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Abstract We present the second (and final) part of an analysis aimed at introducing
variables which are suitable for constructing a space of quantum states for the Telepar-
allel Equivalent of General Relativity. In the first part of the analysis we introduced a
family of variables on the “position” sector of the phase space. In this paper we distin-
guish differentiable variables in the family. Then we define momenta conjugate to the
differentiable variables and express constraints of the theory in terms of the variables
and the momenta. Finally, we exclude variables which generate an obstacle for further
steps of the Dirac’s procedure of canonical quantization of constrained systems we
are going to apply to the theory. As a result we obtain two collections of variables on
the phase space which will be used (in a subsequent paper) to construct the desired
space of quantum states.

Keywords Teleparallel equivalent of general relativity · Canonical quantization ·
Space of kinematic quantum states

1 Introduction

In [1] we were searching for variables on the phase space of the teleparallel equivalent
of general relativity (TEGR) which are suitable for constructing a space of kinematic
quantum states for the theory via projective methods described in [2]—the space of
quantum states is meant to be used in a quantization of TEGR according to the Dirac’s
approach to canonical quantization of constrained systems. Let us briefly recall the
results of [1].

The phase space of TEGR can be seen [3] as a Cartesian product P ×� of a space P
of momenta and a space � of configuration (“position”) variables, where P consists
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of quadruplets of two-forms (pA), A = 0, 1, 2, 3, on a three-dimensional manifold
�, while � does of quadruplets of one-forms (θ B), B = 0, 1, 2, 3, subjected to a
restriction. We will call the fields (pA, θ B) natural variables on the phase space.

It was shown in [1] that it is possible to construct via the projective methods a space
of quantum states for TEGR using the natural variables. However, the resulting space
turned out to be too large in the sense that it does not correspond strictly enough to the
phase space but it does to a space essentially larger than the phase space. Therefore
we were forced to look for some other variables on the phase space.

As a result we found in [1] a family {(ξ I
ι , θ J )} of variables on the configuration

space �. Here ι is a parameter distinguishing elements of the family—ι is a special
function on � valued in a set {−1, 1}. Given ι, (ξ I

ι ), I = 1, 2, 3, is a triplet of real
functions on �, while (θ J ), J = 1, 2, 3, is a triplet of one-forms being a global coframe
on the manifold. We will call the variables (ξ I

ι , θ J ) (and momenta conjugate to them)
new variables on � (on the phase space). We showed that for every ι the variables
(ξ I

ι , θ J ) satisfy some conditions which indicate that perhaps the variables may be used
to construct a space of quantum states for TEGR via the projective methods.

Now let us describe the goals of the present paper.
Introducing in [1] the family of new variables we neglected an issue of differen-

tiability of the variables with respect to the natural ones—therefore it may happen
that functions on the phase space like constraints and a Hamiltonian being differen-
tiable functions (in the sense of variational calculus) of the natural variables are not
differentiable functions of the new ones.

Thus one goal of this paper is to find a criterion which will allow us to recognize
differentiable variables in the family {(ξ I

ι , θ J )}.
Moreover, we would like to find variables (ξ I

ι , θ J ) which not only provide a space
of kinematic quantum states for TEGR but which provide a useful space of such
states. To explain what we mean by “useful” let us recall that TEGR is a constrained
system (see e.g. [3–6]) and since the constraints on the phase space of TEGR are
too complicated to be solved classically we are going to apply the Dirac’s approach
to quantize TEGR. According to the Dirac’s approach one first constructs a space
of quantum states corresponding to the unconstrained phase space, that is, a space of
kinematic quantum states. Then among the kinematic quantum states one distinguishes
physical quantum states as ones corresponding to these classical states which satisfy
all constraints—in other words, one imposes “quantum constraints” on the kinematic
quantum states. If, given space of kinematic quantum states for TEGR, it is possible
to define a (workable) procedure which isolates physical quantum states from the
kinematic ones then we consider this space to be useful.

The problem of defining such a workable procedure will be not solved it in this
paper. Nevertheless, we will show that some new variables are problematic in the
following sense: even if these variables provide a space of kinematic quantum states
for TEGR then there appears an obstacle for imposing quantum constraints on this
space. To describe the obstacle let us recall that according to the general construction
[2] the space of quantum states would be built from some functions on the phase space
called elementary degrees of freedom and in [1] we chose d.o.f. as functions naturally
defined by new variables (ξ I

ι , θ J ). We will show that in cases of some new variables
some constraints of TEGR cannot be even approximated by any finite number of the
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d.o.f.. Consequently, quantum constraints cannot be imposed on any sector of the
space of quantum states given by a finite number of corresponding quantum d.o.f..
This means that the quantum constraints would have to be imposed directly on the
whole space or on its sectors each given by an infinite number of quantum d.o.f.. We
will argue that this fact makes the task of isolating physical quantum states from the
space very hard (if not impossible). But we will show also that there exist precisely
two functions ι1, ι2 : � → {−1, 1} such that the problem just described does not
appear in the case of variables (ξ I

ι1
, θ J ) and (ξ I

ι2
, θ J ).

In [7] we will use these variables to construct a space of kinematic quantum states
for TEGR1 which, hopefully, will turn out to be useful.

Thus the other goals of the paper are, given function ι,

1. to express the momenta (pA) as functions of the new variables on the phase space,
2. to rewrite the constraints in terms of the new variables,
3. to check whether there are obstacles for approximating the constraints by means

of finite numbers of d.o.f. defined by (ξ I
ι , θ J ).

Obviously, the constraints of TEGR should be expressed in terms of new variables
not only in order to exclude problematic variables—this is also a preparatory step for
defining quantum constraints on the space of quantum states we are going to construct.

Let us emphasize that the tasks 2 and 3 above will be also completed for so-called
Yang–Mills-type Teleparallel Model (YMTM). This is a theory of the same phase
space as TEGR but of simpler dynamics [8,9] which may be useful as a toy-model for
testing some elements of quantization procedure before they will be applied to TEGR.

The paper is organized as follows: in Sect. 2 we introduce basic definitions, present
a precise description of the phase space of TEGR and a definition of new variables
(ξ I

ι , θ J ), derive some auxiliary formulae which will be used in further parts of the
paper, finally we express the new variables in terms of the natural ones. In short Sect. 3
we address the issue of differentiability of (ξ I

ι , θ J ). In Sect. 4 we derive formulae
describing the momenta (pA) as functions of any (differentiable) new variables on the
phase space and formulae describing the momenta conjugate to (ξ I

ι , θ J ) as functions
of the natural variables. Moreover, in this section we present the constraints (and
Hamiltonians) of TEGR and of YMTM expressed in terms of new variables and check
in which cases there appears the obstacle mentioned above. Section 5 contains a
summary and a short discussion of results obtained in this paper. Finally, in Appendix
6 we prove a useful lemma and in Appendix 7 we derive formulae expressing the
constraints of TEGR and YMTM in terms of new variables on the phase space.

2 Preliminaries

2.1 Vector spaces and scalar products

Let M be a four-dimensional oriented vector space equipped with a scalar product η of
signature (−,+,+,+). We fix an orthonormal basis (vA) (A = 0, 1, 2, 3) of M such

1 Actually, it will turn out that ι1 = −ι2. A consequence of this fact is that ξ I
ι1

= −ξ I
ι2

and the space of

quantum states constructed from (ξ I
ι1

, θ J ) coincides with that constructed from (ξ I
ι2

, θ J ).
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that the components (ηAB) of η given by the basis form the matrix diag(−1, 1, 1, 1).
The matrix (ηAB) and its inverse (ηAB) will be used to, respectively, lower and raise
capital Latin letter indeces A, B, C, D ∈ {0, 1, 2, 3}. The scalar product η defines a
volume form on M—components of the form in the basis (vA) will be denoted by
εABC D .

Let E be a subspace of M spanned by the vectors {v1, v2, v3}. The scalar product
η induces on E a positive definite scalar product δ—its components (δI J ) in the basis
(v1, v2, v3) form the matrix diag(1, 1, 1). The matrix (δI J ) and its inverse (δ I J ) will
be used to, respectively, lower and raise capital Latin letter indeces I, J, K , L , M ∈
{1, 2, 3}.

We will denote by εI J K the three-dimensional permutation symbol. Note that

ε0 I J K = εI J K .

2.2 Phase space

Let � be a three-dimensional compact oriented manifold without boundary. Through-
out the paper this manifold will represent a space-like slice of a spacetime.

The phase space of TEGR is a Cartesian product P × �, where [3]

1. � consists of all quadruplets of one-forms (θ A) on � such that the metric

q = ηABθ A ⊗ θ B (2.1)

is Riemannian (positive definite);
2. P is a space of all quadruplets of two-forms (pA) on �.

The two-form pA plays the role of the momentum conjugate to θ A. The space � will
be called Hamiltonian configuration space, P—momentum space. Recall that in the
introduction (pA, θ B) were called natural variables on the phase space. The Poisson
bracket of F and G being functions on the phase space reads

{F, G} =
∫

�

( δF

δθ A
∧ δG

δpA
− δG

δθ A
∧ δF

δpA

)
.

2.3 New variables on the Hamiltonian configuration space

In [1] we introduced new variables (ξ I
ι , θ J ) on �:

Lemma 2.1 Given function ι defined on the space of all global coframes on � and
valued in the set {−1, 1}, there exists a one-to-one correspondence between elements
of � and all pairs (ξ I

ι , θ J ) consisting of

1. functions ξ I
ι (I = 1, 2, 3) on �,

2. one-forms θ J (J = 1, 2, 3) on � constituting a global coframe on the manifold.

The correspondence is given by
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(ξ I
ι , θ J ) �→

(
θ0 = ι(θ L)

ξιI√
1 + ξιK ξ K

ι

θ I , θ J
)

∈ �. (2.2)

It follows from the lemma that if (θ A) = (θ0, θ J ) ∈ � then (θ J ) is a global coframe
on �. There are some important consequences of this fact:

1. given a triplet (θ J ) coming from (θ A) ∈ � we can associate with it a number

sgn(θ J ) :=
{

1 if (θ J ) is compatible with the orientation of �

−1 otherwise
.

