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Abstract A space of kinematic quantum states for the Teleparallel Equivalent of
General Relativity is constructed by means of projective techniques. The states are
kinematic in this sense that their construction bases merely on the structure of the
phase space of the theory and does not take into account constraints on it. The space of
quantum states is meant to serve as an element of a canonical background independent
quantization of the theory.
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1 Introduction

Nowadays there are many approaches [1,2] to quantum gravity but so far no one is
fully successful. Therefore it is still worth to take a risk to develop a new approach. It
seems that the Teleparallel Equivalent of General Relativity (TEGR) was never used as
a point of departure for a construction of a model of quantum gravity and therefore we
would like to check whether it is possible to quantize gravity in this formulation (for
the latest review of TEGR see [3]). More precisely, we would like to check whether
it is possible to quantize TEGR using the method of canonical quantization or, if it
is needed, a modification of the method. Since TEGR is a background independent
theory we would like to quantize it in a background independent manner.
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TEGR in its canonical formulation is a constrained system (see e.g. [4–7]). There-
fore it is quite natural to attempt to apply the Dirac strategy of canonical quantization
of such systems which requires two steps to be carried out: (i) first one neglects con-
straints and constructs a space of kinematic quantum states, that is, quantum states
corresponding to all classical states constituting the whole phase space (i i) then among
the kinematic quantum states one distinguishes physical quantum states as those cor-
responding to classical states satisfying all the constraints. The space of kinematic
quantum states is usually a Hilbert space and to carry out the second step one tries to
find operators on the Hilbert space corresponding to the constraints and singles out
physical quantum states as those annihilated by the operators (this procedure is valid
if all the constraints are of the first class).

In this paper we construct a space of kinematic quantum states for TEGR treated
as a theory of cotetrad fields on a four-dimensional manifold. More precisely, the
construction is valid for any theory of cotetrad fields the phase space of which coincides
with that of TEGR—an example of such a theory is the Yang-Mills-type Teleparallel
Model (YMTM) considered in [8,9].

The space of quantum states for TEGR, which since now will be denoted by D, will
be constructed according to a method presented in [10] combined with some Loop
Quantum Gravity (LQG) techniques [11–14]. This method being a generalization of
a construction by Kijowski [15] provides us with a space of quantum states which is
not a Hilbert space but rather a convex set of quantum states—these states can be seen
as algebraic states (i.e. linear positive normed functionals) on a C∗-algebra which can
be thought of as an algebra of some quantum observables.

We will also show that spatial diffeomorphisms act naturally on the space D which
allows to hope that D can be used as an element of a background independent quan-
tization of TEGR.

The construction of D is similar to a construction of a space of quantum states for
the degenerate Plebański gravity (DPG) [10] and the descriptions of both constructions
follow the same pattern. It may be helpful to study first the construction in [10] since
it is simpler than that of D.

Let us mention that except the space D it is possible to construct other spaces of
kinematical quantum states for TEGR—in this paper we will briefly describe the other
spaces and comment on their possible application to quantization of TEGR.

To proceed further with quantization of TEGR it is necessary to single out physical
quantum states in the space D, that is, to carry out the second step of the Dirac strategy.
Since D is not a Hilbert space the standard procedure mentioned above by means of
which one distinguishes physical quantum states has to be modified in a way. At this
moment we are not able to present a satisfactory and workable modification of the
procedure (some remarks on this very important issue can be found in [10]), but we
hope that this problem will be solved in the future.

The paper is organized as follows: Sect. 2 contains preliminaries, in Sect. 3 the
space of quantum states for TEGR is constructed, in Sect. 4 we define an action of
spatial diffeomorphisms on D, Sect. 5 contains a short description of the other spaces
of quantum states, in Sect. 6 we discuss the results. Finally, in Appendix 7 we show
that the space D is identical to one of the other spaces.
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2 Preliminaries

2.1 Cotetrad fields

Let M be a real four-dimensional oriented vector space equipped with a scalar prod-
uct η of signature (−,+,+,+). We fix an orthonormal basis (vA) (A = 0, 1, 2, 3)
of M such that the components (ηAB) of η given by the basis form the matrix
diag(−1, 1, 1, 1). The matrix (ηAB) and its inverse (ηAB) will be used to, respec-
tively, lower and raise capital Latin letter indeces A, B,C, D ∈ {0, 1, 2, 3}.

Denote by E the subspace of M spanned by the vectors {v1, v2, v3}. The scalar
product η induces on E a positive definite scalar product δ. Its components (δI J ) in the
basis (v1, v2, v3) form a matrix diag(1, 1, 1). The matrix (δI J ) and its inverse (δ I J )will
be used to, respectively, lower and raise capital Latin letter indeces I, J, K , L ,M ∈
{1, 2, 3}. In some formulae we will use the three-dimensional permutation symbol
which will be denoted by εI J K .

2.2 Phase space

The goal of this paper is to construct a space of quantum states for theories of a par-
ticular phase space consisting of some fields defined on a three-dimensional oriented
manifold �—a point in the phase space consists of:

1. a quadruplet of one-forms (θ A), A = 0, 1, 2, 3, on � such that the metric

q := ηABθ
A ⊗ θ B (2.1)

is Riemannian (positive definite);
2. a quadruplet of two-forms (pB), B = 0, 1, 2, 3, on �.

pA is the momentum conjugate to θ A. The set of all (θ A) satisfying the assumption
above will be called a Hamiltonian configuration space and denoted by �, while the
set of all (pA) will be called a momentum space and denoted by P . Thus the phase
space is the Cartesian product P ×�. The Poisson bracket between two functions f1
and f2 on the phase space is given by the following formula

{ f1, f2} =
∫

�

( δ f1

δθ A
∧ δ f2

δpA
− δ f2

δθ A
∧ δ f1

δpA

)
(2.2)

—a definition of the variational derivative with respect to a differential form can be
found in [9].

As shown in, respectively, [6] and [9] both TEGR and YMTM possess such a phase
space.

It turns out [16] that it is possible to construct quantum states via the method pre-
sented in [10] starting from the phase space description above (which in a sense is
a natural description)—see Sect. 5. However, as it was argued in [16], a space of
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these quantum states possesses an undesired property. Therefore the space of quan-
tum states D will be constructed starting from another description [17] of the phase
space.

Let ι be a function defined on a space of all global coframes on � valued in
{−1, 1}. Since for every (θ A) = (θ0, θ I ) ∈ � the triplet (θ I ) is a global coframe on
the manifold [16] ι can be regarded as a function on �. Every function ι which is a
constant function on every path-connected subset of � defines new variables on the
phase space [17] which provide new description of the space. According to it a point
in the phase space consists of:

1. a collection (ξ I
ι , θ

J ) ≡ θ , where ξ I
ι , I = 1, 2, 3, is a real function (a zero-form)

on � and (θ J ), J = 1, 2, 3, are one-forms on � constituting a global coframe;
2. a collection (ζιI , rJ ) ≡ p, where ζιI , I = 1, 2, 3, is a three-form on� and rJ , J =

1, 2, 3, is a two-form on the manifold.

ζιI is the momentum conjugate to ξ I
ι and rJ is the momentum conjugate to θ J . Thus all

the (ξ I
ι , θ

J ) constitute the Hamiltonian configuration space � while all the (ζιI , rJ )

constitute the momentum space P . The Poisson (2.2) reads now as follows

{ f1, f2} =
∫

�

( δ f1

δξ I
ι

∧ δ f2

δζιI
+ δ f1

δθ I
∧ δ f2

δrI
− δ f2

δξ I
ι

∧ δ f1

δζιI
− δ f2

δθ I
∧ δ f1

δrI

)
. (2.3)

Regarding a relation of the latter description to the former let us first express the
dependence of (pA, θ

B) on (ζιI , rJ , ξ
K
ι , θ

L) [17]:

p0 = ι(θK )

√
1+ ξιJ ξ J

ι
�θ I � ζιI , pI = rI − ξιI �θ J � ζιJ ,

θ0 = ι(θ J )
ξιI√

1+ ξιK ξ K
ι

θ I , θ I = θ I .
(2.4)

Here �θ I is a vector field on� obtained from θ I by raising its index by a metric inverse
to the metric q—in a local coordinate frame (xi ) on �

�θ I := qi jθ I
j ∂xi .

Since [17]

q =
(
δI J − ξιI ξιJ

1+ ξιK ξ K
ι

)
θ I ⊗ θ J (2.5)

the vector field �θ I is a function of both ξ J
ι and θ L .

The inverse dependence, that is, the dependence of (ζιI , rJ , ξ
K
ι , θ

L) on (pA, θ
B)

reads [17]
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ζιI = ι(θK )
√

det(qM N ) qI J θ
J ∧ p0,

rI =
√

det(qM N )

2
sgn(θ L) ∗ (θ0 ∧ θ J ∧ θK ) εI J K p0 + pI ,

ξ I
ι =

1

2

ι(θ L)

sgn(θ L)
∗ (θ0 ∧ θJ ∧ θK ) ε

I J K ,

θ I = θ I .

(2.6)

Here ∗ is a Hodge operator defined by the metric q, and (qI J ) are components of q
in the basis (θ J ). Let us emphasize that in (2.6) q is treated as a function of (θ A) (see
(2.1)). Moreover,

sgn(θ I ) :=
{

1 if (θ I ) is compatible with the orientation of�
−1 otherwise

. (2.7)

3 Construction of quantum states for a theory of the phase space P × �

3.1 Choice of variables

The construction of a space of quantum states for TEGR we are going to present in this
section can be successfully carried out starting from any variables (ζιI , rJ , ξ

K
ι , θ

L).
However, as proved in [17] unless ι = sgn or ι = − sgn, where sgn is given by
(2.7), the constraints of TEGR found in [6] and the constraints of YMTM found in [9]
cannot be imposed on the resulting space of quantum states. Therefore it is reasonable
to restrict ourselves to variables

(ζs I , rJ , ξ
K
s , θ

L), (ζ−s I , rJ , ξ
K−s, θ

L)

defined by, respectively, ι = sgn or ι = − sgn. Actually, we will construct the space
D using the variables (ζs I , rJ , ξ

K
s , θ

L), and then we will show that a space D−s built
from the variables (ζ−s I , rJ , ξ

K−s, θ
L) coincides with D.

Since now we will use a simplified notation according to which

(ζI , rJ , ξ
K , θ L) ≡ (ζs I , rJ , ξ

K
s , θ

L). (3.1)

3.2 Outline of the construction

Following [10] we will first choose (i) a special set K of real functions on � and call
the functions configurational elementary degrees of freedom and (i i) a special set F of
real functions on P and call the functions momentum elementary degrees of freedom.
The configurational d.o.f. will be then used to define functions on � of a special sort
called cylindrical functions. Next, each momentum d.o.f. will define via the Poisson
bracket (2.3) or its regularization a linear operator on the space of cylindrical functions.
Thus we will obtain a linear space F̂ spanned by operators associated with elements
of F .
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In the next step of the construction we will choose a set � such that each element
of it is a pair (F̂, K ), where F̂ is a finite dimensional linear subspace of F̂ and K is a
finite set of configurational elementary d.o.f.. Then we will define on � a relation ≥
equipping it with the structure of a directed set and show that (�,≥) satisfies some
special assumptions. This will finish the construction since at this moment we will
refer to [10] where it was shown that from each directed set satisfying the assumptions
one can build a space of quantum states.

