zero curvature scalar admitting the null Killing vector.

5.4 Spaces of the type [III,N,−]n ⊗ [N,−]e

In this case we deal with the hyperheavenly spaces of types [III,N]n ⊗ [N]e with
nonexpanding congruence of self-dual null strings defined by the null Killing vector;
the congruence of anti-self-dual null strings is still expanding. The respective metrics
have been discussed in [28]. The Killing vector has the form

K = q 1̇ ∂

∂p1̇
(5.24)

Then
lAB = −δ2

(Aδ2
B) , l Ȧ Ḃ = 0 (5.25)

The key function and the curvature read

θ = p2̇ S(q 2̇, q 1̇ p2̇ p2̇) − 1

12

p2̇

q 1̇
(F0 p2̇ − p1̇)(F0 p2̇ − 3p1̇) + 1

2
N p2̇ p2̇

C (2) = F0
1

q 1̇q 1̇
, C (1) = −2

∂

∂q 1̇

(
N

2q 1̇
− ∂ N

∂q 1̇

)
− 2F0 p1̇

(q 1̇)3
− F2

0 p2̇

(q 1̇)3
(5.26)
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CȦḂĊ Ḋ = 1

2
Ċ (1)δ2̇

Ȧ
δ2̇

Ḃ
δ2̇

Ċ
δ2̇

Ḋ
, Ċ (1) = 2

(
p2̇ S(q 2̇, q 1̇ p2̇ p2̇)

)
p2̇ p2̇ p2̇ p2̇

(5.27)

where N = N (q Ṁ ) and S = S(q 2̇, q 1̇ p2̇ p2̇) are arbitrary functions and F0 is a
constant. The metric takes the form

ds2 = −2 dpȦ ⊗
s

dqȦ − 2

(
(p2̇ S)p2̇ p2̇ − F2

0

2

p2̇

q 1̇
+ N

)
dq1̇ ⊗

s
dq1̇

+ p2̇

q 1̇
dq2̇ ⊗

s
dq2̇ + 2

(
2F0

p2̇

q 1̇
− p1̇

q 1̇

)
dq1̇ ⊗

s
dq2̇ (5.28)

� necessarily must be zero and the hyperheavenly metrics are characterized by

• type [III]n ⊗[N]e: F0 �= 0, F0 can be re-gauged to 1 without any loss of generality,
(p2̇ S)p2̇ p2̇ p2̇ p2̇ �= 0

• type [N]n ⊗ [N]e: F0 = 0, C (1) �= 0, (p2̇ S)p2̇ p2̇ p2̇ p2̇ �= 0

The heavenly reductions of the metric obtained above are especially interesting,
because they provide two different null string geometries. One can get the metrics of
the type [III,N]n ⊗ [−]e or [−]n ⊗ [N]e.

In order to obtain the heavenly metrics of the types [III,N]n ⊗ [−]e one must set
S(q 2̇, q 1̇ p2̇ p2̇) = f (q 2̇) q 1̇ p2̇ p2̇ where f is an arbitrary function of the variable q 2̇.
(It seems, that this is too strong condition and it is enough to set (p2̇ S)p2̇ p2̇ p2̇ p2̇ = 0,
but there is unused gauge freedom, which allows to simplify the function S). Heavenly
metrics of the type [−]n ⊗ [N]e can be obtained by setting F0 = 0 = N (once again
condition N = 0 is stronger then necessary C (1) = 0, but N = 0 can be obtained by
using gauge freedom). Finally

• type [III]n ⊗[−]e: F0 �= 0, F0 can be re-gauged to 1 without any loss of generality,
S = f (q 2̇) q 1̇ p2̇ p2̇

• type [N]n ⊗ [−]e: F0 = 0, C (1) �= 0, S = f (q 2̇) q 1̇ p2̇ p2̇

• type [−]n ⊗ [N]e: F0 = 0, N = 0, (p2̇ S)p2̇ p2̇ p2̇ p2̇ �= 0

5.5 Spaces of the type [N,−]n ⊗ [N,−]n

The last case is characterized by both self-dual and anti-self-dual congruences of null
strings being nonexpanding. The only possible types are [N,−]n ⊗ [N,−]n . These
metrics have been found in [28]. The Killing vector takes the form

K = ∂

∂p1̇
(5.29)

with spinors lAB and l ȦḂ being

lAB = 0, l Ȧ Ḃ = 0 (5.30)
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The key function and the curvature are

θ = 1

2
N (q Ṁ ) p2̇ p2̇ + A(p2̇, q 2̇) (5.31)

C (1) = 2
∂2 N

∂q 1̇∂q 1̇
, Ċ (1) = 2 Ap2̇ p2̇ p2̇ p2̇ (5.32)

where N = N (q Ṁ ) and A = A(p2̇, q 2̇) are arbitrary functions. The metric reads

ds2 = −2 dpȦ ⊗
s

dqȦ − 2
(

Ap2̇ p2̇ + N
)

dq1̇ ⊗
s

dq1̇ (5.33)