2. each function ι can be treated as a function defined on � and valued in {−1, 1}.
3. � splits into two disjoint sets �+ and �−, where �+ (�−) is constituted by all

quadruplets (θ0, θ J ) such that (θ J ) is compatible (incompatible) with the orien-
tation of �.

Let us recall a useful interpretation of the variables (ξ I
ι ) [1]. Given (θ A), consider

the following equations [10]

ξAθ A = 0, ξ AξA = −1 (2.3)

imposed on a function (ξ A) on � valued in M. Note that there exists exactly two
continuous solutions of these equations—indeed, the values of the function are normed
time-like vectors in M and therefore the value of ξ0 must be non-zero everywhere.
Continuity of (ξ A) means that the time-like component ξ0 of (ξ A) is either a positive
or a negative function. Consequently, the two continuous solutions of (2.3) can be
distinguished by sgn(ξ0) being the sign of ξ0.

Suppose that new variables (ξ I
ι , θ J ) corresponds to (θ A) ∈ � according to (2.1).

Then (ξ I
ι ) are equal to the space-like components of this solution (ξ A) for which

sgn(ξ0) = ι(θ J ). More precisely,

(ξ A
ι ) = (ξ0

ι , ξ I
ι ), (2.4)

where

ξ0
ι = ι(θ J )

√
1 + ξιK ξ K

ι (2.5)

is a solution of (2.3)—this fact can be easily proven by setting the r.h.s. of (2.4) to
(2.3) and expressing θ0 according to (2.2).

2.4 Riemannian metrics on �

According to the description of the phase space presented in the previous section each
point (θ A) of � defines the Riemannian metric (2.1) on �. Since (θ J ) is a global
coframe on � the metric can be expressed as

q = qI J θ I ⊗ θ J (2.6)
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—the components (qI J ) are obviously functions of θ A but it turns out that they can
be expressed as functions of space-like components of any solution (ξ A) of (2.3) as
well as by any variables (ξ I

ι ) [1]:

qI J = δI J − ξI ξJ

1 + ξK ξ K
= δI J − ξιI ξιJ

1 + ξιK ξ K
ι

. (2.7)

It can be easily checked that a matrix (q̄ I J ) inverse2 to (qI J ) reads

q̄ I J = δ I J + ξ I
ι ξ J

ι . (2.8)

Recall that � is an oriented manifold. Therefore the metric q defines a volume
form ε on � and a Hodge operator ∗ acting on differential forms on the manifold.
Obviously, both the volume form and the Hodge operator are functions of (θ A) and,
equivalently, (ξ I

ι , θ J ).

2.5 Auxiliary formulae

Here we will derive some formulae which will be used in calculations throughout the
paper.

We know from [1] that (θ A) = (θ0, θ J ) ∈ � if and only if (θ J ) is a global coframe
on � and there exists a triplet (αI ) of real functions on the manifold such that αI α

I < 1
and

θ0 = αI θ
I . (2.9)

Let us fix a function ι on � and consider the corresponding solution (ξ A
ι ) of (2.3).

Then using results obtained in [1] we can express relations between the functions αI

and (ξ A
ι )

(ξ A
ι ) = (ξ0

ι , ξ I
ι ) = ι(θ J )

(1, α I )√
1 − αK αK

, αI = ι(θ J )
ξιI√

1 + ξιK ξ K
ι

= ξιI

ξ0
ι

,

(2.10)

where ξ0
ι is given by (2.5).

There hold the following formulae:

∂αI

∂ξ J
ι

= 1

ξ0
ι

qI J , (2.11)

∗(θ1 ∧ θ2 ∧ θ3) = sgn(θ K )|ξ0
ι |, (2.12)

∗(θ I ∧ θ J ) = sgn(θ N )|ξ0
ι | qL K ε I J Lθ K , (2.13)

2 Note that in general q I J �= q̄ I J . This is because the components q I J are obtained from qI J by raising
the indeces I, J by means of δ I J . The components q I J and q̄ I J coincide if and only if ξ I = 0.
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—in (2.11) αI is given by the second equation in (2.10).
Proof of (2.11) Let us calculate

∂αI

∂ξ J
ι

= ι(θ L)
( δI J√

1 + ξιK ξ K
ι

− ξιI ξιJ√
1 + ξιK ξ K

ι

3

)
= ι(θ L)√

1 + ξιK ξ K
ι

(
δI J − ξιI ξιJ

1 + ξιK ξ K
ι

)

= 1

ξ0
ι

(
δI J − ξιI ξιJ

1 + ξιK ξ K
ι

)
,

where in the last step we used (2.5). Now it is enough to apply (2.7). 	

Proof of (2.12) The volume form ε can be expressed as

ε = sgn(θ K )
√

det qI J θ1 ∧ θ2 ∧ θ3.

It was shown in [1] that the eigenvalues of the matrix (qI J ) are 1, 1 and 1 − αK αK ,
hence

det(qI J ) = 1 − αK αK .

It follows from the first equation in (2.10) that

1 − αK αK = 1

1 + ξιK ξ K
ι

.

By virtue of the last two expressions and (2.5)

ξ0
ι = ι(θ J )√

det(qI J )
. (2.14)

Consequently,

ε = sgn(θ K )
1

|ξ0
ι | θ1 ∧ θ2 ∧ θ3.

Acting on both sides of this equation by the Hodge operator ∗ and taking into account
that ∗ε = 1 we obtain (2.12). 	


Proof of (2.13) We have

θ I ∧ θ J = (δ I
Mδ J

N − δ J
Mδ I

N )θ N ⊗ θ M .

Then

∗ (θ I ∧ θ J ) = 1

2
(δ I

Mδ J
N − δ J

Mδ I
N )q̄ M M ′

q̄ N N ′
εM ′ N ′K θ K , (2.15)

where (εI J K ) are components of the volume form ε on � in the coframe (θ I ). Note
that
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εI J K = sgn(θ L)
√

det(qM N ) εI J K .

Using this equation we obtain

q̄ M M ′
q̄ N N ′

εM ′ N ′K = q̄ M M ′
q̄ N N ′

q̄ L L ′
εM ′ N ′L ′qL K

= sgn(θ I ′
)
√

det(qI J )q̄ M M ′
q̄ N N ′

q̄ L L ′
εM ′ N ′L ′qL K

= sgn(θ I ′
)
√

det(qI J )[det(qI J )]−1εM N LqL K

= sgn(θ I ′
)

qL K√
det(qI J )

εM N L .

Setting this result to (2.15) we get

∗(θ I ∧ θ J ) = 1

2
sgn(θ L ′

)(δ I
Mδ J

N − δ J
Mδ I

N )
qL K√

det(qI ′ J ′)
εM N Lθ K

= sgn(θ L ′
)

qL K√
det(qM N )

ε I J Lθ K = sgn(θ N )|ξ0
ι | qL K ε I J Lθ K ,

where in the last step we used (2.14). 	


2.6 The new variables on � in terms of the natural ones

The formula (2.2) describes the natural variables as functions of the new ones. Let us
now invert the formula. Clearly, to invert it it is enough to express ξ I

ι as a function of
(θ A).

Using (2.5) we can rewrite the transformation (2.2) in a more compact form

(ξ I
ι , θ J ) �→ (θ0, θ J ) =

(ξιI

ξ0
ι

θ I , θ J
)
. (2.16)

Consider now the following expression

1

2
∗ (θ0 ∧ θ I ∧ θ J ) εI J K = 1

2

ξιL

ξ0
ι

∗ (θ L ∧ θ I ∧ θ J ) εI J K

= 1

2

ξιL

ξ0
ι

εL I J ∗ (θ1 ∧ θ2 ∧ θ3) εI J K

= 1

2

ξιL

ξ0
ι

sgn(θ N ) |ξ0
ι | εL I J εI J K

= sgn(θ N )

ι(θ J )
ξιLδL

K = sgn(θ N )

ι(θ J )
ξιK

—in these calculations above we used (2.16) in the first step and (2.12) in the third
one. Thus we obtain the inverse of (2.2)
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ξ K
ι = 1

2

ι(θ L)

sgn(θ L)
∗ (θ0 ∧ θI ∧ θJ ) ε I J K ,

θ J = θ J . (2.17)

3 Differentiability of new variables (ξ I
ι , θ J )

Let us recall some notions used in variational calculus. A curve in �

]a, b[  λ �→ (θ A
λ ) ∈ �, a < 0 < b, (3.1)

is differentiable if for every (local) coordinate chart (yi ) on � of a domain U the
following map

]a, b[ ×U  (λ, y) �→ θ A
λi (y) ∈ R

where (θ A
λi ) are components of θ A

λ in the coordinate chart (yi ), is differentiable. Then
we can say that a function F : � → R is differentiable at (θ A) ∈ � if

1. for every curve (3.1) such that (θ A
0 ) = (θ A) a map λ �→ F(θ A

λ ) is differentiable
at λ = 0;

2. the variation

δF(θ A) := d

dλ

∣∣∣
λ=0

F(θ A
λ )

is a linear function of the variation

δθ A := d

dλ

∣∣∣
λ=0

θ A
λ .

In an analogous way we can define a differentiable curve

]a, b[  λ �→ (ξ I
ιλ, θ

J
λ ) ∈ �, a < 0 < b, (3.2)

and define a differentiability of the same function F : � → R by means of maps
λ �→ F(ξ I

ιλ, θ
J
λ ).