The construction of the space of quantum states from such a directed set (�,≥)
proceeds as follows. Given (F̂, K ) ≡ λ ∈ �, one uses elements of K to reduce the
“infinite-dimensional” space � to a space �K of finite dimension. Next, one defines
(i) a Hilbert space Hλ as a space of functions on �K square integrable with respect
to a natural measure on�K and (i i) a space Dλ of all density operators on the Hilbert
space (i.e. positive operators of trace equal 1). It turns out that assumed properties of
the set (�,≥) unambiguously induce on a set {Dλ}λ∈� the structure of a projective
family. The space of quantum states is then defined as the projective limit of the family.

Let us emphasize that our choice of elementary d.o.f. as well as application of
graphs, cylindrical functions and the operators defined on them by the Poisson bracket
is motivated by LQG methods—see [11–14] and references therein.

3.3 Submanifolds of �

Each elementary d.o.f. we are going to use will be associated with a submanifold of �.
Following the LQG methods since now till the end of this paper we will assume

that the manifold � is real analytic.1

An analytic edge is a one-dimensional connected analytic embedded submanifold of
� with two-point boundary. An oriented one-dimensional connected C0 submanifold
of � given by a finite union of analytic edges will be called an edge. The set of all
edges in � will be denoted by E .

Given an edge e of two-point boundary, its orientation allows to call one of its end-
points a source and the other a target of the edge; if an edge is a loop then we distinguish
one of its points and treat it simultaneously as the source and the target of the edge.

An edge e−1 is called an inverse of an edge e if e−1 and e coincide as un-oriented
submanifolds of � and differ by their orientations. We say that an edge e is a compo-
sition of the edges e1 and e2, e = e2 ◦ e1, if (i) e as an oriented manifold is a union
of e1 and e2, (i i) the target of e1 coincides with the source of e2 and (i i i) e1 ∩ e2
consists solely of some (or all) endpoints of e1 and e2.

We say that two edges are independent if the set of their common points is either
empty or consists solely of some (or all) endpoints of the edges. A graph in � is a
finite set of pairwise independent edges. Any finite set of edges can be described in
terms of edges of a graph [20]:

Lemma 3.1 For every finite set E = {e1, . . . , eN } of edges there exists a graph γ in
� such that every e j ∈ E is a composition of some edges of γ and the inverses of
some edges of the graph.

1 Equally well we could assume that the manifold is semi-analytic—see e.g. [18,19] for the definition of
semi-analyticity.
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The set of all graphs in � is naturally a directed set: γ ′ ≥ γ if each edge of the
graph γ is a composition of some edges of the graph γ ′ and the inverses of some edges
of γ ′.

Let S be a two-dimensional embedded submanifold of �. Assume that S is (i)
analytic, (i i) oriented and (i i i) of a compact closure. We moreover require S to be
such that every edge e ∈ E can be adapted to S in the following sense [21]: e can be
divided into a finite number of edges {e1, . . . , eN }, i.e.

e = eN ◦ eN−1 ◦ · · · ◦ e2 ◦ e1,

each of them either

1. is contained in the closure S;
2. has no common points with S;
3. has exactly one common point with S being one of its two distinct endpoints.

We will call such a submanifold a face. A set of all faces in � will be denoted by S.
A three-dimensional submanifold V of� of a compact closure and of an orientation

inherited from � will be called a region. A set of all regions in � will be denoted by
V .

3.4 Elementary degrees of freedom

Note that the variables (ξ I , θ J ) and (ζK , rL) parameterizing the phase space P ×�
are, respectively, zero-forms (functions), one-forms, three-forms and two-forms which
can be naturally integrated over submanifolds of � of appropriate dimensions.

Thus every point y ∈ � defines naturally a function on �:

� 
 θ �→ κ I
y (θ) := ξ I (y) ∈ R. (3.2)

Similarly, every edge e defines a function on �:

� 
 θ �→ κ J
e (θ) :=

∫

e

θ J ∈ R. (3.3)

We choose the set K of configurational elementary d.o.f as follows

K := { κ I
y , κ

J
e | I, J = 1, 2, 3, y ∈ �, e ∈ E }.

It is easy to realize that the functions in K separate points in �.
Note that for every I = 1, 2, 3, every e ∈ E and every pair of edges e1, e2 ∈ E for

which the composition e2 ◦ e1 makes sense

κ I
e−1 = −κ I

e , κ I
e2◦e1
= κ I

e2
+ κ I

e1
. (3.4)
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Every region V defines a function on P:

P 
 p �→ ϕV
I (p) :=

∫

V

ζI ∈ R. (3.5)

Similarly, every face S defines a function on P:

P 
 p �→ ϕS
J (p) :=

∫

S

rJ ∈ R. (3.6)

We choose the set F of momentum elementary d.o.f as follows

F := { ϕV
I , ϕ

S
J | I, J = 1, 2, 3, V ∈ V, S ∈ S }.

It is not difficult to check that the functions in F separate points in P .

3.5 Finite sets of configurational elementary d.o.f.

Let K = {κ1, . . . , κN } ⊂ K be a finite set of elementary d.o.f.. We say that θ ∈ � is
K -related to θ ′ ∈ �,

θ ∼K θ ′,

if for every κα ∈ K

κα(θ) = κα(θ ′).

Clearly, the relation ∼K is an equivalence one. Therefore it defines a quotient space

�K := �/ ∼K . (3.7)

Note now that there exist (i) a canonical projection from � onto �K :

� 
 θ �→ prK (θ) = [θ ] ∈ �K (3.8)

and (i i) an injective map2 from �K into R
N :

�K 
 [θ ] �→ K̃ ([θ ]) := (κ1(θ), . . . , κN (θ)) ∈ R
N , (3.9)

where N is the number of elementary d.o.f. constituting K and [θ ] denotes the equiv-
alence class of θ defined by the relation ∼K .

2 Note that each set K is unordered, thus to define the map K̃ one has to order elements of K . However,
every choice of the ordering is equally well suited for our purposes and nothing essential depends on the
choice. Therefore we will neglect this subtlety in what follows.
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We will say that elementary d.o.f. in K = {κ1, . . . , κN } are independent if the
image of K̃ is an N -dimensional submanifold of R

N . A quotient space �K given by
a set K of independent d.o.f. will be called a reduced configuration space.

Lemma 3.2 Let u = {y1, . . . , yM } be a finite collection of points in � and γ =
{e1, . . . , eN } be a graph such that either u or γ is not an empty set (N ,M ≥ 0 but
N + M > 0). Then for every (z I

i , x J
j ) ∈ R

3M × R
3N there exists θ ∈ � such that

κ I
yi
(θ) = z I

i , κ J
e j
(θ) = x J

j

for every I, J = 1, 2, 3, i = 1, . . . ,M and j = 1, 2, . . . , N.

This lemma proven in [16] guarantees that if

Ku,γ := { κ I
y1
, . . . , κ I

yM
, κ J

e1
, . . . , κ J

eN
| I, J = 1, 2, 3 }. (3.10)

then

�Ku,γ
∼= R

3M × R
3N , (3.11)

under the map K̃u,γ , i.e. K̃u,γ is a bijection. It means in particular that the d.o.f.
constituting Ku,γ are independent and�Ku,γ is a reduced configuration space. We are

also allowed to conclude that if K is a one-element subset of K then K̃ is a bijection
and consequently K is a set of independent d.o.f. and �K is a reduced configuration
space.

Consider now a finite set K of configurational elementary d.o.f. containing some
(possibly none) d.o.f. (3.2) and some (possibly none) d.o.f. (3.3). Let u be a set of
points defining elements of K of the type (3.2) and let E be a set of edges defining
elements of K of the type (3.3). Let γ be a graph related to E as stated in Lemma 3.1.
Since every e ∈ E is a combination of edges of γ and their inverses we can apply
equations (3.4) to each κ I

e ∈ K to conclude that κ I
e is a linear combination of d.o.f. in

Ku,γ .

Corollary 3.3 For every finite set K of configurational elementary d.o.f. there exists
a finite set u of points of � and a graph γ such that every d.o.f. in K is a linear
combination of d.o.f. in Ku,γ .

Note now that if �K is a reduced configuration space then the map K̃ can be
used to define a differential structure on the space. It may happen that a set K ′ of
independent d.o.f. distinct from K defines the same space: �K = �K ′ i.e. [θ ] = [θ ]′
for every θ ∈ �, where [θ ]′ denotes the equivalence class of θ defined by the relation
∼K ′ . Assume that then the differential structures on �K = �K ′ given by K̃ and
K̃ ′ coincide (we will prove soon that this is the case). Then following [20] we can
introduce the notion of cylindrical functions:
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Definition 3.4 We say that a function� : �→ C is a cylindrical function compatible
with the set K of independent d.o.f. if

� = pr∗K ψ (3.12)

for some smooth function ψ : �K → C.

Note that each configurational elementary d.o.f. κ is a cylindrical function compatible
with K = {κ}.

Denote by Cyl a complex linear space spanned by all cylindrical functions on �.
Let K be a set of all sets of independent d.o.f.. There holds the following important

proposition [10]:

Proposition 3.5 Suppose that there exists a subset K′ of K such that for every finite set
K0 of configurational elementary d.o.f. there exists K ′0 ∈ K′ satisfying the following
conditions:

1. the map K̃ ′0 is a bijection;
2. each d.o.f. in K0 is a linear combination of d.o.f. in K ′0.

Then

1. for every set K ∈ K the map K̃ is a bijection. Consequently, �K ∼= R
N with N

being the number of elements of K and the map K̃ defines a linear structure on�K

being the pull-back of the linear structure on R
N ; if�K = �K ′ for some other set

K ′ ∈ K then the linear structures defined on the space by K̃ and K̃ ′ coincide.
2. if a cylindrical function � compatible with a set K ∈ K can be expressed as

� = prK ′ψ
′,

where K ′ ∈ K and ψ ′ is a complex function on �K ′ then ψ ′ is smooth and
consequently � is compatible with K ′;

3. for every element � ∈ Cyl there exists a set K ∈ K′ such that � is compatible
with K .

It follows from Lemmas 3.2 and Corollary 3.3 that a subset of K consisting of all sets
Ku,γ , where u runs through all finite subsets of � and γ runs through all graphs in �
satisfies the requirement imposed on the set K′ by the proposition. Thus, according to
Assertion 1 of the proposition, on every reduced configuration space�K there exists a
natural linear structure and, consequently, a natural differential structure. This means
that the space Cyl introduced just above the proposition is well defined, Assertions 2
holds and by virtue of Assertion 3 for every element � ∈ Cyl there exist a finite set u
of points in � and a graph γ such that � is compatible with Ku,γ .

A simple but useful consequence of the results above is that on every reduced
configuration space�K , where K = {κ1, . . . , κN }, one can define a linear coordinate
frame (x1, . . . , xN ):

� 
 [θ ] �→ xα([θ ]) := κα(θ) ∈ R, (3.13)
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in other words,

( x1[θ ], . . . , xN ([θ ]) ) = K̃ ([θ ]). (3.14)

The frame (3.13) will be called natural coordinate frame on �K .

3.6 Operators corresponding to momentum d.o.f.

Consider a finite collection u = {y1, . . . , yM } of points in � and a graph γ =
{e1, . . . , eN } such that either u or γ is not an empty set (N ,M ≥ 0 but N+M > 0). Let
us introduce a special notation for natural coordinates (3.13) defined on a reduced con-
figuration space�Ku,γ : we will denote the coordinates by (z I

i , x J
j ), I, J = 1, 2, 3, i =

1, . . . ,M if M > 0 and j = 1, . . . , N if N > 0, where

z I
i ([θ ]) := κ I

yi
(θ), x J

j ([θ ]) := κ J
e j
(θ), (3.15)

(here [θ ] ∈ �Ku,γ ). The coordinates define vector fields

{∂z I
i
, ∂x J

j
}

on�Ku,γ —these vector fields will be used to express operators defined on Cyl by the
momentum d.o.f. (3.5) and (3.6).