There are two different heavenly degenerations but they lead to the equivalent heavens.
To get the heavenly space of the type [−]n ⊗ [N]n it is enough to set Nq 1̇q 1̇ = 0, then
by using gauge freedom one can gauge N away. The heavenly space of the type
[N]n ⊗ [−]n can be obtained by setting the function A as a third-order polynomial in
p2̇ (in fact, taking into considerations the remaining gauge freedom, it is enough to
set A = f (q 2̇) p2̇ p2̇ p2̇). Gathering, we arrive at the cases

• type [N]n ⊗ [N]n : Nq 1̇q 1̇ �= 0, Ap2̇ p2̇ p2̇ p2̇ �= 0
• type [−]n ⊗ [N]n : N = 0, Ap2̇ p2̇ p2̇ p2̇ �= 0

• type [N]n ⊗ [−]n : Nq 1̇q 1̇ �= 0, A = f (q 2̇) p2̇ p2̇ p2̇

6 Real slices

6.1 Real slices with neutral signature (+ + −−)

The metrics presented in Sects. 4 and 5 are holomorphic. It is an easy matter to carry
over all the results to the case of real spaces of the signature (+ + −−). To this end,
instead of the holomorphic objects (spinors, null strings, tetrads, coordinates, etc.) we
simply deal with the real smooth objects. Real spaces of the neutral signature play
an important role in Walker and Osserman geometry [36–38]. Recently, it has been
recognized that the hyperheavenly formalism allows to obtain transparent results in
Walker and Osserman geometry. For example, a new class of metrics admitting self-
dual and anti-self-dual, parallely propagated null strings (two-sided Walker spaces)
has been found in [25]. These spaces have a natural generalization when only one of the
families of null strings is parallely propagated (sesqui–Walker spaces). Such spaces
have been defined and investigated in [38]. Probably the most distinguished success
of the hyperheavenly methods in Osserman geometry was finding all algebraically
degenerate metrics of the globally Osserman space which do not have the Walker
property, i.e. they do not admit any parallely propagated null strings [26].

Some of the metrics presented in Sects. 4 and 5 are examples of the Walker or
Osserman spaces admitting the null Killing vector. These metrics are gathered in the
table:
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sesqui–Walker (4.6), (4.9), (5.28) of the types [III,N,−]n ⊗ [N]e
two-sided Walker (4.14), (5.28) of the types [III,N,−]n ⊗ [−]e , (5.33)
globally Osserman (4.9), (4.14), (5.23) of the type [N]e ⊗ [−]e or [−]e ⊗ [N]e ,

(5.28) of the type [III,N,−]n ⊗ [−]e and [−]n ⊗ [N,−]e ,
(5.33) of the type [N]n ⊗ [−]n or [−]n ⊗ [N]n

Among globally Osserman spaces the most interesting is the one with metric (5.23)
of the type [N]e ⊗ [−]e or [−]e ⊗ [N]e. It does not have any parallely propagated null
strings (because of � �= 0). Consequently it is the most general globally Osserman
but not Walker space equipped with a null isometric Killing vector.

6.2 Real Lorentzian slices

Of course, the most interesting from the physical point of view are Lorentzian slices.
There are still no general techniques of obtaining such slices, except some notes on
their properties [23]. However, in some special cases they can be obtained quite easily.

It is well known, that there are only two subcases of the Einstein spaces with
Lorentzian signature and null Killing vector (compare [39]). One of them is pp-wave
solution. The real metric of the pp-wave solution can be obtained from the complex
metric (5.33) of the type [N]n ⊗[N]n . Detailed discussion of this case can be found in
[28]. We only mention, that in this particular case it is enough to consider the necessary
condition of existing Lorentzian slice, namely CȦḂĊ Ḋ = C̄ABC D , which gives now
Ċ (1) = C̄ (1).

Except the pp-wave solution, null Killing vector is admitted by the Lorentzian,
Einstein spaces of the type [II] and [D]. It means, that desired Lorentzian slice is
hidden in the hyperheavenly metric (5.5) with the key function (5.3) and with curvature
given by (5.4). Unfortunatelly, in this case the conditions CȦḂĊ Ḋ = C̄ABC D are not
straightforward and technique which succeeded in pp-wave case, failed.

However, one can consider the (complex) transformation (5.13) which brings the
metric to the form (5.14). The metric (5.14) depends on one (complex) function M =
M(x, y, u) which satisfies the Eq. (5.17). Treating now the coordinates (x, y, u, v) as
real coordinates and the function M as a real smooth function we find that the metric
(5.14) automatically becomes real and has the Lorentzian signature. The vacuum
Einstein equations have been reduced to the Eq. (5.17). Exactly the same form of
the metric with the same equation describing real vacuum Lorentzian types [II] and
[D] admitting a null isometric Killing vector can be found in [39]. Summing up,
the metric (5.14) with real coordinates is another example of Lorentzian slice of the
complex space.