Thus we defined two notions of differentiability of F : one uses the natural variables
and the other does the new ones. Of course, we would like both notions of differen-
tiability to coincide—then we will say that the new variables are differentiable with
respect to the natural ones (and vice versa). It is not difficult to realize that both notions
coincide if (i) the differentiability of (3.1) guarantees the differentiability of

]a, b[  λ �→ ξ K
ιλ := 1

2

ι(θ L
λ )

sgn(θ L
λ )

∗λ (θ0
λ ∧ θIλ ∧ θJλ) ε I J K (3.3)

[see (2.17)] and (i i) if the differentiability of (3.2) guarantees the differentiability of
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]a, b[  λ �→ θ0
λ := ι(θ L

λ )
ξιλI√

1 + ξιλK ξ K
ιλ

θ I
λ . (3.4)

[see (2.2)]. Clearly, the only obstacle for the differentiability of (3.3) and (3.4) may
be the function λ �→ ι(θ L

λ ). Since ι is valued in the set {−1, 1} it is necessary and
sufficient for the curves (3.3) and (3.4) to be differentiable to require that the function
λ �→ ι(θ L

λ ) is constant. Then the variations (δξ I
ι , δθ J ) will be linear functions of

(δθ A) and vice versa.
This result means that (ξ I

ι , θ J ) are differentiable with respect to the natural variables
if ι is a constant function on every path-connected subset of �—here a subset �0 ⊂ �

is path-connected if every pair of points of �0 can be connected by a path being a
composition of finite number of differentiable curves (3.1). Such a function ι will be
called admissible.

It is clear, that no point of �+ can be connected by such a path with any point
of �−. This means that a set of all admissible functions ι consists at least of four
elements: (i) a constant function equal 1, (i i) a constant function equal −1, (i i i) a
function ι(θ J ) = sgn(θ J ) and (iv) a function ι(θ J ) = − sgn(θ J ).

Since now we will use merely differentiable variables (ξ I
ι , θ J ). Then ι is a constant

function on every path-connected subset of � and therefore while calculating any
derivatives of formulae containing ι(θ I ) we will treat it as a constant number.

4 Constraints of TEGR and YMTM in terms of new variables

In this section we will express the natural momenta (pA) as functions of the new vari-
ables (ξ I

ι , θ J ) and momenta conjugate to them. Then we will present the constraints
of both TEGR and YMTM expressed in terms of the new variables on the phase space.
Finally we will check which variables cannot be used to define quantum constraints.

4.1 Momenta conjugate to new variables (ξ I
ι , θ J )

Since new variables (ξ I
ι , θ J ) on � are invertible and differentiable functions of the

natural variables there should exist momenta conjugate to them. Given function ι and
value of the index I , the variable ξ I

ι is a zero-form on� hence the momentum conjugate
to it should be a three-form on the manifold which will be denoted by ζιI —the exterior
product of a variable and the momentum conjugate to it is a differential form of the
degree equal the dimension of the manifold on which the forms are defined [11,12]
(see also [9]). Analogously, the momentum conjugate to θ J should be a two-form on
� which will be denoted by rJ .

Our goal now is to find a relation between the natural variables (pA, θ B) on the
phase space and the new ones (ζιI , rJ , ξ K

ι , θ L). Let

ζιI = aI (pA, θ B), rJ = bJ (pA, θ B)

To find the unknown functions aI and bJ we could require that the functions together
with (2.17) define a canonical transformation on the phase space. This would give
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us partial differential equations imposed on aI and bJ . Alternatively, we could step
back to the Lagrangian formulation of TEGR (and YMTM) and consider variables on
the Lagrangian configuration space which define via the Legendre transformation the
natural variables (pA, θ B) on the phase space. Then we could find new variables on
the Lagrangian configuration space which define new variables (ξ I

ι , θ J ) on the Hamil-
tonian configuration space. Finally, comparing the Legendre transformation applied to
both sorts of variables we could find the functions aI and bJ . Since the former method
requires solving partial differential equations and the latter one involves merely dif-
ferentiation we will find aI and bJ using the latter method.

Let us finally emphasize that in the considerations below we will repeatedly use
the interior product3 X�ω of a vector field X and a differential form ω.

4.1.1 ADM-like variables on the Lagrangian configuration space

Let M be a four-dimensional oriented. Let (θ A), A = 0, 1, 2, 3, be a global coframe
or a cotetrad field on the manifold compatible with its orientation. Then θ := θ A ⊗vA

is a one-form on M valued in M which can be used to pull back the scalar product
η on M to a Lorentzian metric on M turning thereby the manifold into a spacetime.
The resulting metric g reads

g := ηABθ A ⊗ θ B . (4.1)

The space of all such coframes (θ A) is a Lagrangian configuration space for both4

TEGR and YMTM.
To carry out the 3 + 1 decomposition of the manifold M and a cotetrad field

(θ A) on it needed for the Legendre transformation we impose on them the following
Assumptions:

1. M = R × �. Since � is oriented manifold we assume that the orientation of M
is compatibles with the natural orientation of R × �.

2. the cotetrad (θ A) is such that for every t ∈ R the submanifold �t := {t} × � is
space-like with respect to g.

Assumption 1 allows us to introduce a family of curves in M parameterized by
points of �—given y ∈ � we define

R  t �→ (t, y) ∈ R × � = M. (4.2)

3 Let ω be a differential k-form and X a vector field on a manifold. If k > 0 then the interior product X�ω

is a (k − 1)-form such that for any vector fields X1, . . . , Xk−1

(X�ω)(X1, . . . , Xk−1) := ω(X, X1, . . . , Xk−1),

if k = 0 then X�ω := 0.
4 In fact, TEGR and YMTM can be defined on the space of all global cotetrad fields on M compatible
and incompatible with the orientation—see e.g. [13] and references therein. In [3] and [9] we restricted
ourselves to cotetrads compatible with the orientation because it simplified Hamiltonian formulations of
the theories described in these papers.
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These curves generate a global vector field on M which will be denoted by ∂t . By
virtue of Assumption 1 there exists a real function t on M such that t (y) = τ if and
only if y ∈ �τ . Moreover, Assumption 1 provides a family of natural embeddings
ϕt : � → �t ∈ M.

The space of all cotetrad fields (θ A) on M which satisfy Assumption 2 will be
called the restricted Lagrangian configuration space and will be denoted by �. Let us
now describe variables which result from 3 + 1 decomposition of the cotetrad fields,
parameterize the space � and lead to ADM-like Hamiltonian formulations of theories
considered in [9] and [3,10] (the lemma below summarizes and makes more precise
some facts described in [3,9,10]; its proof can be found in Appendix 6):

Lemma 4.1 There exists a one-to-one correspondence between elements of � and
all triplets (N , �N , θ A) consisting of

1. a function N on M which is positive everywhere;
2. a vector field �N on M tangent everywhere to the foliation {�t }t∈R;
3. one-forms θ A (A = 0, 1, 2, 3) on M such that

a) ∂t� θ A = 0;
b) for every t ∈ R the tensor field

q := ηABθ A ⊗ θ B

induces via the pull-back ϕ∗
t a Riemannian (positive definite) metric on �.

The correspondence is given by the following map

(N , �N , θ A) �→ (θ A) =
(

dt
[

− N
1

3!ε
A

BC D ∗ (θ B ∧ θC ∧ θ D)

+ �N� θ A
]

+ θ A
)

∈ �, (4.3)

where ∗ is a Hodge operator acting on forms on �t defined by the induced metric on
the manifold, and d is the exterior derivative on M.

Let us emphasize that desiring to keep the notation as simple as possible we did
not decide to introduce a new symbol to denote the quadruplet of one-forms on M
appearing in the lemma just stated and used the symbol (θ A) which earlier denoted a
quadruplet of one-forms on �. In the sequel the symbol will denote forms either on
M or on � (similarly, soon (ξ A) and (ξ I

ι ) will denote functions either on M or on
�) and we hope that the meaning will be clear from the context.

As shown in [9] N and �N coincide with, respectively, the ADM lapse and the
ADM shift vector field [14]. It turns out [3,9] that actions of TEGR and YMTM do
not contain time derivatives5 of N and �N therefore the two variables can be treated
as Lagrangian multipliers in the resulting Hamiltonian formulations. Moreover, it is
clear that for every t ∈ R a quadruplet (θ A) of one-forms on M described in Lemma
(4.1) defines an element of the Hamiltonian configuration space � by means of the

5 Here the “time derivative” means the Lie derivative with respect to the vector field ∂t .
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pull-back with respect to the natural embedding ϕt . In other words, the quadruplet
defines a curve in � parameterized by t . Obviously, this curve is differentiable in the
sense described in Sect. 3.

The ADM-like variables (N , �N , θ A) on the restricted Lagrangian configuration
space � define via the Legendre transformation the natural variables (pA, θ A) on the
phase space of TEGR and YMTM [3,9] together with Lagrangian multipliers N and
�N .

4.1.2 New variables on the restricted configuration space

Here we will introduce new variables on � which, once the Legendre trans-
formation has been carried out, define on the phase space the new variables
(ζιI , rJ , ξ K

ι , θ L).
Let (θ A) be a quadruplet of one-forms on M appearing in Lemma 4.1. As mentioned

at the end of the previous section it defines a differentiable curve in the Hamiltonian
configuration space �:

R  t �→ (ϕ∗
t θ A) ∈ �.

Therefore for every function ι which defines differentiable new variables on � the value
ι(ϕ∗

t θ J ) is independent of t . This value will be denoted by ι(θ J ) since it characterizes
the triplet (θ J ) of one-forms on M.

Lemma 4.2 Given admissible function ι on �, there exists a one-to-one correspon-
dence between elements of � and all quadruplets (N , �N , ξ I

ι , θ J ) consisting of

1. a function N on M which is positive everywhere;
2. a vector field �N on M tangent everywhere to the foliation {�t };
3. functions ξ I

ι (I = 1, 2, 3) on M,
4. one-forms θ J (J = 1, 2, 3) on M such that

a) ∂t� θ J = 0;
b) for every t ∈ R the triplet (θ J ) induced via the pull-back ϕ∗

t a global coframe
on �.

The correspondence is given by

(N , �N , ξ I
ι , θ J ) �→ (θ A) = (θ0, θ I ) ∈ �,

θ0 = dt[N sgn(θ J )

√
1 + ξιK ξ K

ι + �N� ι(θ J )ξιI√
1 + ξιK ξ K

ι

θ I ]

+ ι(θ J )ξιI√
1 + ξιK ξ K

ι

θ I ,

θ I = dt[N sgn(θ J )ι(θ J )ξ I
ι + �N� θ I ] + θ I .