3.6.1 Operators corresponding to d.o.f. (3.5)

Using the Poisson bracket (2.3) we define an operator

Cyl 
 � �→ ϕ̂V
I � := {ϕV

I , �} ∈ Cyl. (3.16)

We know already (see the discussion just below Proposition 3.5) that� is compatible
with a set Ku,γ , i.e. � = pr∗Ku,γ

ψ for a function ψ defined on �Ku,γ . Assume that
u = {y1, . . . , yM }. Then

ϕ̂V
I � =

3∑
L=1

M∑
l=1

pr∗Ku,γ
(∂zL

l
ψ){ϕV

I , κ
L
yl
}, (3.17)

where {∂zL
l
} are vector fields on �Ku,γ defined by the natural coordinates (3.15). To

find an explicite expression for {ϕV
I , κ

L
yl
} note that

ϕV
I (p) =

∫

�

IV ζI , κL
y (θ) =

∫

�

δyξ
L ,
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where IV is the characteristic function of the region V and δy is the Dirac distribution
supported at y ∈ �. Hence

{ϕV
I , κ

L
y } = −δL

I

∫

�

IV δy .

Let

ε(V, y) :=
{−1 if y ∈ V

0 otherwise
. (3.18)

Then

{ϕV
I , κ

L
y } = ϕ̂V

I κ
L
y = δL

I ε(V, y). (3.19)

Let us emphasize that ϕ̂V
I κ

L
y is a constant real cylindrical functions which since now

will be treated as a real number. Thus finally

ϕ̂V
I � =

N∑
l=1

ε(V, yl) pr∗Ku,γ
(∂z I

l
ψ), (3.20)

which means that ϕ̂V
I preserves the space Cyl. Thus ϕ̂V

I is a linear operator on the
space.

3.6.2 Operators corresponding to d.o.f. (3.6)

With every elementary d.o.f. ϕS
J ∈ F we associate a flux operator ϕ̂S

J [11]—it is a
linear operator on Cyl defined via a suitable regularization of the Poisson bracket
{ϕS

J , �}, where � ∈ Cyl. Again, we express the cylindrical function as � = pr∗Ku,γ
ψ

for some set Ku,γ and a function ψ on �Ku,γ . Assume that γ = {e1, . . . , eN }. Then
the operator ϕ̂ J

S acts on � as follows:

ϕ̂S
J� :=

N∑
j=1

ε(S, e j ) pr∗Ku,γ
(∂x J

j
ψ) ∈ Cyl, (3.21)

where {∂x J
j
} are vector fields on �Ku,γ given by the coordinate frame (3.15) and each

ε(S, e j ) is a certain real number.
To define the number ε(S, e j ) we adapt the edge e j to S obtaining thereby a set of

edges {e j1, . . . , e jn} and define a function ε on this set: ε(e ja) = 0 if e ja is contained
in S̄ or has no common points with S; in remaining cases

1. ε(e ja) := 1
2 if e ja is either ’outgoing’ from S and placed ’below’ the face or is

’incoming’ to S and placed ’above’ the face;
2. ε(e ja) := − 1

2 if e ja is either ’outgoing’ from S and placed ’above’ the face or is
’incoming’ to S and placed ’below’ the face.
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Here the terms ’outgoing’ and ’ingoing’ refer to the orientation of the edges (which is
inherited from the orientation of e j ) while the terms ’below’ and ’above’ refer to the
orientation of the normal bundle of S defined naturally by the orientations of S and
�. Then we define

ε(S, e j ) :=
n∑

a=1

ε(e ja).

It is not difficult to realize that for every edge e ∈ E

ϕ̂S
Jκ

L
e = δL

J ε(S, e) (3.22)

which means that ϕ̂S
Jκ

L
e is a constant real cylindrical function which since now will

be regarded as a real number.

3.6.3 Linear space of the operators

Let us introduce a space F̂ as a real linear space spanned by all operators (3.16) and
(3.21):

F̂ := spanR{ ϕ̂ | ϕ ∈ F }.

Thus an element ϕ̂ of F̂ is of the following form

ϕ̂ =
∑

I i

AI
i ϕ̂

Vi
I +

∑
J j

B J
j ϕ̂

S j
J ,

where AI
i , B J

j are real numbers and both sums are finite.
Let � = pr∗Ku,γ

ψ be a cylindrical function compatible with Ku,γ . Then

ϕ̂� = pr∗Ku,γ

( ∑
I il

AI
i ε(Vi , yl) ∂z I

l
ψ +

∑
J jn

B J
j ε(S j , en) ∂x J

n
ψ

)

=
∑

I l

(
pr∗Ku,γ

∂z I
l
ψ

)
ϕ̂κ I

yl
+

∑
Jn

(
pr∗Ku,γ

∂x J
n
ψ

)
ϕ̂κ J

en
, (3.23)

where in the first step we used (3.20) and (3.21) and in the second one we applied
(3.19) and (3.22).

3.7 A directed set (�,≥)

All considerations above were preparatory steps to the crucial one which is a choice of
a directed set (�,≥)—once such a set is chosen properly the prescription described
in [10] can be used to build from it a unique space of quantum states.
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3.7.1 General assumptions imposed on (�,≥)

Recall that K denotes a set of all sets of independent d.o.f.. Let F̂ be a set of all finite
dimensional linear subspaces of F̂ . A directed set (�,≥), where� ⊂ F̂×K, is chosen
properly if it satisfies the following Assumptions [10]:

1. (a) for each finite set K0 of configurational elementary d.o.f. there exists (F̂, K ) ∈
� such that each κ ∈ K0 is a cylindrical function compatible with K ;

(b) for each finite set F0 of momentum elementary d.o.f. there exists (F̂, K ) ∈ �
such that ϕ̂ ∈ F̂ for every ϕ ∈ F0;

2. if (F̂, K ) ∈ � then the image of the map K̃ given by (3.9) is R
N (where N is the

number of elements of K )—in other words, K̃ is a bijection and consequently

�K ∼= R
N .

3. if (F̂, K ) ∈ �, then
(a) for every ϕ̂ ∈ F̂ and for every cylindrical function � = pr∗Kψ compatible

with K = {κ1, . . . , κN }

ϕ̂� =
N∑
α=1

(
pr∗K ∂xαψ

)
ϕ̂κα,

where {∂xα } are vector fields on �K given by the natural coordinate frame
(3.13);

(b) for every ϕ̂ ∈ F̂ and for every κ ∈ K the cylindrical function ϕ̂κ is a real
constant function on �;

4. if (F̂, K ) ∈ � and K = {κ1, . . . , κN } then dim F̂ = N ; moreover, if (ϕ̂1, . . . , ϕ̂N )

is a basis of F̂ then an N × N matrix G = (Gβα) of components

Gβα := ϕ̂βκα
is non-degenerate.

5. if (F̂, K ′), (F̂, K ) ∈ � and �K ′ = �K then (F̂, K ′) ≥ (F̂, K );
6. if (F̂ ′, K ′) ≥ (F̂, K ) then

(a) each d.o.f. K is a linear combination of d.o.f. in K ′;
(b) F̂ ⊂ F̂ ′.

3.7.2 Speckled graphs

In the considerations above an important role was played by sets {Ku,γ }. Therefore
one may try to use these sets to define a set � as one consisting of pairs (F̂, Ku,γ )

which satisfy all Assumptions listed in the previous section. However, we will not use
all sets Ku,γ to define � but will restrict ourselves to some of them.

To justify our decision let us refer to the general construction presented in [10] (see
its outline in Sect. 3.2). According to it for every (F̂, Ku,γ ) ≡ λ ∈ � we will have
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to associate a Hilbert space Hλ of some square integrable functions on �Ku,γ (then
density operators on all such Hilbert spaces will be used to build the space D). It seems
to us that it would be highly desirable if one could define on each Hilbert space Hλ

a sort of quantum geometry related to the Riemannian geometry of �. But to achieve
this we have to guarantee that the d.o.f. in Ku,γ can be used to extract some consistent
information about the geometry. Since the geometry is given by the metric q we have
to require that the d.o.f. provide some consistent information about the metric. Let us
now analyze this issue more carefully.

The metric q is defined by (2.1) in terms of the variables (θ0, θ J ),

q = −θ0 ⊗ θ0 + δI J θ
I ⊗ θ J , (3.24)

Thus we should require the d.o.f. constituting Ku,γ to give us information about both
the one-form θ0 and the other forms (θ J ). Of course, information about (θ J ) is given
by d.o.f. {κ J

e } defined as integrals (3.3) of the forms along edges of the graph γ .
Therefore, to achieve a consistency, we should be able to approximate integrals of θ0

along the edges by means of the d.o.f..
Consider Ku,γ defined by a set u = {y} and a graphγ = {e}. Thus Ku,γ = {κ I

y , κ
J
e }.

Suppose now that y ∈ e. Because

θ0 = sgn(θ J )
ξI√

1+ ξK ξ K
θ I

(see (2.4)) the integral

∫

e

θ0 (3.25)

can be approximated modulo the factor sgn(θ I ) by

ξI (y)√
1+ ξL(y)ξ L(y)

∫

e

θ I = κI y(θ)κ
I
e (θ)√

1+ κLy(θ)κL
y (θ)

, (3.26)

where θ = (θ0, θ J ) = (ξ I , θ J ) ∈ �. If, however, y �∈ e then in general we cannot
obtain from the d.o.f. {κ I

y , κ
J
e } a good approximation of the integral (3.25).

Thus we conclude that to define the set� we should use sets {Ku,γ } such that each
point y ∈ u belongs to an edge of γ and for each edge e of γ the intersection e ∩ u
consists of exactly one point.

However, this conclusion may seem to be a bit premature because while drawing
it we neglected the lack of the factor sgn(θ I ) in the formula (3.26). It turns out that,
given Ku,γ , the d.o.f. in it do not contain any information about the factor—this fact
is a consequence of the following lemma [16]:

Lemma 3.6 Let γ = {e1, . . . , eN } be a graph. Then for every (x I
i ) ∈ R

3N there
exists a global coframe (θ I ) on � compatible (incompatible) with the orientation of
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the manifold such that

∫

ei

θ I = x I
i

for every I = 1, 2, 3 and i = 1, 2, . . . , N.

The lemma means that for every θ ≡ (ξ I , θ J ) ∈ � the equivalence class [θ ] defined
by Ku,γ contains points of � given by global coframes compatible as well as global
coframes incompatible with the orientation of �. Hence no function on Ku,γ can be
an approximation of sgn(θ I ).

Is the impossibility to approximate sgn(θ I ) by functions on Ku,γ a problem? It
could be if relevant quantities like ones describing the geometry of � as well as
constraints and Hamiltonians depended on sgn(θ I ).

Note that the metric q is a quadratic function of θ0. Therefore the sign sgn(θ I )

is irrelevant for the metric—see the formula (2.5) expressing the metric in terms of
(ξ I , θ J ). Consequently, geometric quantities on � including the Hodge operator ∗
given by q and the orientation of � do not depend on sgn(θ I ).

Regarding the constraints (and the Hamiltonians3) of TEGR and YMTM, an impor-
tant observation is that they are quite specific functions of (θ A, pB) and a variable ξ A

defined as a solution of the following equation system4 [22]:

ξAθ
A = 0 ξAξ

A = −1.