Why does this technique succeed? The first reason is, probably, the explicit use of
the imaginary unit in transformation (5.13). It plays no role if we consider (5.13) as
complex transformation and the coordinates (x, y, u, v) as complex. But if (x, y, u, v)

are real, this step changes automatically the signature of the metric making (5.14)
Lorentzian. The second reason is that the metric (5.14) does not depend directly on
the key function W but on the function M . The relation between this two functions
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is given by (5.15) and it contains the imaginary unit. However, differentiating twice
the hyperheavenly Eq. (5.16) one can bring it to the form (5.17) which is free of
imaginary unit. Finally, we are left with the real metric and the real equation. It is
enough to accomplish the construction of Lorentzian spaces of the type [II] and [D]
admitting null Killing vector.

It is worth to note that this construction works only in the vacuum case. If cosmo-
logical constant � �= 0 we have not been able to find the Lorentzian slices.

We conclude also that no Einstein spaces with null homothetic symmetries admit
Lorentzian slices.

7 Concluding remarks

In this paper the null Killing vectors (isometric and homothetic) in complex spacetime
have been considered. The relation between the existence of null Killing vector and
geometry of null strings has been studied in Sect. 2. Because of the existence of null
strings the most natural apparatus in investigating null Killing vectors appeared to be
the one provided by the theory of hyperheavenly and heavenly spaces. After short
summary of the structure of hyperheavenly spaces (Sect. 3), we have been able to
present all possible metrics admitting null Killing vector. Only two of them i.e.

• the metric (4.6) of the type [N]e ⊗ [III]n with null homothetic Killing vector
• the metric (5.5) of the types [II]e ⊗[II]e with � �= 0 and with null isometric Killing

vector

have not been solved completely. In (4.6) the functions F = F(x, w, t) and γ =
γ (w, t) satisfy the Eq. (4.5). No solution with Fxxx �= 0 and γt �= 0 have been found.
However, the geometry of this space is so interesting and the type [N]e ⊗ [III]n so
rare, that we are going to study the Eq. (4.5) with details in future. As for the metric
(5.5) we have been able to solve the case [D]e ⊗ [D]e and reduce the type [II]e ⊗ [II]e

with � = 0 to the Euler–Poisson–Darboux equation which solutions are known. The
type [II] ⊗ [II] with � �= 0 has been reduced to the Eq. (5.12), but this reduction has
obvious disadvantages. Like in the previous case, we will deal with this equation soon.

The transparent results are the metrics (4.9) and (4.14) which constitute all heav-
ens with null homothetic symmetry. These cases have been considered in [40] but
without giving any explicit form of the metric. We were able to integrate the problem
completely.

Perhaps, the most interesting from the physical point of view is searching for exam-
ples of real Lorentzian slices of the complex metrics. The first such an example has
been presented in [28]. Here we have been able to find the Lorentzian slices of the
types [II]e ⊗ [II]e and [D]e ⊗ [D]e with � = 0. They are given by the metric (5.14)
which depends on one function M of three variables satisfying the Eq. (5.17). Such a
metric has been presented earlier (see [41], or in a concise form [39]).

Both these examples gave some valuable hints about obtaining Lorentzian slices.
In the first of them the condition CȦḂĊ Ḋ = C̄ABC D has been successfully used, in the
second one a reasonable using of imaginary unit appears to be essential. Nonetheless,
the case with nonzero cosmological constant is still unsolved. Taking into consider-
ations the optical properties of the congruences of null geodesics defined by the null
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isometric Killing vector (2.30a) – (2.30c) we conclude that all such slices must belong
to the Kundt class ([39], xxxi). The vacuum Einstein field equations with cosmological
constant for the Kundt class have been gathered in [39] but no explicit solution has been
presented there. The vacuum types [II] and [D] with cosmological constant admitting
null isometric Killing vector via Lorentzian slices of complex types [II]e ⊗ [II]e and
[D]e ⊗ [D]e become our main issue to be considered in future.

However, interesting observation can be immediately made. The generic complex
spacetimes admitting null isometric Killing vector which have the Lorentzian slices
are equipped with congruence of null strings which have the same properties. Indeed,
pp-wave solution can be obtained from the complex spacetime of the type [N]n ⊗[N]n

where both self-dual and anti-self-dual congruences of null strings are nonexpanding.
In the opposite, Lorentzian types [II] and [D] have been obtained from the complex
spacetimes of the types [II]e ⊗ [II]e and [D]e ⊗ [D]e in which both congruences of
null strings are expanding. Maybe it is a general rule and Lorentzian slices can be
obtained only from the complex spacetimes equipped with both expanding or both
nonexpanding null strings?

We hope, that further investigations on the structure of complex spacetimes allow
us to find some effective and more general techniques of obtaining real Lorentzian
slices.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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