(4.4)

Let us note that this description of the space � may be used e.g. to derive a Hamil-
tonian formulation of TEGR in a gauge which fixes values of the variables (ξ I

ι )—then
the only “position” variable on the resulting phase space would be the global coframe
(θ J ) on �.
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Proof Note that due to Condition 4a of the lemma and Condition 3a of Lemma 4.1
the one-forms (θ I ) and (θ A) on M appearing in the lemmas can be restored from
the families (ϕ∗

t θ I ) and (ϕ∗
t θ A) of one-forms on �. Therefore we can use Lemma

2.1 to establish a one-to-one correspondence between the one-forms (θ A) on M sat-
isfying the requirements of Lemma 4.1 and the fields (ξ I

ι , θ J ) on M satisfying the
requirements of Lemma (4.2). This correspondence is given by

(ξ I
ι , θ J ) �→

(
θ0 = ι(θ L)

ξιI√
1 + ξιK ξ K

ι

θ I , θ J
)
. (4.5)

To finish the proof it is enough to set in (4.3) (θ A) expressed in terms of (ξ I
ι , θ J ). The

calculations are straightforward except the following ones:

− 1

3!ε
0

BC D ∗ (θ B ∧ θC ∧ θ D) = − 1

3!ε
0

I J K ∗ (θ I ∧ θ J ∧ θ K )

= 1

3!εI J K ε I J K ∗ (θ1 ∧ θ2 ∧ θ3) = sgn(θ I )|ξ0
ι | = sgn(θ I )

√
1 + ξιK ξ K

ι , (4.6)

where in the third step we used (2.12) and in the last one (2.5). Similarly, by virtue of
(4.5)

− 1

3!ε
I

BC D ∗ (θ B ∧ θC ∧ θ D) = −1

2
ε I

0J K ∗ (θ0 ∧ θ J ∧ θ K )

= 1

2
ε0

I
J K

ι(θ N )ξιL√
1 + ξιMξ M

ι

∗ (θ L ∧ θ J ∧ θ K )

= 1

2
ε I

J K ι(θ N )ξιLεL J K sgn(θ N )

= sgn(θ N )ι(θ N )ξ I
ι . (4.7)

	

4.1.3 New momenta as functions of the natural variables

Expressing the actions of TEGR and YMTM as functionals of the variables
(N , �N , ξ I

ι , θ J ) defined on M one can carry out the Legendre transformation and
obtain momenta conjugate to the variables. The momenta conjugate to the lapse and
the shift are zero because the functionals do not contain the time derivatives of the lapse
and the shift—to see this recall that the actions expressed as functionals of (N , �N , θ A)

do not contain the time derivatives of N and �N and these two variables do not appear
in the relation (4.5). Thus again the lapse and the shift can be treated as Lagrange mul-
tipliers in the resulting Hamiltonian formulations and in this way one obtains the new
variables (ζιI , rJ , ξ K

ι , θ L) on the phase space. As stated at the beginning of Sect. 4.1
to find the new momenta (ζιI , rJ ) as functions of the natural variables (pA, θ A) on
the phase space we will refer to the Legendre transformations. Let

L = L1(ξ̇
I
ι , θ̇ J , ξ K

ι , θ L , N , �N ) = L2(θ̇
A, θ B, N , �N )
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denote a differential four-form on the manifold M being the integrand of either the
TEGR action or the YMTM action expressed as (i) a function L1 of (N , �N , ξ I

ι , θ J )

and their time derivatives (denoted by a dot over the symbol of a variable) and as (i i)
a function L2 of (N , �N , θ A) and their time derivatives.

Let La⊥ := ∂t� La (a = 1, 2). Since now we will treat all the variables N , �N , ξ I
ι , θ A

and the time derivatives ξ̇ I
ι , θ̇ A as time-dependent fields on � defined appropriately

via pull-backs6 {ϕ∗
t } and push-forwards {ϕ−1

t∗ }. Then the momenta (ζιI , rJ ) conjugate
to, respectively, (ξ I

ι , θ J ) and the momenta (pA) conjugate to θ A can be defined as
[12,11,9]

ζιI := ∂L1⊥
∂ξ̇ I

ι

, rI := ∂L1⊥
∂θ̇ J

, pA := ∂L2⊥
∂θ̇ A

.

The partial derivative of a three-form with respect to an l-form is an (3 − l)-form (for
a definition of the partial derivative see e.g. [9]). This means that ζιI is a three-form
and rI a two-form as stated already at the beginning of Sect. 4.1.

It turns out that to derive the desired relations it is more convenient to use standard
description of the Legendre transformations and the momenta in terms of components
of tensor densities expressed in a (local) coordinate frame (yi ), i = 1, 2, 3, on �. Let
ε̃i jk be a Levi–Civita density of weight 1 on �. It allows to transform the three-forms
L1⊥ and L2⊥ into scalar densities [9]:

L̃1(ξ̇
I
ι , θ̇ J , ξ K

ι , θ L , N , �N ) := 1

3! (L1⊥)i jk ε̃
i jk, L̃2(θ̇

A, θ B, N , �N ) := 1

3! (L2⊥)i jk ε̃
i jk .

Then

ζ̃ιI := ∂ L̃1

∂ξ̇ I
ι

, r̃ i
ιI := ∂ L̃1

∂θ̇ J
i

, p̃i
A := ∂ L̃2

∂θ̇ A
i

,

are tensor densities related to the momenta ζιI , rJ , pA as follows [9]

ζιI = 1

3! ζ̃ιI
–1ε̃i jk dyi ∧ dy j ∧ dyk, rJ = 1

2! r̃
i
ιI

–1ε̃i jk dy j ∧ dyk,

pA = 1

2! p̃i
A

–1ε̃i jk dy j ∧ dyk,

(4.8)

where –1ε̃i jk is the Levi–Civita density of weight −1 on �.
Now let us find a relation between “velocities” θ̇0 and ξ̇ I

ι , θ̇ I . By virtue of (2.9)

θ̇0 = α̇I θ
I + αI θ̇

I = ∂αI

∂ξ J
ι

ξ̇ J
ι θ I + αI θ̇

I = 1

ξ0
ι

(qI J ξ̇ J
ι θ I + ξιI θ̇

I ), (4.9)

6 Note that the time derivative θ̇ A can be restored from the family {ϕ∗
t θ̇ A}—indeed, the time derivative of

θ A being the Lie derivative of the one-form with respect to ∂t reads θ̇ A = ∂t � dθ A +d(∂t �θ A) = ∂t � dθ A ,
hence ∂t � θ̇ A = 0.
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where in the last step we applied (2.11) and (2.10).
This result together with the equation

L̃1(ξ̇ I
ι , θ̇ J , ξ I

ι , θ J ) = L̃2

(
θ̇0(ξ̇ I

ι , θ̇ J , ξ I
ι , θ J ), θ̇ I , θ0(ξ I

ι , θ J ), θ I
)
.

allows us express the momenta ζ̃ιI and r̃ i
ιI as functions of the variables ( p̃i

A, θ B
i ). Thus

ζ̃ιI = ∂ L̃2

∂θ̇0
i

∂θ̇0
i

∂ξ̇ I
ι

= qI J

ξ0
ι

p̃i
0 θ J

i . (4.10)

On the other hand

r̃ i
ιI = ∂ L̃2

∂θ̇0
j

∂θ̇0
j

∂θ̇ I
i

+ ∂ L̃2

∂θ̇ I
i

= p̃i
0
ξιI

ξ0
ι

+ p̃i
I . (4.11)

Setting (4.10) to the first equation in (4.8) we obtain

ζιI = 1

3! ζ̃ιI
–1ε̃kln dyk ∧ dyl ∧ dyn = 1

3!
qI J

ξ0
ι

p̃ j
0 θ J

i δi
j

–1ε̃kln dyk ∧ dyl ∧ dyn

= 1

3!
qI J

ξ0
ι

p̃ j
0 θ J

i
1

2
–1ε̃ jabε̃

iab –1ε̃kln dyk ∧ dyl ∧ dyn .

Since [9]

ε̃iab –1ε̃kln = 3!δi [kδa
lδ

b
n]

we can write

ζιI = 1

3!
qI J

ξ0
ι

p̃ j
0 θ J

i
1

2
–1ε̃ jab 3!δi

kδ
a

lδ
b

n dyk ∧ dyl ∧ dyn

= qI J

ξ0
ι

θ J
i dyi ∧

(1

2
p̃ j

0
–1ε̃ jabdya ∧ dyb

)
= qI J

ξ0
ι

θ J ∧ p0, (4.12)

where in the last step we applied the third equation in (4.8). Similarly, setting (4.11)
to the second equation in (4.8) and using the third equation in (4.8) we get

rI = ξιI

ξ0
ι

p0 + pI . (4.13)

Now, we are going to inverse the formulae (4.12) and (4.13). Denoting by (p0M N )

the components of p0 given by the coframe (θ I ) we transform the former formula as
follows:
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∗ζιI = qI J

ξ0
ι

∗ (θ J ∧ p0) = qI J

ξ0
ι

1

2
p0M N ∗ (θ J ∧ θ M ∧ θ N )

= qI J

ξ0
ι

1

2
p0M N εJ M N ∗ (θ1 ∧ θ2 ∧ θ3) = qI J

ξ0
ι

1

2
p0M N εJ M N sgn(θ K )|ξ0

ι |

= qI J
sgn(θ K )

ι(θ K )

1

2
p0M N εJ M N .

Thus

ι(θ K )

sgn(θ K )
q̄ J I ∗ ζιI = 1

2
p0M N εJ M N ,

where (q̄ I J ) is the inverse of (qI J ) given by (2.8). Contracting both sides of this
equation with the permutation symbol εJ M ′ N ′ we obtain

ι(θ K )

sgn(θ K )
q̄ J I ∗ ζιI εJ M ′ N ′ = 1

2
p0M N εJ M N εJ M ′ N ′ = p0M ′ N ′ .