Namely, these three variables appear in the constraints exclusively in the form of
either (i) a contraction with respect to the index A e.g. ξ AdpA or (i i) scalar products
defined by η (or its inverse) e.g. ηABdθ A∧∗dθ B (or ηAB pA∧∗pB). Since the matrix
(ηAB) (and its inverse) is diagonal two time-like components (that is, components with
A = 0) of the variables always multiply each other e.g.

ξ AdpA=ξ0dp0 + ξ I dpI or ηABdθ A ∧ ∗dθ B=−dθ0 ∧ ∗dθ0 + dθ I ∧ ∗dθ I .

On the other hand every time-like component of the variables under consideration is
proportional to sgn(θ I ) [17]:

p0 = sgn(θ L)

√
1+ ξJ ξ J �θ I � ζI , θ0 = sgn(θ J )

ξI√
1+ ξLξ L

θ I ,

ξ0 = sgn(θ I )

√
1+ ξJ ξ J ,

and the space-like components (that is, components with A ∈ {1, 2, 3}) of the vari-
ables are independent of the factor. Thus the factor appears in the constraints exclu-
sively as [sgn(θ I )]2 ≡ 1 and, consequently, the constraints expressed in terms of

3 The Hamiltonians of TEGR and YMTM are sums of constraints.
4 Clearly, ξ A is a function of θ A—see [9].
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(ζI , rJ , ξ
K , θ L) are independent of sgn(θ I )—see [17] for explicite expressions of

them.
Thus (at least at this stage) the impossibility to express sgn(θ I ) by functions on

Ku,γ does not seem to cause any problem.
Let us turn back to the conclusion placed just below the formula (3.26). It motivates

us to introduce a special kind of graphs:

Definition 3.7 A speckled graph γ̇ in � is a pair (u, γ ), where u is a finite set of
points in � and γ is a graph such that there exists a surjective map χ : γ → u such
that χ(e) ∈ e for every e ∈ γ .

Let γ̇ = (u, γ ) be a speckled graph. We will denote

Ku,γ ≡ Kγ̇ .

Now the conclusion mentioned above can be reformulated: to define a set� for TEGR
we should use sets {Kγ̇ } given by all speckled graphs in �. Let us now take a closer
look at these graphs.

3.7.3 Properties of speckled graphs

Consider now a pair (u, γ ), where u is a finite set of points and γ is a graph. Of
course, (u, γ ) may not be a speckled graph because it may happen that (i) there exist
elements of u which do not belong to any edge of γ ; (i i) there are edges of γ such
that no point in u belongs to the edges or (i i i) there are edges of γ such that two or
more distinct points of u belong to each of the edges. Note however that (u, γ ) can
be easily transformed to a speckled graph as follows: in a case of a point y in u of the
sort (i) one can choose an edge e such that y is the only point of u which belongs to e
and γ ∪ {e} is a graph; in a case of an edge of the sort (i i) one can single out a point
in e and add it to u; in a case of an edge of the sort (i i i) one can divide it into smaller
edges such that each smaller one contains exactly one point belonging to u.

Corollary 3.8 For every pair (u, γ ), where u is a finite set of points and γ is a graph,
there exists a speckled graph γ̇ ′ = (u′, γ ′) such that u′ ⊃ u and γ ′ ≥ γ .

We will say that a speckled graph γ̇ ′ is greater or equal to a speckled graph γ̇ ,

γ̇ ′ = (u′, γ ′) ≥ γ̇ = (u, γ ), (3.27)

if u′ ⊃ u and γ ′ ≥ γ .

Lemma 3.9 The set of all speckled graphs in � equipped with the relation (3.27) is
a directed set.

Proof The relation (3.27) is obviously transitive. Let us then show that for every two
speckled graphs γ̇ ′ = (u′, γ ′), γ̇ = (u, γ ) there exists a speckled graph γ̇ ′′ such that
γ̇ ′′ ≥ γ̇ ′ and γ̇ ′′ ≥ γ̇ .

Let u0 := u′ ∪ u and let γ0 be a graph such that γ0 ≥ γ ′, γ . Due to Corollary 3.8
there exists a speckled graph γ̇ ′′ = (u′′, γ ′′) such that u′′ ⊃ u0 and γ ′′ ≥ γ0. Thus γ̇ ′′
is the desired speckled graph. ��
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Lemma 3.10 For every finite set K of configurational elementary d.o.f. there exists a
speckled graph γ̇ such that each d.o.f. in K is a linear combination of d.o.f. in Kγ̇ .

Proof By virtue of Corollary 3.3 each d.o.f. in K is a linear combination of d.o.f. in
Ku,γ given by a pair (u, γ ) consisting of a finite set u of points in � and a graph γ .
On the other hand, Equations (3.4) and Corollary 3.8 allow us to conclude that there
exists a speckled graph γ̇ ′ such that each d.o.f. in Ku,γ is a linear combination of d.o.f.
in Kγ̇ ′ . ��

Due to Lemmas 3.2 and 3.10 a set of all sets Kγ̇ , where γ̇ runs through all speckled
graphs in �, meets the requirement satisfied by the set K′ in Proposition 3.5. This
means that for every � ∈ Cyl there exists a speckled graph γ̇ such that � is a
cylindrical function compatible with Kγ̇ .

Lemma 3.11 γ̇ ′ ≥ γ̇ if and only if each d.o.f. in Kγ̇ is linear combination of d.o.f. in
Kγ̇ ′ .

Proof If γ̇ ′ ≥ γ̇ then using Eq. (3.4) we can easily conclude that each d.o.f. in Kγ̇ is
linear combination of d.o.f. in Kγ̇ ′ .

Let γ̇ ′ = (u′, γ ′) and γ̇ = (u, γ ), where u = {y1, . . . , yM }. Suppose now that each
d.o.f. in Kγ̇ is a linear combination of d.o.f. in Kγ̇ ′ . Taking into account the formula
(3.2) we see that then each κ I

yi
belonging to Kγ̇ belongs to Kγ̇ ′ . Thus u′ ⊃ u. Now let

us show that γ ′ ≥ γ .
To this end consider a set � of one-forms on � defined as follows: a one-form

� belongs to � if there exists one-forms θ2, θ3 such that (�, θ2, θ3) form a global
coframe on �. Then for any real functions {ξ I }, I = 1, 2, 3, on � the collection
θ = (ξ I ,�, θ2, θ3) is an element of �. Given e ∈ E , we define a real function κe on
�

κe(�) := κ1
e (θ) =

∫

e

�

and apply Lemma 3.2 to conclude that for every graph γ0 = {e1, . . . , eN0} and for
each (x1, . . . , xN0) ∈ R

N0 there exists � ∈ � such that κei (�) = xi .
Suppose now that each d.o.f. in Kγ̇ is a linear combination of d.o.f. in Kγ̇ ′ , where

γ̇ = (u, γ ) and γ̇ ′ = (u′, γ ′). Obviously, a combination describing κ1
e defined by an

edge e of γ cannot contain d.o.f. {κ J
y′ } given by points {y′} = u′. Thus

κ1
e = Aiκ1

e′i
+ Biκ2

e′i
+ Ciκ3

e′i
,

where Ai , B j ,Ck are constant coefficients and γ ′ = {e′1, . . . , e′N ′ }. Given θ =
(ξ I , θ J ) ∈ �, consider a family {θt = (ξ I , θ1, tθ2, θ3)} of elements of �, where
the number t > 0. Differentiating with respect to t both sides of the following equa-
tions

κ1
e (θt ) = Aiκ1

e′i
(θt )+ Biκ2

e′i
(θt )+ Ciκ3

e′i
(θt )
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we obtain

0 = Biκ2
e′i
(θ),

hence Bi = 0 by virtue of Lemma 3.2. Similarly we show that Ci = 0. We conclude
that each κ1

e ∈ Kγ̇ is a linear combinations of d.o.f {κ1
e′j
} ⊂ Kγ̇ ′ only. Thus each

function in {κe1, . . . , κeN } associated with edges of the graph γ is a linear combination
of functions {κe′1, . . . , κe′

N ′
} associated with edges of γ ′.

Now, to conclude that γ ′ ≥ γ it is enough to apply the following lemma [10]:

Lemma 3.12 Let � be a set of one-forms on � such that for every graph γ0 =
{e1, . . . , eN0} and for each (x1, . . . , xN0) ∈ R

N0 there exists � ∈ � such that

κei (�) = xi .

Then γ ′ = {e′1, . . . , e′N ′ } ≥ γ = {e1, . . . , eN } if and only if each function in
{κe1, . . . , κeN } is a linear combination of functions {κe′1, . . . , κe′

N ′
}.

Thus γ ′ ≥ γ and, taking into account the previous result u′ ⊃ u, we see that
γ̇ ′ ≥ γ̇ . ��

3.7.4 Choice of a directed set �

Consider an element F̂ of F̂ and an element K = {κ1, . . . , κN } of K. We say that a
pair (F̂, K ) is non-degenerate if dim F̂ = N and an (N × N )-matrix G = (Gβα) of
components

Gβα := ϕ̂βκα, (3.28)

where (ϕ̂1, . . . , ϕ̂N ) is a basis of F̂ , is non-degenerate.

Definition 3.13 The set� is a set of all non-degenerate pairs (F̂, Kγ̇ ) ∈ F̂×K, where
γ̇ runs through all speckled graphs in �.

Lemma 3.14 For every speckled graph γ̇ in� there exists F̂ ∈ F̂ such that (F̂, Kγ̇ ) ∈
�.

Proof Let γ̇ = (u, γ ), where u = {y1, . . . , yM } and γ = {e1, . . . , eN } (M ≤ N ).
There exist regions {V1, . . . , VM } such that Vj ∩ u = y j . Consequently,

ε(Vj , yi ) = −δ j i

and introducing multi-labels α = (i, I ) and β = ( j, J ) we can write

G1
βα := −ϕ̂Vj

J κ
I
yi
= δ I

J δ j i = δβα.
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The independence of edges {e1, . . . , eN } of the graph γ imply that there exists a
set {S1, . . . , SN } of faces such that ei ∩ S j is empty if i �= j and consists of exactly
one point distinct from the endpoints of ei if i = j . The orientations of the faces can
be chosen in such a way that

ε(S j , ei ) = δ j i

Using the multi-labels α = (i, I ) and β = ( j, J ) we can write

G2
βα = ϕ̂S j

J κ
I
ei
= δ I

J δ j i = δβα.

Since

−ϕ̂Vj
J κ

I
ei
= 0 = ϕ̂S j

J κ
I
yi

the matrix G given by (3.28) for Kγ̇ and

F0 := { −ϕ̂Vi
I , ϕ̂

S j
J | I, J = 1, 2, 3; i = 1, . . . ,M; j = 1, . . . , N }

is of the following form

G =
(

G1 0
0 G2

)
= 1

and, being the unit (M + N )× (M + N )matrix, is obviously non-degenerate. Thus if

F̂ = spanR F0

then elements of F0 constitute a basis of F̂ and (F̂, Kγ̇ ) ∈ �. ��
Now let us define a relation ≥ on �:

Definition 3.15 Let (F̂ ′, Kγ̇ ′), (F̂, Kγ̇ ) ∈ �. Then (F̂ ′, Kγ̇ ′) ≥ (F̂, Kγ̇ ) if and only
if

F̂ ′ ⊃ F̂ and γ̇ ′ ≥ γ̇ .

Lemma 3.16 (�,≥) is a directed set.

Regarding a proof of the lemma it would be perhaps enough to refer to the proof
of an analogous lemma in [10] concerning a set � constructed for DPG saying that
a proof of Lemma 3.16 is a modification of the proof of that lemma in [10]. But yet
taking into account the importance of Lemma 3.16 to avoid any doubt we decided to
present the proof explicitly.