Consequently,

p0 = 1

2
p0M N θ M ∧ θ N = 1

2

ι(θ K )

sgn(θ K )
q̄ J I (∗ζιI )εJ M N θ M ∧ θ N .

Let us simplify the result: acting on both sides of this equation by the Hodge operator
∗ and using (2.13) we obtain

∗p0 = 1

2

ι(θ K )

sgn(θ K )
q̄ J I (∗ζιI )εJ M N ∗ (θ M ∧ θ N )

= 1

2
ι(θ K ′

)q̄ J I (∗ζιI ) εJ M N |ξ0
ι | qL K εM N Lθ K

= ξ0
ι (∗ζιI )q̄

J I δL
J qL K θ K = ξ0

ι (∗ζιI )θ
I .

Thus

p0 = ∗ ∗ p0 = ξ0
ι ∗ (∗ζιI ∧ θ I ) = ξ0

ι
�θ I � ζιI , (4.14)

—here in the last step we used an identity [9]:

∗ (∗β ∧ α) = �α�β, (4.15)

valid for any k-form β and any one-form α on �, where �α denotes a vector field
obtained from the one-form α by raising its index by the metric inverse to q: in a
coordinate frame on �

�α := qi jαi∂ j .
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Setting (4.14) to (4.13) we obtain

pI = rI − ξιI �θ J � ζιJ . (4.16)

4.1.4 Summary of the transformations

Gathering (4.14), (4.16) and (2.2) and using (2.5) we obtain the following formulae
describing the dependence of (pA, θ B) on (ζιI , rJ , ξ K

ι , θ L):

p0 = ι(θ K )

√
1 + ξιJ ξ J

ι
�θ I � ζιI , pI = rI − ξιI �θ J � ζιJ ,

θ0 = ι(θ J )
ξιI√

1 + ξιK ξ K
ι

θ I , θ I = θ I
(4.17)

—here the metric inverse to q used to define the vector field �θ I should be treated as a
function of ξ I

ι and θ J (see Eqs. (2.6) and (2.7)).
Gathering (4.12), (4.13) and (2.17) and using (2.14) we obtain the following for-

mulae expressing the dependence of (ζιI , r J, ξ K
ι , θ L) on (pA, θ B):

ζιI = ι(θ K )
√

det(qM N ) qI J θ J ∧ p0,

rI =
√

det(qM N )

2
sgn(θ L) ∗ (θ0 ∧ θ J ∧ θ K ) εJ K I p0 + pI ,

ξ I
ι = 1

2

ι(θ L)

sgn(θ L)
∗ (θ0 ∧ θJ ∧ θK ) εJ K I ,

θ I = θ I .

(4.18)

In these formulae the Hodge operator ∗ is defined by the metric q treated as a function
(2.1) of (θ A). Note that it follows immediately from the result just obtained that rI

does not depend on the function ι.
Let ι1 and ι2 be admissible functions on �. Then ι := ι1/ι2 is admissible as well

and

ζι1 I = ιζι2 I , ξ I
ι1

= ιξ I
ι2
.

Analyzing the formulae (4.18) we will find now the range of the new momenta
ζιI and rJ (the range of (ξ K

ι , θ L) is described by Lemma 2.1). Since pI can be any
two-form on � the momentum rI can also be any two-form on the manifold. Consider
now a three-form (q̄ J I ζιI ) which according to the first equation in (4.18) is of the
following form

q̄ J I ζιI = θ J ∧ p, (4.19)

where p can be any two-form on �. On the other hand any three-form α on � can be
expressed as
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α = 1

3!αI J K θ I ∧ θ J ∧ θ K = α123θ
1 ∧ θ2 ∧ θ3.

It means that there are no restriction imposed on the form q̄ J I ζιI —indeed, if e.g.
J = 1 then setting in (4.19) p = α123θ

2 ∧ θ3 we see that q̄1I ζιI = α. Since there are
no restrictions imposed on q̄ J I ζιI there are no restrictions imposed on ζιI .

Thus we obtain a new description of the phase space P × � alternative to that
presented in Sect. 2.2: given admissible function ι,

1. � consists of all sextuplets (ξ I
ι , θ J ), (I, J = 1, 2, 3), such that ξ I

ι is a real function
on � and the one-forms (θ J ) form a global coframe on the manifold (see Lemma
2.1)

2. P consists of all sextuplets (ζιI , rJ ), (I, J = 1, 2, 3), where ζιI is a three-from
and rJ a two-form on �.

The Poisson bracket on the phase space in terms of the new variables reads:

{F, G} =
∫

�

( δF

δξ I
ι

∧ δG

δζιI
+ δF

δθ I
∧ δG

δrI
− δG

δξ I
ι

∧ δF

δζιI
− δG

δθ I
∧ δF

δrI

)
.

4.2 Constraints of TEGR and YMTM

4.2.1 The constraints as functions of the natural variables

Let us first express the (smeared) constraints (and the Hamiltonians) of TEGR and
YMTM in terms of the natural variables (pA, θ B) and the function (ξ A) given by (6.4)
(being thereby a function of (θ A)).

In [3] we derived a complete set of constraints of TEGR consisting of a scalar
constraint

S(M) :=
∫

�

M
(1

2
(pA ∧ θ B) ∧ ∗(pB ∧ θ A)− 1

4
(pA ∧ θ A) ∧ ∗(pB ∧ θ B)−ξ AdpA

+1

2
(dθA ∧ θ B) ∧ ∗(dθB ∧ θ A)− 1

4
(dθA ∧ θ A) ∧ ∗(dθB ∧ θ B)

)
(4.20)

and, respectively, smeared vector, boost and rotation constraints (the last two con-
straints generate local Lorentz transformations on the phase space):

V ( �M) : =
∫

�

−dθ A ∧ ( �M�pA) − ( �M�θ A) ∧ dpA, (4.21)

B(a) : =
∫

�

a ∧ (θ A ∧ ∗dθA + ξ A pA), (4.22)

R(b) : =
∫

�

b ∧ (θ A ∧ ∗pA − ξ AdθA). (4.23)
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In the formulae above there appear the following smearing fields on �: M is a function,
�M is a vector field and a and b are one-forms. All the constraints are of the first class.

The Hamiltonian of TEGR turns out to be a sum of the constraints:

H [θ A, pB, N , �N , a, b] = S(N ) + V ( �N ) + B(a) + R(b), (4.24)

where N is the lapse function, �N is the shift vector field—here the fields N , �N , a and
b are Lagrangian multipliers.

The only constraints of YMTM [9] are a scalar constraint

s(M) :=
∫

�

M
(1

2
pA ∧ ∗pA − ξ AdpA + 1

2
dθ A ∧ ∗dθA

)
(4.25)

and the vector constraint v( �M) ≡ V ( �M). The constraints are of the first class.
The Hamiltonian of YMTM is of the following form

h[θ A, pA, N , �N ] = s(N ) + v( �N ). (4.26)

4.2.2 The constraints as functions of new variables

To rewrite the constraints in terms of new variables (ζιI , rJ , ξ K
ι , θ L) it is enough to set

in the formulae presented above (pA, θ B) and (ξ A) expressed as functions of the new
variables, that is, (4.17), (4.6) and (4.7) (recall that (ξ A) appearing in the constraints is
defined by (6.4)). For the sake of simplicity wherever possible we will use the function
ξ0
ι defined by (2.5).

Calculations needed to transform the constraints of TEGR and YMTM to the desired
form will be carried out in Appendix 7, here we only present the results.

The scalar constraints of TEGR reads

S(M) =
∫

�

M
(1

2
(rI ∧ θ J ) ∧ ∗(rJ ∧ θ I ) − 1

4
(rI ∧ θ I ) ∧ ∗(rJ ∧ θ J )

− sgn(θ L)

ι(θ L)

(
d(�θ J � ζιJ ) + ξ I

ι ∧ drI
)

+ 1

4(ξ0
ι )4 d(ξιI θ

I ) ∧ ξιJ θ J ∧ ∗(d(ξιK θ K ) ∧ ξιLθ L)

+ 1

2(ξ0
ι )2 d(ξιI θ

I ) ∧ ξιJ θ J ∧ ∗(dθK ∧ θ K )

− 1

(ξ0
ι )2 (qI J dξ J

ι ∧ θ I + ξιI dθ I ) ∧ θ K ∧ ∗(dθK ∧ ξιLθ L)

+1

2
dθI ∧ θ J ∧ ∗(dθJ ∧ θ I ) − 1

4
dθI ∧ θ I ∧ ∗(dθJ ∧ θ J )

)
. (4.27)
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The vector constraint

V ( �M) =
∫

�

dξ I
ι ∧ �M� ζιI − dθ I ∧ ( �M� rI ) − ( �M�θ I ) ∧ drI . (4.28)

The boost constraint

B(a) =
∫

�

a ∧
(

−ξιI qJ K

(ξ0
ι )2 θ I ∧ ∗(dξ J

ι ∧ θ K ) + qI J θ I ∧ ∗dθ J

+ sgn(θ L)

ι(θ L)

(�θ I � ζιI + ξ I
ι rI

))
. (4.29)

The rotation constraint

R(b) =
∫

�

b ∧ (θ I ∧ ∗rI + sgn(θ L)

ι(θ L)
qI J dξ I

ι ∧ θ J ). (4.30)

The scalar constraints of YMTM reads:

s(M) =
∫

�

M

2

(
−q̄ I J ζιI ∗ ζιJ + r I ∧ ∗rI − 2ξ I

ι ∗ ζιK rI ∧ θ K

−2
sgn(θ L)

ι(θ L)

(
d(�θ J � ζιJ ) + ξ I

ι ∧ drI
)

−qI J qK L

(ξ0
ι )2 dξ I

ι ∧ θ J ∧ ∗(dξ K
ι ∧ θ L)

− 2qI J

(ξ0
ι )2 dξ I

ι ∧ θ J ∧ ∗(ξιK dθ K ) + qI J dθ I ∧ ∗dθ J
)
. (4.31)

The vector constraint v( �M) of YMTM coincides with that of TEGR.