Before we will prove the lemma let us state some facts which will be used in the
proof. Let � be a subset of Cyl. Then operators in F̂ restricted to � are maps from
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� into Cyl. Since both Cyl and F̂ are linear spaces the restricted operators are maps
valued in a linear space and the space of all the restricted operators is a linear space.
Consequently, the notion of linear independence of the restricted operators is well
defined—below this notion will be called linear independence of the operators on �.

Lemma 3.17 Let CylK be a set of all cylindrical functions compatible with a set K
of independent d.o.f.. Assume that operators {ϕ̂1, . . . , ϕ̂M } ⊂ F̂ act on elements of
CylK according to the formula in Assumption 3a. If {ϕ̂1, . . . , ϕ̂M } ⊂ F̂ are linearly
independent on a subset � of CylK then they are linearly independent on K .

Proposition 3.18 Let� be a subset of F̂×K which satisfies Assumptions 1a and 3a.
Then for every finite set {ϕ̂1, . . . , ϕ̂M } ⊂ F̂ of linearly independent operators there
exists a set (F̂, K ) ∈ � such that the operators are linearly independent on K .

Both the lemma and the proposition are proven in [10].

Proof of Theorem 3.16 The transitivity of the relation ≥ is obvious. Thus we have
to prove only that for any two elements λ′, λ ∈ � there exists λ′′ ∈ � such that
λ′′ ≥ λ′ and λ′′ ≥ λ. To achieve this we will refer to Lemma 3.17 and Proposition
3.18. Therefore first we have to show that we are allowed to use them.

By virtue of Lemmas 3.10 and 3.14 the set� satisfies Assumption 1a. On the other
hand, Eq. (3.23) guarantees that every ϕ̂ ∈ F̂ acts on cylindrical functions compatible
with Kγ̇ according to the formula in Assumption 3a hence � meets the assumption.

Let us fix λ′ = (F̂ ′, Kγ̇ ′) and λ = (F̂, Kγ̇ ). We define F̂0 as a linear subspace of

F̂ spanned by elements of F̂ ′ ∪ F̂ and choose a basis (ϕ̂1, . . . , ϕ̂M ) of F̂0. Proposition
3.18 and Definition 3.13 of� guarantee that there exists a speckled graph γ̇0 such that
the operators (ϕ̂1, . . . , ϕ̂M ) remain linearly independent when restricted to Kγ̇0 . Let
γ̇ ′′ = (u′′, γ ′′) be a speckled graph such that (i) the number 3N of elements of Kγ̇ ′′

is greater than dim F̂0 = M and (i i) γ̇ ′′ ≥ γ̇0, γ̇
′, γ̇ . By virtue of Lemma 3.11 d.o.f.

in Kγ̇0 are cylindrical functions compatible with Kγ̇ ′′ and, according to Lemma 3.17,
the operators (ϕ̂1, . . . , ϕ̂M ) are linearly independent on Kγ̇ ′′ .

Consider now a matrix G0 of components

G0
βα := ϕ̂βκα,

where {κ1, . . . , κ3N } = Kγ̇ ′′ . Clearly, the matrix has M rows and 3N columns and
because (ϕ̂1, . . . , ϕ̂M ) are linearly independent on Kγ̇ ′′ its rank is equal M < 3N .
Using the following operations (i) multiplying a row of by a non-zero number, (i i)
adding to a row a linear combination of other rows (i i i) reordering the rows and (iv)
reordering the columns we can transform the matrix G0 to a matrix G1 of the following
form

G1 = (
1 G ′

)
,

where 1 is M × M unit matrix and G ′ is a M × (3N − M) matrix. Note that the first
three operations used to transform G0 to G1 correspond to a transformation of the
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basis (ϕ̂1, . . . , ϕ̂M ) to an other basis (ϕ̂′1, . . . , ϕ̂′M ) of F̂0, while the fourth operation
corresponds to renumbering the d.o.f. in Kγ̇ ′′ : κα �→ κ ′α := κσ(α), where σ is a
permutation of the sequence (1, . . . , 3N ). Thus

G1
βα = ϕ̂′βκ ′α.

Let {ϕ̂0
1 , . . . , ϕ̂

0
3N } be operators constructed with respect to Kγ̇ ′′ exactly as in the

proof of Lemma 3.14. Then

ϕ̂0
βκ
′
α = δβα.

Thus if
(
ϕ̂′′1 , . . . , ϕ̂′′3N

)
:=

(
ϕ̂′1, . . . , ϕ̂′M , ϕ̂0

M+1, . . . , ϕ̂
0
3N

)

then a 3N × 3N matrix G = (Gβα) of components

Gβα := ϕ̂′′βκ ′α
is of the following form

G =
(

1 G ′
0 1′

)
,

where 0 is a zero (3N − M) × M matrix, and 1′ is a unit (3N − M) × (3N − M)
matrix. The matrix G is obviously non-degenerate which means in particular that the
operators (ϕ̂′′1 , . . . , ϕ̂′′3N ) are linearly independent.

To finish the proof it is enough to define

F̂ ′′ := spanR {ϕ̂′′1 , . . . , ϕ̂′′3N }

and λ′′ := (F̂ ′′, Kγ̇ ′′). ��

3.7.5 Checking assumptions

Now we have to check whether the directed set (�,≥) just constructed satisfies all
Assumptions listed in Sect. 3.7.1.

Proving Lemma 3.16 we showed that � satisfies Assumption 1a. Regarding
Assumption 1b consider a set F0 = {ϕ1, . . . , ϕN } of momentum elementary d.o.f..
Let us fix ϕi ∈ F0. Suppose that it is of the sort (3.5) i.e. ϕi = ϕVi

Ii
for some region Vi

and some Ii ∈ {1, 2, 3}. Then using a construction similar to that applied in the proof
of Lemma 3.14 one can find configurational d.o.f. {κ I

yi
} such that

ϕ̂
Vi
I κ

J
yi
= −δ J

I
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for every I, J = 1, 2, 3. Let ei be an edge such that yi ∈ ei . Then γ̇i := ({yi }, {ei })
is a speckled graph. As in the proof of Lemma 3.14 one can find a face Si

such that

ϕ̂
Si
J κ

L
ei
= δL

J .

for every J, L = 1, 2, 3. Let

F̂i := span{ ϕ̂Vi
I , ϕ̂

Si
J | I, J = 1, 2, 3 }.

Then ϕ̂i ∈ F̂i and (F̂i , Kγ̇i ) ∈ �. Suppose now that ϕi is of the sort (3.6). Then in a
similar way one can construct an element (F̂i , Kγ̇i ) of � such that ϕ̂i ∈ F̂i . Since �
is a directed set there exists (F̂, Kγ̇ ) ∈ � such that (F̂, Kγ̇ ) ≥ (F̂i , Kγ̇i ) for every
i = 1, . . . , N . Taking into account Definition 3.15 of the relation ≥ on � we see that
F̂ contains all the operators {ϕ̂1, . . . , ϕ̂N }. Thus Assumption 1b is satisfied.

Assumption 2 is satisfied by virtue of Lemma 3.2. We already concluded (proving
Lemma 3.16) that�meets Assumption 3a. Equations (3.19) and (3.22) guarantee that
Assumption 3b is satisfied and Definition 3.13 of� ensures that Assumption 4 holds.

Consider now Assumption 5. Let (F̂, Kγ̇ ′), (F̂, Kγ̇ ) be elements of �. Recall that
by virtue of Lemma 3.10 there exists Kγ̇ ′′ such that each d.o.f. in Kγ̇ ∪ Kγ̇ ′ is a linear
combination of d.o.f. in Kγ̇ ′′ . Suppose that�Kγ̇ ′ = �Kγ̇ . Then Lemma 3.2 applied to

Kγ̇ ′′ allows us set K̄ = Kγ̇ ′′ and K = Kγ̇ , K ′ = Kγ̇ ′ in the following proposition [10]:

Proposition 3.19 Let K , K ′ be sets of independent d.o.f. of N and N ′ elements, respec-
tively such that �K = �K ′ . Suppose that there exists a set K̄ of independent d.o.f.

of N̄ elements such that the image of ˜̄K is R
N̄ and each d.o.f. in K ∪ K ′ is a linear

combination of d.o.f. in K̄ . Then each d.o.f. in K is a linear combination of d.o.f. in
K ′.
Thus each d.o.f. in Kγ̇ is a linear combination of d.o.f. in Kγ̇ ′ . Then, as stated by
Lemma 3.11, γ̇ ′ ≥ γ̇ and, taking into account Definition 3.15, Assumption 5 follows.

Assumption 6a holds by virtue of Definition 3.15 of the relation≥ on� and Lemma
3.11, while Assumption 6b is satisfied due to the definition.

Thus the set (�,≥) satisfies all Assumptions. Consequently, it generates the space
D of quantum states.

3.8 The space D of quantum states for TEGR

Consider λ = (F̂, Kγ̇ ) ∈ �. The natural coordinates (3.13) define on the reduced
configuration space �Kγ̇ a measure

dμλ := dx1 . . . dxN . (3.29)

The measure provides a Hilbert space

Hλ := L2(�Kγ̇ , dμλ) (3.30)
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together with a set Dλ of all density operators (i.e. positive operators of trace equal 1)
on Hλ. It was shown in [10] that given two elements λ′, λ of� such that λ′ ≥ λ there
exists a distinguished projection πλλ′ from Dλ′ onto Dλ. The projection is defined as
follows.

If λ′ = (F̂ ′, K ′) ≥ λ = (F̂, K ) then every κα ∈ K is a linear combination of d.o.f.
{κ ′1, . . . , κ ′N ′ } = K ′ (see Lemma 3.11):

κα = Bβακ
′
β, (3.31)

where (Bβα) are real numbers. This relation defines a linear projection prK K ′ : �K ′ �→
�K :

prK K ′ := K̃−1 ◦ (BK̃ ′), (3.32)

where BK̃ ′ means the action of the matrix B = (Bβα) on the function K̃ ′ valued in
the corresponding R

N ′ . On the other hand, by virtue of Assumption 3a and 3b every
ϕ̂ ∈ F̂ defines a constant vector field

∑
β

(ϕ̂κ ′β)∂x ′β (3.33)

on �K ′ , where (x ′β) are the natural coordinates on �K ′ . Since there is a natural one-
to-one linear correspondence between constant vector fields on �K ′ and points of
this space every ϕ̂ ∈ F̂ distinguishes a point in �K ′ which will be denoted by [ϕ̂]′.
The map ϕ̂ �→ [ϕ̂]′ is linear and due to non-degeneracy of (F̂ ′, K ′) its restriction to
F̂ ′ is invertible. Since F̂ ⊂ F̂ ′ the image [F̂]′ is a linear subspace of �K ′ such that
dim[F̂]′ = dim�K . It turns out that ker prK K ′ ∩ [F̂]′ = ∅ hence

�K ′ = ker prK K ′ ⊕ [F̂]′

and

ωλ′λ :=
(
prK K ′

∣∣[F̂]′
)−1

is a well defined linear isomorphism from �K onto [F̂]′. Using ωλ′λ one pushes
forward the measure dμλ obtaining a measure dμλ′λ on [F̂]′ which allows to define a
Hilbert space Hλ′λ over [F̂]′—this Hilbert space is naturally isomorphic to Hλ. There
exists a unique measure dμ̃λ′λ on ker prK K ′ such that dμλ′ = dμ̃λ′λ × dμλ′λ—this
measure provides a Hilbert space H̃λ′λ such that

Hλ′ = H̃λ′λ ⊗Hλ′λ.

Acting on ρ′ ∈ Dλ′ by the partial trace with respect to the Hilbert space H̃λ′λ one gets
a density operator on Hλ′λ which can be naturally mapped to an element ρ ∈ Dλ—by
definition
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πλλ′ρ
′ := ρ.

An important observation is that the projection πλλ′ is fully determined by the projec-
tion prK K ′ and the subspace [F̂]′.

It turns out that for every triplet λ′′, λ′, λ ∈ � such that λ′′ ≥ λ′ ≥ λ the corre-
sponding projections satisfy the following consistency condition

πλλ′′ = πλλ′ ◦ πλ′λ′′ , (3.34)

which means that {Dλ, πλλ′ }λ∈� is a projective family. The space D of quantum states
for a theory of the phase space P ×� is the projective limit of the family:

D := lim←−Dλ.

3.9 C∗-algebra of quantum observables

Let us recall briefly a construction of a C∗-algebra of quantum observables [15] asso-
ciated with the space D. Denote by Bλ the C∗-algebra of bounded linear operators
on the Hilbert space Hλ given by (3.30). Each density operator ρ ∈ Dλ defines an
algebraic state (that is, linear C-valued positive normed functional) on the algebra Bλ
via a trace:

Bλ 
 a �→ tr(aρ) ∈ C.

This fact guarantees that for every pair λ′ ≥ λ of elements of � there exists a unique
injective ∗-homomorphism π∗

λ′λ : Bλ → Bλ′ dual to the projection πλλ′ : Dλ′ → Dλ

in the following sense: for every a ∈ Bλ and every ρ′ ∈ Dλ′

tr(π∗λ′λ(a)ρ
′) = tr(a πλλ′(ρ

′)),

By virtue of (3.34) for every triplet λ′′ ≥ λ′ ≥ λ

π∗λ′′λ = π∗λ′′λ′ ◦ π∗λ′λ,

which means that {B, π∗
λ′λ} is an inductive family of C∗-algebras associated with the

projective family {Dλ, πλλ′ }. Its inductive limit

B := lim−→Bλ

is naturally a unital C∗-algebra which can be interpreted as an algebra of quantum
observables. It can be shown that each element ρ of the space D defines an algebraic
state on B.
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4 Action of spatial diffeomorphisms on D

Since we would like to quantize TEGR in a background independent manner it is nat-
ural to follow LQG methods (see e.g. [12–14]) to define an action of diffeomorphisms
of the manifold � on the space D. Since � represents a spatial slice of the original
space-time the diffeomorphisms of � can be regarded as spatial diffeomorphisms.

4.1 Action of diffeomorphisms on elementary d.o.f

Let Diff be a group of all analytic diffeomorphisms of�which preserve the orientation
of the manifold. Consider an element τ of Diff. Since the fields (ζI , rJ , ξ

K , θ L) are
differential forms on� the diffeomorphism acts on them naturally as the pull-back τ ∗.
Thus the pull-back define the action of the diffeomorphism on the phase space P×�.
Since elementary d.o.f. in K and F are functions on the phase space it is natural to
define an action of τ on K and F as follows. Given κ ∈ K, the result τκ of the action
of τ on κ is a function on � such that

(τκ)(θ) = κ(τ ∗θ). (4.1)

Similarly, given ϕ ∈ F , the result τϕ of the action of τ on ϕ is a function on P such
that

(τϕ)(p) = κ(τ ∗ p).

Obviously,

τκ I
y = κ I

τ(y), τκ J
e = κ I

τ(e),

τϕV
I = ϕτ(V )I , τϕS

J = ϕτ(S)J ,
(4.2)

which mean that both sets K and F are preserved by the action of τ .

4.2 Action of diffeomorphisms on reduced configuration spaces

In the next step let us define an action of diffeomorphisms on reduced configuration
spaces. Let us fix a finite set K = {κ1, . . . , κN } of independent d.o.f. and a diffeo-
morphism τ . Denote by τK the set {τκ1, . . . , τκN }. Moreover, let ∼ and ∼τ be the
equivalence relations on � defined by, respectively, K and τK (see Sect. 3.5) and let
[θ ] and [θ ]τ denote equivalence classes of θ ∈ � given by the corresponding relations.
By definition θ ∼ θ ′ if and only if κα(θ) = κα(θ

′) for every κα ∈ K . By virtue of
(4.1) the latter condition is satisfied if and only if for every τκα ∈ τK

τκα(τ
−1∗θ) = τκα(τ−1∗θ ′).
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This means that θ ∼ θ ′ if and only if (τ−1∗θ) ∼τ (τ−1∗θ ′). Consequently, the
following map

�K 
 [θ ] �→ Tτ ([θ ]) := [τ−1∗θ ]τ ∈ �τK

is well defined and is a bijection.
Consider now the projections prK and prτK defined by (3.8) and the maps K̃ and

τ̃K defined by (3.9). We have

prτK (τ
−1∗θ) = [τ−1∗θ ]τ = Tτ ([θ ]) = Tτ (prK (θ)),

hence

T−1
τ ◦ prτK = prK ◦ τ ∗. (4.3)

On the other hand,

K̃ ([θ ])= (κ1(θ), . . . , κN (θ)) = (τκ1(τ
−1∗θ), . . . , τκN (τ

−1∗θ))= τ̃K ([τ−1∗θ ]τ )=
= τ̃K (Tτ ([θ ])),

hence

K̃ = τ̃K ◦ Tτ . (4.4)

It follows from the this result that τ̃K is a bijection onto R
N which means that τK is

a set of independent d.o.f. and �τK is a reduced configuration space.
Let (xα) be the natural coordinate frame (3.13) on �K and let (x̄α) be the natural

coordinate frame on �τK . Denote by {∂xα } and {∂x̄α } vector fields defined by the
coordinate frames on, respectively, �K and �τK . Equations (3.14) and (4.4) imply
that the map Tτ when expressed in the coordinate frames is an identity map. Hence
Tτ∗∂xα = ∂x̄α and consequently

T−1∗
τ (∂xαψ) = ∂x̄α (T

−1∗
τ ψ), (4.5)

where ψ is a function on �K .

4.3 Action of diffeomorphisms on cylindrical functions and momentum operators

Now we will extend the action τ from K onto Cyl: given � ∈ Cyl we define

(τ�)(θ) := �(τ ∗θ)

—this definition guarantees that τ acts linearly on Cyl. Assume that � ∈ Cyl is
compatible with a set K of independent d.o.f., that is, � = prKψ . Then by virtue of
(4.3)
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(τ�)(θ) = ψ(prK (τ
∗θ)) = ψ(T−1

τ (prτK (θ))) = [pr∗τK (T
−1∗
τ ψ)](θ).

Corollary 4.1 If � = pr∗Kψ then τ� = pr∗τK (T
−1∗
τ ψ). If � is compatible with K

then τ� is compatible with τK .

The corollary means that the action of τ preserves the space Cyl—recall that every
element of Cyl is a finite linear combination of functions such that each function is com-
patible with a set of independent d.o.f.. Thus� �→ τ� is a linear automorphism on Cyl.

In the next step we define an action of diffeomorphisms on the linear space F̂ of
the momentum operators: given ϕ̂ ∈ F̂ ,

(τ ϕ̂)� := τ(ϕ̂(τ−1�)).

It follows immediately from the definition that ϕ̂ �→ τ ϕ̂ is a linear map.
Let us now calculate ϕ̂V

I (τ�). We know already that for every � ∈ Cyl there
exists a finite set K ≡ Ku,γ and a complex function ψ on �K such that � = prKψ .
Obviously,

τK ≡ τKu,γ = Kτ(u),τ (γ )

Let u = {y1, . . . , yN } and let (z̄ I
i , x̄ J

j ) be the natural coordinates (3.15) on�τK . Then
by virtue of (3.20) and Corollary 4.1

ϕ̂V
I (τ�) =

N∑
i=1

ε(V, τ (yi )) pr∗τK (∂z̄ I
i
(T−1∗
τ ψ))

Using in turn (4.5) and (4.3) we obtain

ϕ̂V
I (τ�) = τ

(
N∑

i=1

ε(V, τ (yi )) pr∗K (∂z I
i
ψ))

)
,

where (z I
i ) are coordinates being a part of the natural coordinate frame on �K . Note

now that by virtue of (3.18)

ε(V, τ (yi )) = ε(τ−1(V ), yi )

hence

ϕ̂V
I (τ�) = τ(ϕ̂τ

−1(V )�).

We conclude that5

τ ϕ̂V
I = ϕ̂τ (V )I , τ ϕ̂S

J = ϕ̂τ (S)J

5 Taking into account (4.2) we could define the action τ on F̂ requiring that τ ϕ̂V
I := ϕ̂τ (V )I and τ ϕ̂S

J :=
ϕ̂
τ (S)
J , but then we could run into troubles with proving linearity of the action.
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—the latter equation can be proven similarly. The result means that the action of τ
preserves the space F̂ . Thus ϕ̂ �→ τ ϕ̂ is a linear automorphism on F̂ .

4.4 Action of diffeomorphisms on the directed set (�,≥)

Given λ = (F̂, Kγ̇ ) ∈ �, we define

τλ := (τ F̂, τKγ̇ ).

Let us prove now that this action preserves � and the directing relation ≥ on it.
According to Definition 3.13 τλ is an element of� if and only if τKγ̇ is a set of inde-

pendent d.o.f. defined by a speckled graph and the pair (τ F̂, τKγ̇ ) is non-degenerate.
It is obvious that if γ̇ = (u, γ ) is a speckled graph then τ(γ̇ ) = (τ (u), τ (γ )) is also a
speckled graph. By virtue of (4.2) τKγ̇ = Kτ(γ̇ ). On the other hand, since the action
τ on F̂ is linear and invertible τ F̂ is a linear subspace of F̂ of the dimension equal to
dim F̂ . Therefore dim τ F̂ is equal to the number of elements of τK . Let (ϕ̂1, . . . , ϕ̂N )

be a basis of F̂ and Kγ̇ = {κ1, . . . , κN }. Then (τ ϕ̂1, . . . , τ ϕ̂N ) is a basis of F̂ and
τKγ̇ = {τκ1, . . . , τκN }. We have

G̃βα := (τ ϕ̂β)(τκα) = τ(ϕ̂βκα) = ϕ̂βκα = Gβα,

—here we used the fact that ϕ̂βκα is a constant cylindrical function. Thus non-degene-
racy of (τ F̂, τKγ̇ ) follows from non-degeneracy of (F̂, K ). Consequently, τλ ∈ �.

Consider now a pair λ′ = (F̂ ′, Kγ̇ ′) and λ = (F̂, Kγ̇ ) such that λ′ ≥ λ. Using

Definition 3.15 and properties of the action of τ on F̂ we obtain

τ F̂ ′ ⊃ τ F̂, τ (γ̇ ′) ≥ τ(γ̇ ),

which means that

τλ′ = (τ F̂ ′, τKγ̇ ′) ≥ τλ = (τ F̂, τKγ̇ ).

Consequently, the relation ≥ is preserved by the action τ on �.
We conclude that the directed set (�,≥) is preserved by the action of diffeomor-

phisms.