4.3 An obstacle for defining quantum constraints

4.3.1 Outline of the construction of a space of quantum states

To check for which new variables (ζιI , rJ , ξ K
ι , θ L) there appears an obstacle for defin-

ing quantum constraints let us first outline the projective methods [2] by means of
which we would like to construct a space of kinematic quantum states for TEGR.

The methods require to choose some functions on the Hamiltonian configuration
space � as well as some functions on the momentum space P—the former func-
tions are called configurational elementary degrees of freedom, while the latter ones
momentum elementary d.o.f.. All the elementary d.o.f. should separate points in the
phase space. Moreover, it should be possible to construct from the d.o.f. a directed
set (�,≥) such that each element λ of this set corresponds to a finite number of both
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momentum and configurational d.o.f.. It was shown in [2] that if the set (�,≥) satisfies
some assumptions then it naturally generates a space D of kinematic quantum states.
The space D is generated in the following way.

Given λ ∈ � which corresponds to a finite set K = {κ1, . . . , κN } of configura-
tional d.o.f. (and to a finite set of momentum ones), one defines so called reduced
configuration space �K :

�K := �/ ∼K ,

where ∼K is an equivalence relation on �—we say that θ, θ ′ ∈ � are equivalent
if κα(θ) = κα(θ ′) for every κα ∈ K . One of the assumptions imposed on (�,≥)

requires that there exists a natural bijection from �K onto R
N , where N is the number

of elements of K . This allows to define a Hilbert space

Hλ := L2(�K , dx),

where dx is a measure on �K induced by the Lebesgue measure on R
N via the natural

bijection. Then among all bounded operators on Hλ one distinguishes the space Dλ of
all density operators on Hλ (i.e. positive operators on the Hilbert space of trace equal
1). In this way one obtains a family {Dλ}λ∈�. It follows from the assumptions the set
(�,≥) is supposed to satisfy that this family is naturally equipped with the structure
of a projective family. Then the space D of quantum states is defined as the projective
limit of the family.

4.3.2 How to apply the construction to TEGR?

Let us now explain how we are going to apply this general construction to TEGR. Let
y be a point of �, e an edge7 in the manifold and ι an admissible function. Consider
the following functions on � [1]:

�  θ �→ κ I
y (θ) := ξ I

ι (y) ∈ R,

�  θ �→ κ J
e (θ) :=

∫

e

θ J ∈ R.
(4.32)

It was shown in [1] that all such functions (where I, J = 1, 2, 3, y runs through � and
e through all edges in the manifold) are very promising as configurational elementary
d.o.f. for constructing a set (�,≥) and thereby a space D of quantum states for TEGR.
More precisely, we argued there that to construct the directed set one should use finite
sets of configurational d.o.f. of the following form

Ku,γ := { κ I
y1

, . . . , κ I
yM

, κ J
e1

, . . . , κ J
eN

| I, J = 1, 2, 3 }. (4.33)

7 A simple edge is a one-dimensional connected C∞ submanifold of � with two-point boundary. An edge
is an oriented one-dimensional connected C0 submanifold of � given by a finite union of simple edges.
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where u = {y1, . . . , yM } is a finite subset of � and γ = {e1, . . . , eN } is a graph8

in the manifold. As proven in [1] there exists a natural bijection from the reduced
configuration space �Ku,γ onto R

3(M+N ). Thus one can try to build the space D for
TEGR from the spaces {Dλ}λ∈� of density operators each associated with a Hilbert
space of square-integrable functions on some �Ku,γ .

4.3.3 The obstacle

Suppose that, given new variables (ζιI , rJ , ξ K
ι , θ L), there exists a space D of quantum

states for TEGR constructed as explained above.9 Given constraint C on the phase
space, we may to try to define its quantum counterpart Ĉ on D as a family {Ĉλ}λ∈� of
operators such that each Ĉλ is a quantum constraint on Hλ [2]—taking into account the
complexity of the whole space D it would be rather very difficult or perhaps impossible
to define quantum constraints via an essentially different method.

The question now is: are we able to define operators {Ĉλ} for the constraints of
TEGR (or YMTM)? Assume that ι(θ J ) �= sgn(θ J ) and ι(θ J ) �= − sgn(θ J ). Then all
the constraints of TEGR and YMTM except the vector one depend on sgn(θ J ). This
means that to define an operator Ĉλ corresponding to a constraint under consideration
we would have to represent the function sgn(θ I ) as an operator on Hλ. This however
seems to be impossible.

Indeed, there holds the following lemma [1]:

Lemma 4.3 Let γ = {e1, . . . , eN } be a graph. Then for every (x I
J̄
) ∈ R

3N there

exists a global coframe (θ I ) on � compatible (incompatible) with the orientation of
the manifold such that

∫

eJ̄

θ I = x I
J̄

for every I = 1, 2, 3 and J̄ = 1, 2, . . . , N.

By virtue of the lemma for every θ ≡ (ξ I
ι , θ J ) ∈ � the equivalence class [θ ] ∈ �Ku,γ

defined by the relation ∼Ku,γ contains points of � given by global coframes on �

compatible and global coframes incompatible with the orientation of the manifold.
Therefore no function on �Ku,γ can even approximate the function sgn(θ I ).

Of course, all d.o.f. (4.32) (or even countably infinite subset of all these d.o.f.)
contain enough information to obtain the value of sgn(θ I ) for any global coframe
(θ I ). However, this fact is rather not very helpful since it means that we would have
to define some quantum constraints directly on D or on sectors of the space such
that each sector is given by an infinite number of quantum d.o.f. corresponding to the
classical ones and, of course, this task seems to be very hard.

8 We say that two edges are independent if the set of their common points is either empty or consist of one
or two endpoints of the edges. A graph in � is a finite set of pairwise independent edges.
9 In [7] we will show that actually this supposition is true.
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The conclusion is that, unless ι(θ J ) = sgn(θ J ) or ι(θ J ) = − sgn(θ J ), for most
of the constraints we cannot find quantum counterparts via the method described
above which seems to be only workable one. In other words, even if for an admissible
ι(θ J ) �= ± sgn(θ J ) one could construct the space D then it would not be useful in the
sense described in the introduction to the paper.

Obviously, the two admissible functions sgn(θ J ) and − sgn(θ J ) are distinguished
because for the function (ξ A) given by (6.4) appearing in the original form of the
constraints

sgn(ξ0) = sgn(θ J )

—see (4.6). Let us denote by

(ζs I , rJ , ξ K
s , θ L),

(
(ζ−s I , rJ , ξ K−s, θ

L)
)

the new variables defined by sgn(θ J ) (− sgn(θ J )). Now the conclusion can be
rephrased as follows: the variables (ζ±s I , rJ , ξ K±s, θ

L) are the only new variables on
the phase space for which the obstacle considered in this section does not appear.

5 Summary

In this paper we proceeded further with the analysis of the family of new variables
{(ξ I

ι , θ J )} which are promising for a construction of the space of kinematic quantum
states for TEGR and YMTM via the projective methods described in [2]. In particular,

1. we found a criterion which distinguishes differentiable variables in the family:
new variables (ξ I

ι , θ J ) are differentiable if and only if the function ι defining the
variables is constant on path-connected subsets of the Hamiltonian configuration
space �;

2. for every differentiable variables (ξ I
ι , θ J ) we derived conjugate momenta (ζιI , rJ )

as functions of the natural variables (pA, θ B); we also found formulae describing
the dependence of (pA, θ B) on (ζιI , rJ , ξ K

ι , θ L);
3. we expressed the constraints (and thereby the Hamiltonians) of TEGR and YMTM

in terms of new variables (ζιI , rJ , ξ K
ι , θ L) on the phase space;

4. we showed that for all new variables on the phase space except (ζ±s I , rJ , ξ K±s, θ
L)

given by the functions ι(θ J ) = ± sgn(θ J ) there appears an obstacle which makes
very difficult (if not impossible) the task of defining quantum constraints on the
resulting space of kinematic quantum states.

In [7] we will construct the desired space D of kinematic quantum states for TEGR
using the variables (ζs I , rJ , ξ K

s , θ L). Then we will show that (ζ−s I , rJ , ξ K−s, θ
L)

define the same space D. It will also become obvious that every other new variables
(ζιI , rJ , ξ K

ι , θ L) define a space of kinematic quantum states which, however, does
not seem to be useful for further stages of the quantization based on the Hamiltonian
formulation derived in [3].

Finally let us comment on the constraints of TEGR expressed in terms of new
variables in Sect. 4.2.2. Evidently, the formulae describing the constraints became
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more complicated in comparison to the original version of the constraints (Sect. 4.2.1)
and this may cause a feeling that it will be much more troublesome to impose quantum
constraints {Ĉλ} in terms of new variables than in term of the natural ones. However,
it is not necessary the case.

First of all, perhaps it is possible to rewrite the constraints in a simpler way. If not,
then note that what really makes the new version of the constraints more complicated
are some terms containing the variables (ξ I

ι ) and their functions like ξ0
ι [see (2.5)] or

the components (qI J ) [see (2.7)]. Denoting respectively by x I
y and x J

e the values of
the maps (4.32) it is easy to see that

(x I
y1

, . . . , x I
yM

, x J
e1

, . . . , x J
eN

), I, J = 1, 2, 3,

are global coordinates on the reduced configuration space �Ku,γ defined by the set
(4.33) of configurational d.o.f.. It turns out [2] that the measure dx used to define the
Hilbert space Hλ (see Sect. 4.3.1) is just the coordinate measure dx I

y1
. . . dx J

eN
. This

means that it is rather easy to define operators {κ̂ I
y1

, . . . , κ̂ I
yM

} on Hλ corresponding to
(ξ I±s):

κ̂ I
yα

� := x I
yα

�,

where � ∈ Hλ. Consequently, it is also easy to define operators corresponding to ξ0±s
and qI J .

On the other hand, we may try to keep the original form of the constraints by
defining operators corresponding to θ0, p0 and ξ0 in terms of operators corresponding
to (ζ±s I , rJ , ξ K±s, θ

L)—taking into account the formulae (4.17) and (2.5) with ι(θ I ) =
± sgn(θ I ) we see that the operators corresponding to θ0, p0 and ξ0 can be defined
only modulo the factor ± sgn(θ I ) but this is not an obstacle since in the original form
of the constraints these variables appear always in pairs like e.g. p0 ∧ θ0 which means
that the factor ± sgn(θ I ) is here irrelevant.

Let us note finally that if it turned out that the variables (ξ I
ι ) could be gauge

fixed to zero globally then this would amount to a considerable simplification of the
constraints. Of course, while quantizing TEGR we would like to keep all degrees of
freedom unfixed and use a gauge fixing like this only in the last resort.
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6 Appendix: Proof of Lemma 4.1

First let us state and prove an auxiliary lemma which will be used while proving
Lemma (4.1):
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Lemma 6.1 Let (θ A) be a quadruplet of one-forms on M satisfying Condition 3b of
Lemma (4.1). Then for every function (φA) on M valued in M there exists a unique
function M on the manifold and a unique vector field �M on M tangent to the foliation
{�t }t∈R such that

φA = −M
1

3!ε
A

BC D ∗ (θ B ∧ θC ∧ θ D) + �M� θ A. (6.1)

Proof Given a point (t, y) ∈ R × � = M, consider the following linear map

T(t,y)�t  Y �→ θ A(Y ) ∈ M. (6.2)

The map is injective and, equivalently, the image of this map is three-dimensional and,
equivalently, the kernel of the map is zero-dimensional—otherwise there would exist
a non-zero vector Y ∈ T(t,y)�t such that

q(Y, Y ) = ηABθ A(Y )θ B(Y ) = 0,

which would contradict Condition 3b. This fact implies that there exists exactly two
vectors ξ A

(t,y) in M orthogonal to the image and normalized to −1.

Consequently, there exist exactly two continuous functions (ξ A) : M → M values
of which are normalized vectors orthogonal to images of (6.2). Clearly, for every t
each such a function satisfies (2.3).

Fix one of the two functions (ξ A). Properties of (ξ A) and the map (6.2) guarantee
that every function (φA) can be uniquely decomposed into a function M and a vector
field �M tangent to the foliation {�t }t∈R:

φA = Mξ A + θ A( �M) = Mξ A + �M� θ A. (6.3)

On the other hand, one of the two (continuous) functions (ξ A) reads [9]

ξ A = − 1

3!ε
A

BC D ∗ (θ B ∧ θC ∧ θ D). (6.4)

	

Proof of Lemma 4.1 We will prove the lemma by showing that the map (4.3) is a
bijection.

The map (4.3) is injective Assume that (N , �N , θ A) and (N ′, �N ′, θ ′A) are mapped
by (4.3) to the same (θ A). Then

dt[(N − N ′)ξ A + �N� θ A − �N ′� θ ′A] + θ A − θ ′A = 0.

By virtue of Condition 3a and Lemma (6.1) N = N ′ and �N = �N ′. This means that
θ A = θ ′A.

The image of the map (4.3) is contained in � It was shown in [9] that if (θ A) is
given by (4.3) then:
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det(θ A
α ) = N

√
det(qi j ). (6.5)

Here (θ A
α ), α = 0, 1, 2, 3, are components of θ A in a (local) coordinate frame (yα) ≡

(t, yi ), i = 1, 2, 3, onM compatible with its orientation defined by a (local) coordinate
frame (yi ) on �; (qi j ) are components of q in the frame (yi ) on �t . By virtue of
Condition 1 det(θ A

α ) > 0 which means that (θ A) is a global coframe compatible with
the orientation of M.

If Y is a vector tangent to �t then Y� dt = 0. Hence

g(Y, Y ) = ηAB(Y� θ A)(Y� θ A) = ηAB(Y� θ A)(Y� θ A) = q(Y, Y ).

By virtue of Condition 3b �t is spatial with respect to g.
The map (4.3) is surjective Let (θ A) ∈ �. θ A is a sum [11,12] of dt ∂t� θ A and

a one-form ∂t� (dt ∧ θ A) =: θ A which satisfies Condition 3a. By virtue of Lemma
6.1 (∂tθ

A) define unambiguously a function N and a vector field �N which satisfies
Condition 2. If Y is a vector tangent to �t then

θ A(Y ) = Y� θ A = Y�
(
∂t� (dt ∧ θ A)

)
= θ A(Y )

because Y� dt = 0. Hence, if Y, Y ′ are tangent to �t at the same point then

q(Y, Y ′) = ηABθ A(Y )θ B(Y ′) = ηABθ A(Y )θ B(Y ′) = g(Y, Y ′).

Recall that �t is space-like with respect to g. Therefore (θ A) meets Condition 3b.
Obviously (θ A) can be restored from the triplet (N , �N , θ A) by means of (4.3). By

virtue of (6.5) and Condition 3b the function N is positive everywhere. 	


7 Appendix: Constraints of TEGR and YMTM in terms of new
variables—derivation

The goal of the present section is to rewrite the constraints of YMTM and TEGR
presented in Sect. 4.2.1 in terms of the new variables (ζιI , rJ , ξ K

ι , θ L)—obviously,
this also amounts to rewriting the Hamiltonians of the two theories.

The Hamiltonian formulations of TEGR and YMTM in [3] and [9] we derived
under an assumption that � is a compact manifold without boundary. Here we will
keep the assumption.

As mentioned at the beginning of Sect. 4.2.2 we will use Eq. (4.17) written in a bit
simpler form

p0 = ξ0
ι
�θ I � ζιI , pI = rI − ξιI �θ J � ζιJ ,

θ0 = ξιI

ξ0
ι

θ I , θ I = θ I .
(7.1)

Moreover, we will express (ξ A) defined by (6.4) appearing in the constraints by means
of the formulae (4.6) and (4.7):
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ξ0 = sgn(θ J )|ξ0
ι | = sgn(θ J )

ι(θ J )
ξ0
ι , ξ I = sgn(θ J )

ι(θ J )
ξ I
ι . (7.2)

Let us emphasize that both in (7.1) and (7.2) ξ0
ι is not an independent variable but

rather a function of (ξ I
ι , θ J ) given by (2.5).

In the calculations below we will use also the following identity:

�θ I � θ J = δ I J + ξ I
ι ξ J

ι = q̄ I J , (7.3)

where (q̄ I J ) is the inverse matrix to (qI J ) [see (2.8)]—the first equality above follows
immediately from the identity [3]

�θ A� θ B = ηAB + ξ Aξ B,

where (ξ A) is any solution of (2.3). Let us emphasize that in all formulae below both
qI J and q̄ I J will be consider as functions of (ξ I

ι ) [see (2.7) and (2.8)].

7.1 The constraints of TEGR

7.1.1 The scalar constraint

The scalar constraint (4.20) of TEGR consists of five terms which will be transformed
in turn.

The first term The first term can be rewritten as follows

pA ∧ θ B ∧ ∗(pB ∧ θ A) = p0 ∧ θ0 ∧ ∗(p0 ∧ θ0) + 2pI ∧ θ0 ∧ ∗(p0 ∧ θ I )

+pI ∧ θ J ∧ ∗(pJ ∧ θ I )

= �θ I � ζιI ∧ ξιJ θ J ∧ ∗(�θ K � ζιK ∧ ξιLθ L)

+2�θ L� ζιL ∧ θ I ∧ ∗(rI ∧ ξιK θ K )

−2�θ L� ζιL ∧ θ I ∧ ∗(ξιI �θ K � ζιK ∧ ξιJ θ J )

+rI ∧ θ J ∧ ∗(rJ ∧ θ I )

−2ξιI �θ K � ζιK ∧ θ J ∧ ∗(rJ ∧ θ I )

+ξιI �θ K � ζιK ∧ θ J ∧ ∗(ξιJ �θ L� ζιL ∧ θ I )

= rI ∧ θ J ∧ ∗(rJ ∧ θ I ).

The second term To express the second term in (4.20) as a function of the new
variables it is enough to transform the factor pA ∧ θ A:

pA ∧ θ A = p0 ∧ θ0+ pI ∧ θ I = �θ I � ζιI ∧ ξιJ θ J +(rI − ξιI �θ K � ζιK ) ∧ θ I =rI ∧ θ I .