4.5 Action of diffeomorphisms on D

Consider λ = (F̂, Kγ̇ ) ∈ �. Recall that the map Tτ : �Kγ̇ → �τKγ̇ when expressed
in the natural coordinate frames (xα) on �Kγ̇ and (x̄α) on �τKγ̇ is an identity map.
This means that Tτ maps the measure dμλ on �Kγ̇ defined by (3.29) to the measure
dμτλ on �τKγ̇ defined analogously. Therefore the map

Hλ 
 ψ �→ Uτψ := T−1∗
τ ψ (4.6)
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is a unitary map onto Hτλ. Consequently,

Dλ 
 ρλ �→ uτ ρλ := Uτ ρλU−1
τ (4.7)

is a map onto Dτλ.
Consider now an element ρ of D—by virtue of the definition of a projective limit

ρ is a family {ρλ}λ∈� such that ρλ ∈ Dλ for every λ and πλλ′ρλ′ = ρλ for every pair
λ′ ≥ λ. It is natural to define an action of diffeomorphisms on ρ as follows

τρ := {uτ ρλ}λ∈�, (4.8)

but is τρ an element of D? Clearly, τρ ∈ D if for every λ′ ≥ λ

πλ̄λ̄′(uτ ρλ′) = uτ ρλ,

where we denoted λ̄ ≡ τλ and λ̄′ ≡ τλ′ to keep the notation compact. Thus to prove
that the action of diffeomorphisms on D preserves the space we should show that

u−1
τ ◦ πλ̄λ̄′ ◦ uτ = πλλ′ . (4.9)

Assume that λ′ = (F̂ ′, K ′) ≥ λ = (F̂, K ). Recall the projection πλλ′ is determined
by the projection prK K ′ and the subspace [F̂]′ of �K ′ (see Sect. 3.8). Similarly, the

projection πλ̄λ̄′ is constructed from pr K̄ K̄ ′ and the subspace [τ F̂]′ of �τK ′ , where

K̄ ≡ τK , K̄ ′ ≡ τK ′ and ϕ̂ �→ [ϕ̂]′ is the linear map from F̂ onto �τK ′ defined in
Sect. 3.8. Taking into account that the map uτ appearing (4.9) is defined by Tτ (see
(4.7) and (4.6)) we conclude that to prove (4.9) it is enough to show that

T−1
τ ◦ pr K̄ K̄ ′ ◦ Tτ = prK K ′ , Tτ [F̂]′ = [τ F̂]′. (4.10)

Let us denote elements of K and K ′ as it was done in Sect. 3.8. It follows from
(3.31) that

τκα = Bβατκ
′
β,

hence by virtue of (3.32)

pr K̄ K̄ ′ = τ̃K
−1 ◦ (Bτ̃K ′).

Using (4.4) we obtain the first equation in (4.10)

T−1
τ ◦ pr K̄ K̄ ′ ◦ Tτ = T−1

τ ◦ τ̃K
−1 ◦ (Bτ̃K ′) ◦ Tτ = K̃−1 ◦ (BK̃ ′) = prK K ′ .

An operator ϕ̂ ∈ F̂ defines on �K ′ the constant vector field (3.33) which means that
in the natural coordinate frame (x ′β) the point [ϕ̂]′ ∈ �K ′ is represented by (ϕ̂κ ′β). On
the other hand, the operator τ ϕ̂ defines on �τK ′ a constant vector field
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∑
β

(
(τ ϕ̂)(τκ ′β)

)
∂x̄ ′β ,

where (x̄ ′β) are the natural coordinates on �τK ′ . Thus the point [τ ϕ̂]′ ∈ �τK ′ is
represented by

(
(τ ϕ̂)(τκ ′β)

) = (
τ(ϕ̂κ ′β)

) = (ϕ̂κ ′β)
in the frame (x̄ ′β). Since the map Tτ expressed in the coordinates (x ′β) and (x̄ ′β) is an
identity we conclude that

Tτ ([ϕ̂]′) = [τ ϕ̂]′

which means that the second equation in (4.10) is true.
In this way we showed that τρ ∈ D, that is, that the action (4.8) of diffeomorphisms

preserves the space D.

5 Other spaces of quantum states for a theory of the phase space P × �

5.1 Spaces built from other variables on the phase space

A space D̄ of quantum states similar to D can be constructed by applying the natural
description of the phase space [16], that is, the description in terms of fields (θ A, pB)

(see Sect. 2.2). In this case elementary d.o.f. are given by integrals of one-forms (θ A)

over edges and by integrals of two-forms (pB) over faces. To define a directed set
(�̄,≥) which underlies the construction of D̄ it is enough to use the directed set of
all usual (non-speckled) graphs. In other words, this construction is fully analogous
to the construction of quantum states for DPG presented in [10]—the only difference
between these two constructions is that in the case of D̄ the canonical variables are
four one-forms (θ A) and four two-forms (pB) while in [10] the canonical variables
are one one-form and one two-form.

Thus the construction of D̄ is simpler than that of D. Unfortunately, the space D̄
possesses an undesirable property: as shown in [16] quantum states in D̄ correspond
not only to elements of � by also to all quadruplets (θ A) which define via (2.1) non-
Riemannian metrics on �. Since we do not see any workable method which could
distinguish in D̄ states corresponding only to elements of � we prefer to base the
quantization of TEGR on the space D.

Let us emphasize that constructing the space D we never applied the fact that the
variables (ζI , rJ , ξ

K , θ L) are defined by ι = sgn—this fact was used in the discussion
in Sect. 3.7.2, but the only goal of this discussion was to show that the impossibility
to approximate sgn(θ I ) by means of functions on�Kγ̇ is not an obstacle for defining
quantum geometry operators and quantum constraints as counterparts of classical
constraints of TEGR and YMTM. In other words, the discussion concerned not the
very construction of D but rather further applications of D. This means that a space Dι

of quantum states for TEGR can be built in the same way starting from any variables
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(ζιI , rJ , ξ
K
ι , θ

L), however, as shown in [17] the constraints of TEGR and YMTM
derived in [6] and [9] cannot be imposed on Dι unless ι = sgn or ι = − sgn.

In particular, the variables (ζ−s I , rJ , ξ
K−s, θ

L) given by ι = − sgn can be used to
construct a space D−s . By virtue of (2.6)

ζs I = −ζ−s I , ξ K
s = −ξ K−s, (5.1)

where we used the original notation for the variables (ζI , rJ , ξ
K , θ L) (see (3.1)). These

simple relations imply that the space D−s and D are the same: D ≡ D−s—a proof of
this statement can be found in Appendix 7.

5.2 Hilbert spaces built from some almost periodic functions

It was shown in [10] that for every theory for which it is possible to apply the general
method presented in that paper to obtain a convex set of quantum states there exists
another space of quantum states. This space is a Hilbert space built from almost
periodic functions defined on those reduced configuration spaces which are isomorphic
to R

N . Thus in the case of TEGR there exist Hilbert spaces {Hι} and H̄: the former
ones associated with the spaces {Dι} and the latter one with D̄. However, in order
to proceed with the second step of the Dirac strategy we would have to define on
such a Hilbert space operators corresponding to the constraints and we expect this
to be quite difficult. The source of the difficulty is the fact that on a Hilbert space
of almost periodic functions on R

N the standard quantum operator of position is ill
defined because an almost periodic function multiplied by a Cartesian coordinate on
R

N is no longer an element of this Hilbert space. Since configurational elementary
d.o.f. define Cartesian coordinates on configuration spaces we see that we would not
be able to represent the configurational d.o.f. on Hι and H̄ by usual multiplication.
To define an operator on Hι or H̄ corresponding to such a d.o.f. we would have to
multiply the d.o.f. by a purely imaginary number and exponentiate the product. But
taking into account the form of the constraints of TEGR [6,17] it is hard to expect that
such “exponentiated position operators” can be used to represent the constraints. Thus
the spaces {Hι} and H̄ do not seem to be very promising for canonical quantization
of TEGR.

6 Discussion

6.1 General remarks

The main results of this paper is the space D of quantum states and the related C∗-
algebra B of quantum observables. The space D is not a Hilbert space but a convex
set and each element of it naturally defines an algebraic state on the algebra, hence a
Hilbert space can be obtained [15] from any state in D and the algebra via the GNS
construction. Although for every λ ∈ � the space Dλ is a set of all density operators
on the Hilbert space Hλ we do not expect that there exists a Hilbert space such that D
is a set of density operators on it.
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The construction ofD andB is based on the phase space P×�described in Sect. 2.2.
The elementary d.o.f. (3.2), (3.3), (3.5) and (3.6) used in the construction are defined
as natural integrals of the canonical variables (ζI , rJ , ξ

K , θ L) being differential forms
on the manifold �. Recall that the natural variables (θ A, pB) on the phase space
are functions (2.4) of (ζI , rJ , ξ

K , θ L) involving the factor sgn(θ I ) defined by (2.7).
Since the factor cannot be expressed or even approximated by the elementary d.o.f.
(see Lemma 3.6) the spaces D and B may be useful only for a class of theories:
the Hamiltonian (and possible constraints) of a theory belonging to this class when
expressed in terms of the variables (ζI , rJ , ξ

K , θ L) may not depend on the factor. As
shown in [17], both TEGR and YMTM belong to this class.

6.2 Diffeomorphism invariant states

Since D is a space of kinematic quantum states to proceed further with the canonical
quantization of TEGR we have to find a procedure by means of which we could single
out physical quantum states for TEGR—an outline of such procedure was presented
in [10]. Because TEGR is a diffeomorphism invariant theory it is reasonable to require
that each physical state is invariant with respect to the natural action of the spatial
diffeomorphisms on the space D defined in Sect. 4 as it is required in the case of LQG
[12–14]. Existence of such states in D and possible uniqueness are open questions—at
this moment it is difficult to predict whether a theorem of existence and uniqueness of
such a state analogous to those presented in [18,19] can be proven; let us only note that
in the case of a space of quantum states for DPG constructed in [24] there are plenty of
diffeomorphism invariant states, however that construction does not follow the general
pattern described in [10] and differs significantly from both the present construction
of D and the construction of the space of quantum states for DPG described in [10].

6.3 The space D versus the kinematic Hilbert space of LQG

The space D is a space of kinematic quantum states meant to serve as an element
of a background independent canonical quantization of general relativity (GR) in
the teleparallel formulation. Let us compare the space with its counterpart in LQG
since LQG is a result of a background independent canonical quantization of an other
formulation of GR.

The counterpart is the Hilbert space HLQG defined as a space of some wave func-
tions. These wave functions are defined on a space A of so called generalized SU (2)-
connections [23] over a three-dimensional manifold� and the scalar product on HLQG
is defined by an integral with respect to the Ashtekar–Lewandowski (AL) measure
dμAL [20] on A:

HLQG := L2(A, dμAL).

Alternatively, the space HLQG can be seen as the inductive limit of an inductive family
of Hilbert spaces {Hγ , pγ ′γ } labeled by the directed set of (usual) graphs in � (for
some details of this alternative description see [24]). Each Hilbert space Hγ is defined
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as follows: given graph γ , one reduces the Hamiltonian configuration space A of LQG
being the space of all SU (2)-connections over � obtaining a reduced configuration
space Aγ isomorphic to SU (2)N , where N is the number of edges of γ . Next, one
defines

Hγ := L2(Aγ , dμγ ),

where dμγ is a measure on Aγ given uniquely by the normed Haar measure on
SU (2)N .

It is easy to find some close similarities between elements of the construction of
HLQG and those of the construction of D: A corresponds to the Hamiltonian configu-
ration space �, the spaces {Aγ } are counterparts of the reduced configuration spaces
{�Kγ̇ }, likewise the Hilbert spaces {Hγ } are counterparts of the spaces {Hλ}. Note
also that the measure dμλ given by (3.29) which defines Hλ via (3.30) is in fact a Haar
measure on �Kγ̇ (the latter space being a real linear space is naturally a Lie group).
Moreover, as shown in [10] for the space � there exists a space �̄ related to � in the
same way as A is related to A.