The third term Consider the integrated third term:

−
∫

�

Mξ AdpA =
∫

�

d(Mξ A) ∧ pA =
∫

�

d M ∧ ξ A pA + Mdξ A ∧ pA. (7.4)
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Let us focus on the first of the two resulting terms:

ξ A pA = sgn(θ J )

ι(θ J )
(ξ0

ι p0 + ξ I
ι pI ) = sgn(θ J )

ι(θ J )

(
(ξ0

ι )2 �θ J � ζιJ + ξ I
ι (rI − ξιI �θ J � ζιJ )

)

= sgn(θ J )

ι(θ J )

(
[(ξ0

ι )2 − ξ I
ι ξιI ]�θ J � ζιJ + ξ I

ι rI

)

= sgn(θ J )

ι(θ J )

( − ξ A
ι ξιA �θ J � ζιJ + ξ I

ι rI
)

= sgn(θ J )

ι(θ J )
(�θ J � ζιJ + ξ I

ι rI ), (7.5)

where in the last step we used the second equation in (2.3). The last term in (7.4)

dξ A ∧ pA = sgn(θ J )

ι(θ J )
(dξ0

ι ∧ p0 + dξ I
ι ∧ pI ) = sgn(θ J )

ι(θ J )

(
ξ0
ι dξ0

ι ∧ �θ J � ζιJ

+dξ I
ι ∧ (rI − ξιI �θ J � ζιJ )

)

= sgn(θ J )

ι(θ J )

(
[ξ0

ι dξ0
ι − ξιI dξ I

ι ] ∧ �θ J � ζιJ + dξ I
ι ∧ rI

)

= sgn(θ J )

ι(θ J )
dξ I

ι ∧ rI

—here in the last step we applied the identity

ξ0
ι dξ0

ι − ξιI dξ I
ι = −ξ A

ι dξιA = 0

which follows from the second equation in (2.3). Thus

−
∫

�

Mξ AdpA = sgn(θ J )

ι(θ J )

∫

�

d M ∧ (�θ J � ζιJ + ξ I
ι rI ) + Mdξ I

ι ∧ rI

= sgn(θ J )

ι(θ J )

∫

�

d M ∧ �θ J � ζιJ + d(Mξ I
ι ) ∧ rI

= − sgn(θ J )

ι(θ J )

∫

�

M
(

d(�θ J � ζιJ ) + ξ I
ι ∧ drI

)
. (7.6)

The fourth term The next term in (4.20) can be expressed as follows:

dθA ∧ θ B ∧ ∗(dθB ∧ θ A) = dθ0 ∧ θ0 ∧ ∗(dθ0 ∧ θ0) − 2dθ0 ∧ θ I ∧ ∗(dθI ∧ θ0)

+dθI ∧ θ J ∧ ∗(dθI ∧ θ J ).
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Let us express first dθ0 as a function of (ξ I
ι , θ J ) and their exterior derivatives:

dθ0 = d
(ξιI

ξ0
ι

θ I
)

= d(αI θ
I ) = dαI ∧ θ I + αI dθ I

= ∂αI

∂ξ J
ι

dξ J
ι ∧ θ I + ξιI

ξ0
ι

dθ I = 1

ξ0
ι

(
qI J dξ J

ι ∧ θ I + ξιI dθ I ) (7.7)

—in these calculations we used the second formula in (2.10) and (2.11). Now let us
calculate the factor dθ0 ∧ θ0—by virtue of (7.7) and (2.7)

dθ0 ∧ θ0 = (ξ0
ι )−2(qI J dξ J

ι ∧ θ I + ξιI dθ I ) ∧ ξιK θ K

= (ξ0
ι )−2

(
[δI J − (ξ0

ι )−2ξιI ξιJ ]dξ J
ι ∧ θ I + ξιI dθ I

)
∧ ξιK θ K

= (ξ0
ι )−2(dξιI ∧ θ I + ξιI dθ I ) ∧ ξιK θ K

= (ξ0
ι )−2d(ξιI θ

I ) ∧ ξιK θ K (7.8)

since ξιI θ
I ∧ ξιK θ K = 0. Thus

dθA ∧ θ B ∧ ∗(dθB ∧ θ A) = (ξ0
ι )−4d(ξιI θ

I ) ∧ ξιJ θ J ∧ ∗(d(ξιK θ K ) ∧ ξιLθ L)

−2(ξ0
ι )−2(qI J dξ J

ι ∧ θ I

+ξιI dθ I ) ∧ θ K ∧ ∗(dθK ∧ ξιLθ L)

+dθI ∧ θ J ∧ ∗(dθI ∧ θ J ).

The fifth term Regarding the fifth term in (4.20) it is enough to calculate

dθA ∧ θ A = −dθ0 ∧ θ0 + dθI ∧ θ I = −(ξ0
ι )−2d(ξιI θ

I ) ∧ ξιK θ K + dθI ∧ θ I ,

where we used (7.8).
Gathering all the partial results we obtain (4.27).

7.1.2 The vector constraint

Let us now turn to the vector constraint (4.21). It was shown in [9] that

V ( �M) =
∫

�

L �Mθ A ∧ pA =
∫

�

L �Mθ0 ∧ p0 + L �Mθ I ∧ pI ,

where L �M denotes the Lie derivative on � with respect to the vector field �M . It is easy
to check that

L �Mθ0 = qI J

ξ0
ι

(L �Mξ J
ι )θ I + ξιI

ξ0
ι

L �Mθ I
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[see (4.9) and (7.7)]. Thus

V ( �M) =
∫

�

(qI J

ξ0
ι

(L �Mξ J
ι )θ I + ξιI

ξ0
ι

L �Mθ I
)

∧ ξ0
ι
�θ K � ζιK

+L �Mθ I ∧ (rI − ξιI �θ J � ζιJ )

=
∫

�

qI J (L �Mξ J
ι )θ I ∧ �θ K � ζιK + L �Mθ I ∧ rI

=
∫

�

qI J (L �Mξ J
ι )�θ K � θ I ∧ ζιK + L �Mθ I ∧ rI

=
∫

�

(L �Mξ K
ι )ζιK + L �Mθ I ∧ rI ,

where in the last step we used (7.3). The well known expression

L �M = d ◦ �M� + �M� ◦ d

allows us to rewrite the result above in a form (4.28) free of derivatives of �M (see also
[9]).

7.1.3 The boost constraint

Using (7.7), (7.5) and (2.7) we obtain

B(a) =
∫

�

a ∧ (θ A ∧ ∗dθA + ξ A pA) =
∫

�

a ∧ (−θ0 ∧ ∗dθ0 + θ I ∧ ∗dθI + ξ A pA)

=
∫

�

a ∧
(

− 1

(ξ0
ι )2 ξιI θ

I ∧ ∗(qJ K dξ J
ι ∧ θ K + ξιJ dθ J ) + θ I ∧ ∗dθI

+ sgn(θ L)

ι(θ L)

(�θ I � ζιI + ξ I
ι rI

))

=
∫

�

a ∧
(

− ξιI qJ K

(ξ0
ι )2 θ I ∧ ∗(dξ J

ι ∧ θ K ) + qI J θ I ∧ ∗dθ J

+ sgn(θ L)

ι(θ L)

(�θ I � ζιI + ξ I
ι rI

))
,

which coincides with (4.29).
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7.1.4 The rotation constraint

By virtue of (7.7)

R(b) =
∫

�

b ∧ (θ A ∧ ∗pA − ξ AdθA) =
∫

�

b ∧
(
ξιI θ

I ∧ ∗(�θ J � ζιJ )

+θ I ∧ ∗(rI − ξιI �θ J � ζιJ )

+ sgn(θ L)

ι(θ L)

(
qI J dξ I

ι ∧ θ J + ξιI dθ I − ξ I
ι dθI

)) =
∫

�

b ∧ (θ I ∧ ∗rI

+ sgn(θ L)

ι(θ L)
qI J dξ I

ι ∧ θ J ),

which coincides with (4.30).

7.2 The constraints of YMTM

It is enough to rewrite the scalar constraint (4.25) since the vector constraint v( �M) of
YMTM coincides with the vector constraint V ( �M) of TEGR. The scalar constraint
consists of three terms which will be transformed in turn.

The first term The first term (4.25) can be rewritten as follows:

pA ∧ ∗pA = −p0 ∧ ∗p0 + pI ∧ ∗pI

= −(ξ0
ι )2 �θ I � ζιI ∧ ∗(�θ J � ζιJ ) + (r I − ξ I

ι
�θ K � ζιK ) ∧ ∗(rI − ξιI �θ L� ζιL)

= −(ξ0
ι )2 �θ I � ζιI ∧ ∗(�θ J � ζιJ ) + r I ∧ ∗rI − 2r I ∧ ∗(ξιI �θ K � ζιK )

+ξ I
ι ξιI �θ K � ζιK ∧ ∗(�θ L� ζιL) = −�θ I � ζιI ∧ ∗(�θ J � ζιJ )

+r I ∧ ∗rI − 2ξιI r I ∧ ∗(�θ K � ζιK ), (7.9)

where in the last step we applied the second equation in (2.3). Using (4.15) and the
fact that ∗ζιI is a zero-form, that is, a function we can transform the first term of the
result above as follows:

−�θ I � ζιI ∧ ∗(�θ J � ζιJ ) = − ∗ (∗ζιI ∧ θ I ) ∧ ∗ζιJ ∧ θ J = − ∗ ζιI ∗ ζιJ ∗ θ I ∧ θ J

= − ∗ ζιI ∗ ζιJ ∗ ∗(∗θ I ∧ θ J ) = −ζιI ∗ ζιJ �θ J � θ I = −q̄ I J ζιI ∗ ζιJ , (7.10)

where in the last step we used (7.3). Let us also simplify the last term in (7.9): again
by virtue of (4.15)

−2ξιI r I ∧ ∗(�θ K � ζιK ) = −2ξιI r I ∧ ∗ζιK θ K = −2ξιI ∗ ζιK r I ∧ θ K .

Setting this result and (7.10) to (7.9) gives

pA ∧ ∗pA = −q̄ I J ζιI ∗ ζιJ + r I ∧ ∗rI − 2ξ I
ι ∗ ζιK rI ∧ θ K . (7.11)

123



Teleparallel equivalent of general relativity II Page 33 of 33 1638

The second term The second term in (4.25) is already calculated—see (7.6).
The third term To calculate the third term in (4.25) in terms of the new variables

we apply (7.7):

dθ A ∧ ∗dθA = −dθ0 ∧ ∗dθ0 + dθ I ∧ ∗dθI = −qI J qK L

(ξ0
ι )2 dξ I

ι ∧ θ J ∧ ∗(dξ K
ι ∧ θ L)

− 2qI J

(ξ0
ι )2 dξ I

ι ∧ θ J ∧ ∗(ξιK dθ K ) − ξιI ξιJ

(ξ0
ι )2 dθ I ∧ ∗dθ J + dθ I ∧ ∗dθI

= −qI J qK L

(ξ0
ι )2 dξ I

ι ∧ θ J ∧ ∗(dξ K
ι ∧ θ L) − 2qI J

(ξ0
ι )2 dξ I

ι ∧ θ J ∧ ∗(ξιK dθ K )

+qI J dθ I ∧ ∗dθ J ,

where in the last step we applied (2.5) and (2.7).
Gathering the partial results we obtain (4.31).
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