One may ask now why we did not define a Hilbert space for TEGR in the same way
as the space HLQG is defined? The answer is very simple: each space Aγ is compact
and this fact enables to define the AL measure on A and, alternatively, it enables to
define the embeddings {pγ ′γ : Hγ → Hγ ′ } which allow to “glue” the Hilbert spaces
{Hγ } into HLQG via the inductive limit. On the other hand, every space �Kγ̇ is non-
compact and this fact turns out to be an obstacle for defining a measure on �̄ as a
counterpart of the AL measure and, alternatively, it turns out to be an obstacle for
defining embeddings pλ′λ : Hλ → Hλ′ which would allows us to “glue” the spaces
{Hλ} into a larger one by means of an inductive limit. In other words, non-compactness
of the spaces {�Kγ̇ } precludes the use of the inductive techniques but on the other
hand linearity of the spaces allows us to apply the projective techniques according to
the original idea by Kijowski [15].

Note however that the compactness of the spaces {Aγ } is in fact obtained by means
of a reduction of the natural Lorentz symmetry of GR done at the level of the classical
theory—this symmetry is reduced to its “sub-symmetry” described by the group of
three-dimensional rotations. Technically it is achieved by a passage from the complex
Ashtekar–Sen connections [25,26] of the non-compact structure group SL(2,C) to
the real Ashtekar–Barbero connections [27] of the compact structure group SU (2).
Let us emphasize that the construction of D does not require any reduction of the
Lorentz symmetry of the classical theory, however it is still to early to claim that there
are no obstacles for defining local Lorentz transformations on D—this issue needs to
be analyzed carefully.

Let us finally mention an important difference between the spaces D and HLGQ (for
a similar discussion see [24]). Both spaces D and HLGQ are built from some spaces
associated with (speckled or usual) graphs in �: in the former case these spaces are
{Dλ} (λ = (F, Kγ̇ ), but Dλ does not depend actually on the space F), in the latter
one these spaces are {Hγ }. Since D is the projective limit of {Dλ} each state ρ ∈ D
is a collection {ρλ} of states such that ρλ ∈ Dλ. This means that, given λ, the state
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ρλ contains only a partial information about ρ and therefore it can be treated merely
as an approximation of ρ [15]. On the other hand, in the case of HLQG defined as
the inductive limit of {Hγ } for every graph γ there exists a canonical embedding
pγ : Hγ → HLQG and consequently each element of Hγ can be treated as a rightful
element of HLQG.
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7 Appendix: The spaces D and D−s are the same

The space D−s is built exactly in the same way as the space D is, the only difference is
that the starting point of the construction of D−s are the variables (ζ−s I , rJ , ξ

K−s, θ
L).

Let us then trace all steps of both constructions noting differences and similarities
between them. In what follows the variable (ζI , rJ , ξ

K , θ L) will be called first vari-
ables while (ζ−s I , rJ , ξ

K−s, θ
L) will be called second variables.

Elementary d.o.f. κ̄ I
y , κ̄

J
e , ϕ̄

V
K , ϕ̄

S
L defined in an obvious way by the second variables

are related to the d.o.f. originating from the first ones as follows

κ̄ I
y = −κ I

y , κ̄ J
e = κ J

e , ϕ̄V
K = −ϕV

K , ϕ̄S
L = ϕS

L (7.1)

—see (5.1).
Let K̄u,γ be a set of d.o.f. {κ̄ I

y , κ̄
J
e } distinguished by the finite set u ⊂ � and the

graph γ . Using the formulae (7.1) it is easy to realize that although Ku,γ �= K̄u,γ the
equivalence relations ∼Ku,γ and ∼K̄u,γ

coincide hence

�Ku,γ = �K̄u,γ
, prKu,γ

= pr K̄u,γ
(7.2)

and both maps K̃u,γ and ˜̄Ku,γ are bijections onto the same R
3(N+M), where N is the

number of points of u and M is the number of edges of γ . Note that this R
3(N+M) can

be naturally decomposed into a direct sum R
3N ⊕ R

3M —the first term in the sum is
constituted by values of d.o.f. defined by points of u, while the second one by d.o.f.
given by edges of γ . Consider now a 3(N + M)× 3(N + M) matrix

I =
(−1 0

0 1

)
(7.3)

being a block matrix with respect to the decomposition R
3N ⊕ R

3M , where 1 is a
unit matrix. It follows from (7.1) that if the order of elements {κ1, . . . , κN } of Ku,γ
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corresponds naturally6 to the order of elements {κ̄1, . . . , κ̄N } of K̄u,γ and if the first
3N elements of both sets are defined by points of u then

K̃u,γ = I ˜̄Ku,γ , (7.4)

which means that both linear structures defined on �Ku,γ by K̃u,γ and ˜̄Ku,γ coin-
cide. Let (z I

i , x J
j ) be the natural coordinates (3.15) on �Ku,γ and (z̄ I

i , x̄ J
j ) the natural

coordinates on �K̄u,γ
. Obviously,

z I
i = −z̄ I

i , x J
j = x̄ J

j . (7.5)

Taking into account (7.2) and (7.5) we conclude that each cylindrical function �
compatible with Ku,γ is compatible with K̄u,γ and vice versa. Consequently, the space
Cyl defined by the first variables coincides with that defined by the second ones.

Let ˆ̄ϕV
I be a momentum operator defined by the d.o.f. ϕ̄V

I . Consider a cylindrical
function � = pr∗̄

Ku,γ
ψ . By virtue of (3.17)

ˆ̄ϕV
I � =

3∑
L=1

M∑
l=1

pr∗̄
Ku,γ

(∂z̄L
l
ψ){ϕ̄V

I , κ̄
L
yl
} (7.6)

It follows from (7.5) that ∂z̄ I
i
= −∂z I

i
. Using this fact, (7.1) and (7.2) we obtain

ˆ̄ϕV
I � =

3∑
L=1

M∑
l=1

pr∗Ku,γ
(−∂zL

l
ψ){ϕV

I , κ
L
yl
} = −ϕ̂V

I �

since � = pr∗Ku,γ
ψ . Consequently,

ˆ̄ϕV
I = −ϕ̂V

I .

This result allows us to conclude that the linear space F̂ defined by the first variables
coincides with that defined by the second ones.

Consider now the directed sets (�,≥) and (�̄,≥)given by, respectively, the first and
the second variables. Let F̂ be a finite dimensional subspace of F̂ and let (ϕ̂1, . . . , ϕ̂N )

be a basis of F̂ . Moreover, let Kγ̇ = {κ1, . . . , κN } and K̄γ̇ = {κ̄1, . . . , κ̄N } be sets of
independent d.o.f. Assume that the order of elements of K̄γ̇ corresponds naturally to
the order of elements of Kγ̇ and the first n < N elements of both sets correspond to
points of u, where (u, γ ) = γ̇ . Then

Ḡβα := ϕ̂β κ̄α =
{−ϕ̂βκα if α ≤ n,
ϕ̂βκα otherwise

,

6 The order of elements of Ku,γ corresponds naturally to the order of elements of K̄u,γ if for every
α ∈ {1, . . . , N } either (i) κα = κ I

y and κ̄α = κ̄ I
y for y ∈ u or (i i) κα = κ I

e and κ̄α = κ̄ I
e for an edge e of γ .
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hence

Ḡ = IG,

where Ḡ = (Ḡβα), G = (Gβα) and I is the matrix (7.3). This means that the matrix Ḡ
is non-degenerate if and only if G is non-degenerate. Consequently, the pair (F̂, K̄γ̇ ) ∈
�̄ if and only if (F̂, Kγ̇ ) ∈ � and the map

� 
 λ ≡ (F̂, Kγ̇ ) �→ r(λ) := (F̂, K̄γ̇ ) ∈ �̄

is a bijection. It is easy to check that the bijection preserves the directing relation.
Thus although � �= �̄ the directed sets are naturally isomorphic.
Let λ̄ = r(λ), where λ = (F̂, Kγ̇ ). Because of (7.5) the measures dμλ and dμλ̄

on �Kγ̇ coincide hence

Hλ = Hλ̄, Dλ = Dλ̄. (7.7)

Consider now λ and λ̄ as above and λ̄′ = r(λ′), where λ′ = (F̂ ′, Kγ̇ ′) and assume that
λ′ ≥ λ; then λ̄′ ≥ λ̄. Our goal now is to show that

πλλ′ = πλ̄λ̄′ . (7.8)

To reach the goal it is enough to prove that

prKγ̇ Kγ̇ ′ = pr K̄γ̇ K̄γ̇ ′ , [F̂]′ = [F̂]′, (7.9)

where ϕ̂ �→ [ϕ̂]′ is the linear map from F̂ onto �K̄γ̇ ′ defined by the second variables

(see Sect. 3.8).
To prove the first equation in (7.9) assume that the order of elements {κ1, . . . , κN } of

Kγ̇ corresponds to the order of elements {κ̄1, . . . , κ̄N } of K̄γ̇ and that the first n < N
elements of both sets are given by points of u, where (u, γ ) = γ̇ . We impose an
analogous requirement on the order of elements {κ ′1, . . . , κ ′N ′ } of Kγ̇ ′ and {κ̄ ′1, . . . , κ̄ ′N ′ }
of K̄γ̇ ′ assuming that the first n′ elements of both sets are defined by points of u′. Since
γ̇ ′ ≥ γ̇ by virtue of Lemma 3.11

κα = Bβακ
′
β, κ̄α = B̄βακ̄

′
β,

where Bβα, B̄βα are real numbers. Note, that d.o.f. of the sort (3.2) are linearly inde-
pendent of d.o.f. of the sort (3.3) and vice versa. This means that Bβα = 0 if (i)
β > n′ and α ≤ n or (i i) β ≤ n′ and α > n. Of course, B̄βα = 0 exactly in the same
cases. These facts together with (7.1) mean that

Bβα = B̄βα.
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Let I′ be an N ′ × N ′ matrix constructed analogously to the matrix (7.3). Then using
(3.32) and (7.4) we obtain

prKγ̇ Kγ̇ ′ = K̃−1
γ̇ ◦ (BK̃γ̇ ′) = ˜̄K−1

γ̇ I ◦ (BI′ ˜̄Kγ̇ ′) = ˜̄K−1
γ̇ ◦ (B̄ ˜̄Kγ̇ ′) = pr K̄γ̇ K̄γ̇ ′ .

To prove the second equation in (7.9) we assume that elements of Kγ̇ ′ and K̄γ̇ ′ are

ordered as above and note that due to (7.1) and (7.5) each ϕ̂ ∈ F̂ defines the same
constant vector field on �Kγ̇ ′ = �K̄γ̇ ′ regardless we use the first or the second vari-

ables:

N ′∑
β=1

(ϕ̂κ ′β)∂x ′β =
n′∑
β=1

(
ϕ̂(−κ ′β)

)
(−∂x ′β )+

N ′∑
β=n′+1

(ϕ̂κ ′β)∂x ′β =
N ′∑
β=1

(ϕ̂κ̄ ′β)∂x̄ ′β

—here (x ′α) are the natural coordinates (3.13) on�Kγ̇ ′ , and (x̄ ′α) are the natural coor-

dinates on �K̄γ̇ ′ . Therefore [ϕ̂]′ = [ϕ̂]′ and the second equation in (7.9) follows.

The fact that� and �̄ are isomorphic, the second equation (7.7) and equation (7.8)
just proven mean that D = D−s .
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